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ABSTRACT

Imbalances in intestinal bacteria correlate with colitis-associated colorectal 
cancer (CAC). Traditional Chinese medicines have been used to adjust the gut 
microbiota, and isoliquiritigenin (ISL), a flavonoid extracted from licorice, has 
shown antitumor efficacy. In this study, the effects of ISL on CAC development and 
the gut microbiota were evaluated using an azoxymethane and dextran sulphate 
sodium (AOM/DSS)-induced mouse model of CAC (CACM). Histopathological analysis 
suggested that ISL reduced tumor incidence in vivo. Moreover, high-throughput 
sequencing and terminal restriction fragment length polymorphism (T-RFLP) studies 
of the bacterial 16S rRNA gene revealed that the structure of the gut microbial 
community shifted significantly following AOM/DSS treatment, and that effect was 
alleviated by treatment with high-dose ISL (150 mg/kg). Compared to the microbiota 
in the control mice (CK), the levels of Bacteroidetes decreased and the levels of 
Firmicutes increased during CAC development. ISL reversed the imbalance at the 
phylum level and altered the familial constituents of the gut microbiota. Specifically, 
the abundance of Helicobacteraceae increased after treatment with high-dose ISL, 
while the abundance of Lachnospiraceae and Rikenellaceae decreased. At the genus 
level, ISL reduced the abundance of opportunistic pathogens (Escherichia and 
Enterococcus), and increased the levels of probiotics, particularly butyrate-producing 
bacteria (Butyricicoccus, Clostridium, and Ruminococcus). Thus, ISL protects mice 
from AOM/DSS-induced CAC, and ISL and the gut microbiota may have synergistic 
anti-cancer effects.

INTRODUCTION

Colorectal cancer (CRC) is a relatively common 
cancer that has a high mortality [1]. Prolonged periods 
of chronic colitis significantly increase the risk of CRC 
and early metastasis [2–3]. CRC occurs in the intestinal 
tract, which is often described as the “neglected endocrine 
organ” where more than 1014 microbes live. Interestingly, 

the number of microbes in gut is ten times higher than 
the number of human cells [4–5]. Dysbiosis of the gut 
microbiota has been associated with gastrointestinal 
diseases such as inflammatory bowel disease (IBD), type 
2 diabetes, obesity, CRC, and other metabolic diseases 
[6–7].

Using quantitative PCR, Sobhani et al. demonstrated 
that the ratio of Bacteroides to Prevotella was significantly 
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increased in CRC patients [8]. The abundance of probiotics 
such as Bifidobacterium, Lactobacillus, and Ruminococcus 
were reduced in CRC patients [9]. Arthur et al. found that 
polyketide synthase genotoxic islands in the commensal 
Escherichia coli NC101 had a larger carcinogenic effect 
in the presence of intestinal inflammation [10]. Bacteria 
not only induce carcinogenesis, but can also produce 
metabolites that influence CRC progression [11]. Some 
metabolites including acetate, propionate, and butyrate 
may inhibit CRC while deoxycholic acid and lithocholic 
acid were shown to directly promote carcinogenesis [12]. 
Short chain fatty acids, particularly butyrate, can suppress 
inflammation and prevent CRC through several signaling 
pathways [13].

Many animal CRC models have been established 
to investigate the association between gut microbes and 
CRC initiation and progression. The models are based 
on both genetic engineering (e.g. ApcMin/+, Muc2-/-, and 
IL-10-/- mice [14–16]) and chemical stimulation (e.g. 
1, 2-dimethylhydrazine [1, 2-DMH]-treated mice and 
azoxymethane and dextran sulphate sodium (AOM/DSS)-
induced mice [17–18]). The AOM/DSS-induced mouse 
model of CAC (CACM) is the most accepted CAC animal 
model [19–20].

Isoliquiritigenin (ISL) is a flavonoid extracted 
from liquorice that has anti-inflammatory and antioxidant 
properties [21–22]. At specific doses, ISL could reduce 
mouse morbidity during influenza virus infection by 
suppressing the inflammatory response and inhibiting 
viral replication [23]. ISL could also act as an anti-cancer 
agent by inhibiting DNA topoisomerase during glioma 
cell growth [24]. Previous studies have demonstrated that 
ISL blocks M2 macrophage polarization in the colitis-
associated tumorigenesis by down regulating PGE2 and 
IL-6 [25]. However, the effect of ISL on gut microbiota 
dynamics during CAC development has not been 
investigated.

