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ABSTRACT

Identification of a potential gene signature for improved diagnosis in non-small
cell lung cancer (NSCLC) patient is necessary. Here, we aim to establish and validate
the prognostic efficacy of a gene set that can predict prognosis and benefits of
adjuvant chemotherapy (ACT) in NSCLC patients from various ethnicities. An 8-gene
signature was calculated from the gene expression of 181 patients using univariate
Cox proportional hazard regression analysis. The prognostic value of the signature
was robustly validated in 1,477 patients from five microarray independent data sets
and one RNA-seq data set. The 8-gene signature was identified as an independent
predictor of patient survival in the presence of clinical parameters in univariate and
multivariate analyses [hazard ratio (HR): 2.84, 95% confidence interval CI (1.74-
4.65), p=3.06e-05, [HR] 2.62, 95% CI (1.51-4.53), p=0.001], respectively. Subset
analysis demonstrated that the 8-gene signature could identify high-risk patients
in stage II-III with improved survival from ACT [(HR) 1.47, 95% CI (1.01-2.14),
p=0.044]. The 8-gene signature also stratified risk groups in EGFR-mutated and
wild-type patients. In conclusion, the 8-gene signature is a strong and independent
predictor that can significantly stratify patients into low- and high-risk groups. Our
gene signature also has the potential to predict patients in stage II-III that are likely
to benefit from ACT.

INTRODUCTION

Lung cancer (LC) is one of the leading causes of
cancer-associated deaths worldwide [1]. LC is broadly
divided into two main groups: small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC).
NSCLC accounts for 85% of all lung cancer cases, for
which improvement of 15.9% has been reported in 5-year
survival rate during the past few decades [2]. NSCLC
is currently subdivided into two predominant histologic

phenotypes: adenocarcinoma (ADC; 50%) and squamous
cell carcinoma (SQC; 40%) [3, 4].

The current American Joint Committee on Cancer
(AJCC) staging system serves as the best predictor of
prognosis and a standard to guide treatment decisions
in NSCLC [5]. Complete surgical resection is the most
effective for patients in the early stage [6], even though
30-60% of patients diagnosed with stage IB to I1IA relapse
and die within 5-year of survival [7]. For patients in stage
II-I1I, adjuvant chemotherapy (ACT) is the standard
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treatment with survival rate from 4% to 15% [8, 9].
However, due to the heterogeneous nature of NSCLC,
the current AJCC staging cannot accurately classify
patients who would benefit from chemotherapy [10].
Prognostic biomarkers with transcriptomic data and the
mutation status of genes which are important in cancer
development need to be investigated [11]. Previous studies
identified three major genes (EGFR, KRAS, and ALK) for
the development of lung cancer [12-15]. Mutations in
the EGFR have been associated with enhanced overall
survival, whereas KRAS mutations may predict shorter
survival for lung adenocarcinoma patients [16]. Molecular
tests for these prognostic biomarkers have been started
for preclinical and clinical applications to advance the
treatment of NSCLC [17-20].

Recent advances in microarray gene expression
profiling have demonstrated possibility of screening
gene expression signatures to predict the prognosis of
patients. Previously, this approach successfully identified
prognostic and predictive gene signatures in the breast
cancer [21]. To date, several studies based on gene
expression signatures have been shown to classify various
cancer patients into different prognostic groups with
distinct clinical features by supervised or unsupervised
methods [22-28]. However, the identified survival-related
signatures lack consistency among studies, likely due to
genetic alteration among patients, technical factors such as
differences in microarray platforms, and limited number of
patients. Therefore, it is important to establish a prognostic
gene signature that could predict patient’s survival and
guide decisions of adjuvant therapy for individual patient.

In this study, we identified an 8-gene signature
to distinguish two prognostic groups (low- vs high-
risk), using an unbiased gene expression profiling and
bioinformatics analysis. The 8-gene signature was further
validated in five microarray retrospective and independent
data sets and one RNA-seq data set. Furthermore, we
assessed the associations of the identified prognostic gene
signature with clinicopathological factors and molecular
alterations. Finally, we investigated whether our 8-gene
signature could predict patients who might have benefits
from ACT in the patients diagnosed as stage I1I-1II NSCLC.
Our findings suggest that the 8-gene signature can be
rapidly implemented in a clinical setting and demonstrated
excellent predictive power for NSCLC.