In this study, we used the CACM to evaluate 
whether ISL treatment could protect against CAC 
development. The anti-cancer effects of ISL 
were evaluated by histopathological analysis and 
quantification of the abundance of inflammation-
associated factors/cytokines. Dynamic changes in gut 
bacteria were elucidated using quantitative PCR (qPCR), 
terminal restriction fragment length polymorphism 
(T-RFLP) analysis, and high-throughput sequencing of 
the 16S rRNA gene.

RESULTS

ISL prevents CAC development in BALB/c mice

The inflammation-based murine model of 
tumorigenesis in SPF BALB/c mice can be replicated 
using intraperitoneal injection of azoxymethane (AOM) 
and water-administered 2% dextran sodium sulfate 

(DSS) (Figure 1). The body weights of healthy control 
mice treated with 150 mg/kg ISL (ISL + CK mice) 
were similar to those of healthy control mice (CK 
mice) (Figure 1A). AOM/DSS induced CAC treatment 
(CACM) caused a significant loss of body weight, 
which was rescued by ISL treatment (AOM/DSS + 150 
mg/kg ISL, CIH; AOM/DSS + 75 mg/kg ISL, CIM; 
AOM/DSS + 30 mg/kg ISL, CIL). We developed a 
disease activity index (DAI) curve to evaluate disease 
progression, which was based on weight, hematochezia, 
and stool malformation [26]. There were three peaks 
corresponding to the three cycles of DSS administration 
(in drinking water) when hematochezia and stool 
malformation were observed (Figure 1B). All mice in 
the CACM treatment group developed rectal prolapse 
(Figure 1C). We next evaluated the histopathological 
characteristics of tumor tissue samples from each group 
of mice (Figure 1D–1E). The multiplicity (number of 
tumors per mouse) in the CACM, CIL, CIM, and CIH 
treatment groups was 18 ± 0.35, 16 ± 0.47, 12.5 ± 0.35, 
and 7.5 ± 0.7, respectively. ISL decreased the incidence 
of cancer by 25%, 50%, and 50% at doses of 30 
mg/kg, 75 mg/kg, and 150 mg/kg, respectively. Similar 
results were obtained at the 18th week (Supplementary 
Figure S1).

By the 12th week, colorectal tumors formed in 
AOM/DSS-treated mice (CACM). To evaluate the 
association between the anti-cancer effects of ISL and 
pro-inflammatory factors/cytokines in AOM/DSS-treated 
mice, we quantified the levels of these factors/cytokines in 
mouse colon epithelial tissue samples. In the CACM, the 
levels of many cytokines including IL-6, IL-10, TNF-α, 
IL-1β, and the inflammatory factor COX-2 were increased. 
However, following ISL treatment, the levels decreased 
(Figure 2). Similar results were observed at the 18th week 
(Supplementary Figure S2).

Dynamic changes in the microbiota based on 
T-RFLP analysis

Using correspondence analysis (CA), we determined 
that the gut bacterial community structure changed 
significantly during CAC development (Supplementary 
Figure S3). During the 1st week, the community structures 
were similar among all the mice (Supplementary Figure 
S3A). However, hematochezia and diarrhea were observed 
in samples from AOM/DSS-treated mice (CACM, CIL, 
CIM, and CIH mice) starting at the 3rd week. The CACM 
samples were outliers compared to the other samples, 
which suggested that the gut bacterial community 
structure in the CACM differed from that in all other 
mice (Supplementary Figure S3B-S3D). Samples from 
CIL, CIM, and CIH mice were located between those 
of the CACM (no ISL treatment) and CK mice, which 
suggested that ISL protected the gut bacterial community 
structure from disease-associated changes. At the 12th and 
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18th week, the samples collected from CIH, ISL + CK, 
and CK mice were located on the same side of the 2-D 
biaxial and were outliers compared to all other treatment 
groups (Supplementary Figure S3E-S3F). These results 
suggested that the community structure was stable after 
the completion of the CACM at the 12th week. The CK 
and CK + ISL samples clustered together throughout the 
experiment (Supplementary Figure S3), which indicated 
that ISL alone did not cause a significant shift in the gut 
microbiota.