RESULTS

Development of a prognostic gene signature and
a risk predictor

In order to identify a prognostic gene signature that
distinguished low- and high-risk NSCLC patients, gene
expression profiling was analyzed in relation to survival data.
GSES50081 was used as the training data set. As shown in
the flow chart of the procedure (Figure 1A), after filtering

for probe set intensity, 3,294 probe sets were analyzed in
univariate Cox regression analysis with overall survival (OS)
as the prognostic survival end point. A gene signature with
21-probe set was developed. However, the microarray chip
type for the GSE50081 [29], GSE31210 [25, 30], GSE30219
[31], GSE29013 [32] and E-MTAB-923 data sets was
Affymetrix GeneChip Human Genome U133 Plus 2.0 (HG-
U133 Plus 2), and the other chip types for the GSE68465
and GSE42127 were Affymetrix GeneChip Human Genome
(HG-U133A) and Illumina HumanWG-6 v3.0 Expression
BeadChip (IlluminaHuman-WG6 V3), respectively, as
described in ‘Methods’ section (Supplementary Table S1).
Among the 21-probe set, 8 probes, which were corresponded
to 8 annotated genes, were commonly found both in the
training and all validation data sets. Thus, this model
was termed the 8-gene signature, including STATI, CLU,
GTSEI, NUSAPI, ABCAS, TNNTI, ENTPD3 and CPA3
(Supplementary Table S2). Prognostic index for each patient
was calculated based on the 8-gene signature (Figure 1B).
Patients were dichotomized according to the risk score into
low (n=89) and high (n=92) risk groups on their prognostic
index in the training data set. The heatmap showed different
expression patterns of the 8-gene signature for the low- and
high-risk patient groups into two clusters (Figure 1C). The
Kaplan-Meier analysis confirmed that overall survival rate
was different between the predicted low- and high-risk groups
based on the 8-gene signature (p=4.49¢-05, Figure 1D).

The 8-gene signature can be used as an
independent clinical parameters

We next tested whether the prognostic gene signature
was associated with clinical parameters, including age,
gender, smoking, stage and survival. Chi-square (2) test
revealed that patient survival time (p=4.02e-5), stage
(»=0.006) and smoking (p=0.003) were significantly
correlated with our signature, while other parameters
were not associated (Supplementary Table S4). To
evaluate the prognostic accuracy of the 8-gene signature
on overall survival (OS), univariate and multivariate Cox
proportional regression analyses were performed in the
training data set. In univariate and multivariate analyses,
the stage was significantly associated with OS (HR: 1.68,
95% CI 1.04-2.71, p=0.031 and HR: 1.81, 95% CI 1.08-
3.01, p=0.023, respectively). Univariate and multivariate
analyses also showed that the 8-gene signature had the
stronger prognostic ability than stage (HR: 2.84, 95% CI
1.74-4.65, p=3.06e-05 and HR: 2.62, 95% CI 1.51-4.53,
p=0.001, respectively) (Table 1). No significant difference
was obtained in other parameters.

The 8-gene signature was validated in five
independent data sets

To evaluate the robustness of the newly identified
8-gene classifier, validation was done on five independent
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Table 1: Univariate and multivariate Cox proportional hazard regression analyses in the training set

Variable Univariate Multivariate

HR 95% CL p-value HR 95% CL p-value
Age 1.25 0.60-2.61 0.547 1.02 0.48-2.18 0.941
Gender 0.51 0.31-0.84 0.008 0.58 0.33-0.99 0.047
Smoking (N vs E)? 1.38 0.65-2.91 0.389 0.79 0.36-1.71 0..552
Stage (I, 1) 1.68 1.04-2.71 0.031 1.81 1.08-3.01 0.023
8-gene signature 2.84 1.74-4.65 3.06e-05 2.62 1.51-4.53 0.001

IN; Never smoking, E; Ever smoking
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Figure 1: Survival analysis of the training data set. A. Schematic overview of the procedure used to construct the 8-gene signature
based on gene expression data. B. The relative prognostic index based on the 8-gene signature expression of each patient. C. The heatmap of
the median centered 8 genes’ expression profiles (red, relative high expression; green, relative low expression) between low- and high-risk
groups. D. Kaplan-Meier plots for OS of two risk groups in the training data set. The p values were computed by log-rank test.
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microarray and one RNA-seq data sets of NSCLC. A flow
chart of the procedure used to validate the external data
sets is summarized in Figure 2A. The leave-one-out cross-
validation (LOOCV) in five validation data sets resulted
in the specificity and the sensitivity of 0.972 and 0.932,
respectively. To identify whether the gene signature
could be a more accurate prediction marker, we validated
in the combined five validation data sets. As expected,
the 8-gene signature significantly stratified patients into
low- and high-risk groups (p=1.15e-07, Figure 2B). The
three validation data sets (GSE31210, GSE30219 and
GSE29013/E-MTAB-923) were derived from the same
platform as the training data set. The 8-gene signature
significantly classified patients into low- and high-risk
groups for these data sets (p=0.006, p=5.13e-04 and
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p=0.009, Figure 2C-2E), respectively. Furthermore,
cross-platform validation of the gene signature was
demonstrated in two data sets. The Kaplan-Meier plots
also predicted significant differences in prognosis among
independent validation data sets: GSE68465 (p=0.01,
Figure 2F) and GSE42127 (p=0.04, Figure 2G). Low-
and high-risk groups were distinguished, based on the
prognostic index of each patient (Supplementary Figure
S1A-S1E). We also validated RNA-seq data from TCGA
based on the 8-gene signature (p=0.005, Supplementary
Figure S2). Moreover, univariate and multivariate analyses
demonstrated that the 8-gene signature was a prognostic
factor in combined validation sets (HR: 1.77, 95% ClI
1.43-2.20, p=1.71e-7 and HR: 1.34, 95% Cl 1.02-1.77,
p=0.034, respectively) (Supplementary Table S5).
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Figure 2: Validation of the 8-gene signature classifying independent data sets. A. Schematic overview of the strategy used for
the construction of the prediction model and evaluation of predicted outcomes in five independent data sets by the 8-gene signature. B. All
combined validation data sets. C-G. GSE31210, GSE30219, GSE29013/E-MTAB-923, GSE68465, and GSE42127 were classified by the
8-gene signature into low- and high-risk groups, and evaluated by Kaplan-Meier analyses. The p values were computed by log-rank test.
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Prognostic value of the 8-gene signature in
association with stages

To evaluate whether the 8-gene signature could
classify patients in each stages into two risk groups in the
training and validation data sets, patients in each stage
were combined as followed: stage I (n=733), II (n=227),
and III (n=149). As expected, the 8-gene signature clearly
stratified patients into low- and high-risk groups in
combined patients in stage I-11I (p=1.02e-10, Figure 3A;
p=1.43e-11 in 5-year OS, Supplementary Figure S4A).
Moreover, the 8-gene signature significantly separated
stage | NSCLC patients into low- (n=406, 55.3%) and
high-risk groups (n=327, 44.6%) (p=1.44e-04, Figure 3B;
p=1.65e-05 in 5-year OS, Supplementary Figure S4B). In
addition, our gene signature classified patients in stage II
and IIT into low- and high-risk groups (p=0.01 and p=0.04,
Figure 3C and D; p=0.0371 and p=0.0268 in 5-year OS,
Supplementary Figure S4A and S4D, respectively).
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The 8-gene signature predicts clinical outcomes
for adjuvant chemotherapy

For NSCLC patients of stage II-III, ACT has
improved survival rate and has become standard therapy
[8, 9]. To find association of the 8-gene signature with
response to chemotherapy, subset analysis was performed
in stage II-III patients. By incorporating the 8-gene
signature into chemotherapy information, the combined
patients in stage II-III with high-risk group showed
better survival with chemotherapy compared to without
chemotherapy. In high-risk group, seventy six (42.4 %)
patients improved survival from chemotherapy (p=0.04,
Figure 4A; p=0.0382 in 5-year OS, Supplementary Figure
S5A). On the contrary, low-risk group patients in stage II-
IIT did not get any significant benefit from chemotherapy
(p=0.42, Figure 4B. Similarly, among high-risk group
of stage III, fifty (50 %) patients had benefit from
chemotherapy (p=0.01, Figure 4C; p=0.0218 in 5-year
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Figure 3: Kaplan-Meier survival analysis of the 8-gene signature with stages. A. Patients in all stages in the combined training
and validation data sets. B. Patients in stage I in the combined training and validation data sets. C. Patients in stage II in the combined
training and validation data sets. D. Patients in stage III in the validation data sets were classified by the 8-gene signature into low- and

high-risk groups. The p values were computed by log-rank test.
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0OS, Supplementary Figure 5SB), which was not observed
among low-risk group patients of stage III (p=0.93,
Figure 4D). Our gene signature was also applied to
patients with stage I or stage 1. We found that all patients
in these stages did not get benefit from chemotherapy
(Supplementary Figure S3A-S3D).