Analysis of the abundance of bacteriodes spp. 
and total bacteria by real-time qPCR

We next examined the abundance of Bacteriodes 
spp. and total bacteria in mouse fecal samples. Universal 
primers (341F/518R) for the bacterial 16S rRNA gene 

and Bacteriodes spp.-specific primers (Bfr-F/Bfr-R) were 
used to amplify fecal microbial DNA (Supplementary 
Table S1). We found that ISL significantly increased the 
abundance of Bacteriodes spp. (1.36% in CACM vs. 2.8% 
in CIH mice) at the 12th week, P = 0.02) (Supplementary 
Table S2). Interestingly, compared to the CACM (no 
ISL treatment), a higher abundance of total bacteria was 
observed after low- and medium-dose ISL treatment (CIL 
and CIM mice). No significant difference was detected 
after treatment with highdose ISL (CIH mice).

Analysis of the diversity and richness of the 
microbiome using 16S rRNA sequencing

To characterize the microbiome associated with 
CRC, high-throughput sequencing of the bacterial 16S 
rRNA gene was performed in fecal samples from mice in 

Figure 1: ISL protects mouse gastrointestinal tracts from AOM/DSS-induced CAC. A. Changes in body weight. B. DAI 
based on weight loss, hematochezia, and diarrhea. C. Left, Macroscopic view of colon tumors at the 12th week. Right, Rectal prolapse at 
the 12th week in the CACM. D. Representative images of hematoxylin and eosin (HE) staining (original magnification, 100×) of mouse 
colon tissue at the 12th week. E. Left, tumor incidence (percentage of tumor-bearing mice); Right, Tumor multiplicity (number of tumors 
per mouse). The results are presented as the mean ± standard error of the mean (SEM); n = 4 for each treatment.
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the CK, CACM (no ISL treatment), and CIH treatment 
groups at the 3rd, 6th, and 12th weeks. Community diversity 
was estimated using the PD_whole_tree, Chao1, and 
Shannon index, and richness was evaluated based on 
the number of operational taxonomic units (OTUs). The 
Shannon index and richness were higher in the CACM 
than in the CK mice (Table 1). However, the Shannon 
index was lower in CIH mice. No significant differences 
were observed between the CIH and CK or between the 
CIH and CACM treatment groups (Table 1). ISL increased 
the richness of the gut microbiota in the CIH compared 
to the CACM and CK treatment groups. No significant 
differences in the PD_whole_tree or Chao1 metrics were 
observed between treatment groups.

Comparison of the gut bacterial community 
composition during CAC development

A phylogenetic tree was generated to examine 
changes in the gut bacterial community composition in 
response to each treatment. The greatest variations in 
the gut microbiota were observed at the 12 th week in 
the CACM (Figure 3). Notably, minimal inter-mouse 
variation was observed at all time points in the CK 
and CIH mice. The reproducibility of the samples in 
the CACM group was influenced by severe diarrhea 

and bleeding. The gut bacterial community composition 
changed with age in the CACM and CIH treatment 
groups, but remained relatively stable in the CK group. 
Compared to the microbiota at the 6th week, the bacterial 
community structure markedly shifted at the 12th week 
in the CACM and CIH mice.

Linear discriminant analysis (LDA) coupled 
with effect size measurements was performed to detect 
core microbes in the mouse gastrointestinal tracts. The 
core microbes in the CK, CACM, and CIH treatment 
groups differed at the 12th week (Figure 4). Turicibacter, 
Turibacteraceae, Turicibacterales, Eubacteriaceae, 
and Anaerofustis were the core microbes observed in 
the CACM, while Bacteroidia, S24-7, Bacteroidales, 
unclassified_S24_7_f, Corynebacterium, unclassified_
Rilkenellaceae_f, AF12, Butyricicoccus, unclassified_
Erysipelotrichaceae_f, Dehalobacteriaceae, and 
Dehalobacterium were the core microbes in CK treatment 
group (Figure 4A–4B). Turicibacter, Turibacteraceae, and 
Turicibacterales were also the core microbes in the CACM 
treatment group, whereas Butyricicoccus,Dehalobacteria
ceae, Dehalobacterium, Clostridium, Ruminococcus, and 
Bacteroidates were the core microbes in the CIH treatment 
group (Figure 4C). ISL significantly increased microbial 
richness (Table 1) relative to the CACM treatment group, 