Association of the 8-gene signature with EGFR
and KRAS mutated/wild-type groups

Accumulation of EGFR and KRAS genetic
alterations leads to the pathogenesis of lung cancer
[12-15]. Based on the information of these genetic
alterations available in validation data sets GSE31210
and GSE29013/E-MTAB-923, we investigated whether
the 8-gene signature could further stratify lung cancer
patients. In association analysis using ¥ tests, the 8-gene
signature was significantly interrelated with EGFR
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status (p=0.007, Figure 5A) but barely with KRAS status
(»=0.07, Figure 5B). These results strongly supported that
the 8-gene signature would be helpful for prediction of
prognosis particularly with EGFR alteration in NSCLC
patients.

Association of the 8-gene signature with
histological subtypes

To further determine whether lung cancer
histology was associated with our 8-gene signature,
we incorporated the gene signature into histological
information in GSE30219, GSE29013, E-MTAB-923
and GSE42127. The 8-gene signature significantly
classified the adenocarcinoma patients into low- and
high-risk groups (p=38.76e-03, Figure 6A). However, it
could not stratify the squamous cell carcinoma patients
(Figure 6B).
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Figure 4: Kaplan-Meier survival analysis of the 8-gene signature with adjuvant chemotherapy. Patients from combined
validation data sets with available ACT data were included for analysis. A-B. Patients in high-and low-risk groups with chemotherapy in
stage II-III. C-D. Patients in high- and low-risk groups with chemotherapy in stage III. Patients were plotted according to presence and

absence of ACT. The p values were computed by log-rank test.
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DISCUSSION

In this study, we have developed a novel 8-gene
signature for NSCLC using computational approaches in
tissues derived from patients. A supervised approach was
integrated to construct the signature refined by LOOCV.
Furthermore, the prognostic value of the 8-gene signature
was determined in six microarray independent data sets
(n=934) and one RNA-seq data set (n=543) patients. The
robustness of the gene signature was supported by the high
sensitivity (>0.90) and specificity (>0.90) values, and a
significant association of predicted outcomes was found
with patient prognosis in those data sets. Using univariate
Cox analysis, the 8-gene signature was found to be one of
the most reliable predictive factors for survival. Univariate
and multivariate analyses performed after adjusting the
clinical parameters showed a significant association of this

A

prognostic gene signature with survival rate. Additionally,
the 8-gene signature had the ability to identify stage II-111
patients benefiting from ACT. Our gene signature strongly
supported that 8 genes are also highly informative for
prediction of patients with £GFR-mutated and wild type.
These results suggest that our signature might be helpful
in clinical management.

In clinical oncology, identification of individual
patients who need ACT in NSCLC still represents a major
concern. To date, only AJCC stage has been validated as
the predictive factor to identify which patients should be
treated with, or spared from chemotherapy. The benefit of
ACT was previously demonstrated in patients at stage I
and II1 [8, 9, 33]. In the context of survival benefit from
ACT, a 15 gene-signature was first reported in resected
NSCLC [24] in the JBR.10 trial [9]. Malignancy-risk gene
signature was also developed as a predictive signature for
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Figure 5: Kaplan-Meier survival analysis of the 8-gene signature with gene mutations. A. Kaplan-Meier curves of patients in
EGFR. B. KRAS in the validation data sets. Each group was classified by the 8-gene signature into low- and high-risk groups. The p values

were computed by log-rank test.
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ACT in lung cancer [34]. Recently, a 12-gene signature
predicted ACT benefits with stage I-1Il NSCLC in two
different data sets [35]. However, these gene signatures
were studied in a small number of patients who received
ACT and only tested on the JBR.10 trial data. None of
the previously published findings showed a survival
advantage in stage II-III patients. In our study, from
the predictive point of view, the 8-gene signature has
confirmed the potential to identify patients who would be
likely to receive benefits from ACT. In subset analysis,

the 8-gene signature clearly showed the benefit in stage
II-III NSCLC patients. Patients in the high-risk group
benefited significantly from ACT (HR, 1.47; 95% Cl, 1.01
to 2.14; p=0.044). In contrast, benefit from ACT was not
statistically significant in low-risk group patients (HR,
0. 77; 95% Cl, 0.41 to 1.45; p=0.42). Our findings also
confirmed the benefits of the ACT for patients with stage
II1. Therefore, we think that our 8-gene signature has the
capability to facilitate clinical decisions for stage II-I11
NSCLC patients who might benefit from ACT.
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Figure 6: Kaplan-Meier survival analysis of the 8-gene signature with histological subtype. A. Kaplan-Meier curves of
patients with adenocarcinoma (ADC). B. Kaplan-Meier curves of patients with squamous cell carcinoma (SQC). Each group was classified

OS (months)

by the 8-gene signature into low- and high-risk groups. The p values were computed by log-rank test.
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Molecular alterations in EGFR, KRAS, and ALK
genes are involved in lung cancer pathogenesis [12-15],
but clinical use of these biomarkers is still a debatable
issue. Because several prognostic gene signatures could
not separate EGFR-mutated, KRAS-mutated, and wild-type
patients into distinct subgroups, prognostic performance
of these subgroups showed conflicting results [25, 36].
Consistent with previously published findings [17, 37], the
8-gene signature was interrelated with EGFR alteration. In
contrast, the 8-gene signature was not able to be associated
with KRAS alteration. At this time, we do not know why
this happens, but we guess this discrepancy may be due
to a small number of patients in this category [38]. We
could not analyze our gene signature to classify patients
with ALK-mutation due to small number of available
data. Further studies are required to evaluate the 8-gene
signature in response to chemotherapy in these mutation
patients in independent and larger data sets. Therefore, our
study demonstrated that the supervised analysis approach
can identify patients with both mutation-specific and wild
types into patients at higher risk with worse prognosis.

In the analyses by incorporating the 8-gene signature
into histological information, our gene signature further
stratified the patients with adenocarcinoma into high-
and low-risk groups. However, unfortunately, the 8-gene
signature could not significantly predict the prognosis
for patients with squamous cell carcinoma. The 8-gene
signature might imply the potential benefit of individual
treatment in patients with adenocarcinoma, although
we agree that it would not be enough to make a strong
conclusion on the predictive power for squamous cell
carcinoma due to the small number of patients.

Notably, some genes in the 8-gene signature (STAT1,
CLU, GTSEI and NUSAPI) are involved in angiogenesis,
invasion, migration, and proliferation. Overexpression
of STAT1 was observed in lung cancer progression [39].
STAT1 promotes tumor growth by diverse processes that
range from suppression of tumor immune surveillance
and an increase in invasiveness/metastasis to acquisition
of resistance against irradiation and chemotherapy
[40]. It is also related to purinergic signaling which has
immunologic consequences in patients with neoplastic
disease [41]. CLU is upregulated after exposure to chemo-
and radiotherapy in studies for lung cancer cell lines and
animal models. In NSCLC prognostic research, CLU-
positive patients with lung cancer had a better overall
survival and disease-free survival than those with CLU-
negative tumors [42]. STAT! and CLU are also involved
in hypoxia and inflammation which are two inseparable
hallmarks in tumorigenesis [43], indicating that they really
play important roles in NSCLC pathogenesis. GTSE!, a
negative regulator of p53, facilitates the proteasomal
degradation of p53 during cellular recovery from DNA
damage [44]. NUSAPI expression is positively correlated
with tumor progression and recurrence [45, 46]. Thus, we
read that these genes have significant roles in the NSCLC

tumorigenesis. In our current study, their expression
patterns in NSCLC patients of our current study were
corresponded to results from the previous studies [39,
42, 47, 48]. In addition, our gene signature identified
new promising biomarkers such as ATP binding cassette
subfamily A member 8 (4BCAS), troponin T1 (TNNT1),
ectonucleoside triphosphate  diphosphohydrolase 3
(ENTPD3) and carboxypeptidase A3 (CPA3).

Here, we report the identification of the 8-gene
signature by system biology approaches using highly
reliable NSCLC data sets. The 8-gene signature predicted
patients at high-risk of mortality in all validation data
sets. Moreover, our gene signature predicted which
patients would respond to ACT. In clinical context,
the gene signature stratified patients into two distinct
prognostic risk groups, and thus overcomes limitations
in conventional classification. Therefore, the 8-gene
signature can preferentially be valuable as an independent
and accurate prognostic predictor and provides an
opportunity for future clinical trial to test the benefit of
chemotherapy in NSCLC patients.

MATERIALS AND METHODS

Patient and gene expression data

All data sets were downloaded from the National
Center for Biotechnology Information Gene Expression
Omnibus database (http://www.ncbi.nlm.nih.gov/geo)
and Array express (https://www.ebi.ac.uk/arrayexpress/).
Data were selected based on the chip type [Affymetrix
U133 Plus 2.0 (GPL570), HG-133A (GPL96) and Illumina
HumanWG-6 v3.0 expression beadchip (GPL6884)]
(Supplementary Table S1). Raw data were preprocessed
using robust multiarray averaging (RMA) method for
normalization. GSE50081 (n=181, University Health
Network) [29] was used as the training data set. GSE31210
(n=226, National Cancer Center Hospital) [25], GSE30219
(n=285, INSERM-UJF) [31], GSE29013 (n=55, UT
Southwestern Medical Center) [32], E-MTAB-923 (n=90,
French National League against Cancer) [36], GSE68465
(n=104, Memorial Sloan-Kettering Cancer Center) [23]
and GSE42127 (n=174, UT Southwestern Medical Center)
[35] were used as validation data sets (Supplementary
Table S3). To test the prognostic significance of gene
signature, only gene expression data with available
survival data were used. ACT information was available
for 170 patients from the validation data sets.

Development of the prognostic gene expression
signature

A gene expression signature to predict prognostic risk
was developed from the training data set (GSES0081). Gene
expression and overall survival (OS) data were combined to
build a gene expression profiling-based survival classifier.
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The 54,675 probe sets were filtered by gene filtration using
at least 2 absolute value of log2 scale, which represented
the same gene expression level. The univariate Cox
proportional hazard regression (p < 0.001) was then used to
identify OS-associated gene expression signature from the
training data set. Regarding prediction of prognosis, genes
from the survival signature were applied to the survival risk
prediction analysis [49]. This method used the principal
component from the training data set and produced a
prognostic index (PI) for each patient. The PI was computed
by the formula Y w, x, - 0.00895 where w, and x, were
the weight and logged gene expression for the i-th gene,
respectively. Patients were classified into two groups based
on a median prognostic index of 0.047018. Patients were
assigned to the high-risk group if their prognostic indices
were greater than the median value, whereas the low-risk
group was composed of patients with prognostic indices
that were equivalent to or less than the median value.

Validation of the prognostic signature

The wvalidation of the gene signature was
accomplished on independent data sets. Gene expression
data from different data sets were adjusted individually
by subtracting the median expression value across the
samples. To further refine this model and to sub-stratify
the predicted outcomes, Compound Covariate Predictor
(CCP) was utilized as a class prediction algorithm [50].
The robustness was estimated by the misclassification
rate that was determined during the leave-one-out cross-
validation (LOOCYV) in the training data set.

Kaplan-Meier survival analyses were performed after
patient classification into two risk groups, and Chi-square
(®) and log-rank tests were used to evaluate the survival risk
between two predicted subgroups of patients. The univariate
and multivariate Cox proportional hazard regression analyses
were used to evaluate independent prognostic factors
associated with survival. Gene signature, stage, smoking,
gender, and age were employed as covariates.

Statistical methods of microarray data

Microarray data and heatmap were analyzed using
BRB-Array Tools Version 3.0 (http://linus.nci. nih.gov/
BRB-ArrayTools.html) [51]. All other statistical analyses
were accomplished in the R language environment (http:///
www.r-project.org) and Statistical Package for Social
Sciences (SPSS) software (version 20, SPSS Inc, Chicago,
IL, USA). In all statistical analyses, p value of less than
0.05 was considered significant.
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