Figure 2: ISL inhibition of cytokine upregulation in CACM at the 12th week. Significant differences (P < 0.05) between 
treatments are indicated by the letters a, b, or c. The results are presented as the mean ± SEM; n = 4 for each treatment.
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and resulted in a significant shift in the core microbes 
(Figure 4D).

To confirm the association between gut microbes and 
the effects of ISL treatment, we analyzed the abundance 
of various bacteria in fecal samples from each treatment 
group. At the phyla level, Bacteroidetes and Firmicutes 
were dominant in all of the mice (Figure 5). The levels 
of Bacteroidetes and Firmicutes changed dramatically 
in response to AOM and DSS. A significant decrease in 
the abundance of Bacteroidetes was detected at the 12th 
week (65.76% in the CK group vs. 29.31% in the CACM 
group, P = 0.017). In contrast, a significant increase in 
the abundance of Firmicutes was oberseved (29.25% in 
the CK group vs. 61.69% in the CACM group, P = 0.02) 
ISL treatment did not affect the phyla distribution between 
CIH and CK mice (Figure 5). During CAC development, 
the ratio of Firmicutes and Bacteroidetes (F/B) in the 
CACM group was significantly higher than the ratio in the 
CK and CIH groups (Supplementary Figure S4).

At the family level, the abundance of S24-7 
and Rikenellaceae decreased, while the abundance of 
Helicobacteraceae and Lachnospiraceae increased 
in the CACM compared to CK groups. ISL promoted 
recovery of the gut microbial community composition 
at the family level in the CIH group (Figure 6A). There 
was no significant difference between the gut microbiota 
in the CIH and CK groups with the exception of the 
Lachnospiraceae family (31.92% vs. 38.55%, P = 0.037).

At the genus level, 15 genera exceeded 1% of the 
total bacteria (Figure 6B). Consistent with the qPCR 
results, the abundance of Bacteroides decreased in the 
CACM group (1.14% in the CACM group vs. 6.18% in the 
CK group, P = 0.039). Compared to the gut microbes in the 
CK group, the abundance of Prevotella decreased (3.26% 
in the CK group vs. 0.66% in the CACM group, P = 0.05), 
while the abundance ofCoprococcus increased (0.86% in 
the CK group vs. 3.05% in the CACM group, P = 0.023). 
ISL treatment increased the abundance of Prevotella in the 
CIH group (0.66% in the CACM vs. 4.68% in the CIH 
group) at the 12th week. No significant difference in the 
abundanceof Prevotella was observed between the CIH 
and CK groups. Low abundance genera (< 1%) such as 
Akkermansia, Anaeroplasma and Butyricimonas were 
only detected in the CACM and CIH groups. In contrast, 
AF12 was only detected in the CK group. The abundance 

of three genera (Lachnospiraceae(f),unclassified-S24-
7(f) and Escherichia) were significantly increased in 
the CACM group compared to the CK and CIH groups. 
Significant changes among the genera at the 12th week are 
shown in Table 2. A heatmap based on genera abundance 
is shown in Supplementary Figure S5.

Coprococcus, Butyricimonas, Roseburia, 
Clostridium, Ruminococcus, and Butyricicoccus were 
the butyrate-producing bacteria identified in this study. 
The total abundance of butyrate-producing bacteria was 
16.22% in the CACM group, 13.9% in the CIH group, 
and 6.03% in the CK group. Butyricimonas was only 
detected in the AOM/DSS-induced CAC mice (0.07% in 
the CACM group and 0.0082% in the CIH group). The 
abundance of Roseburia was slightly higher in the CACM 
(0.68%) compared to CIH (0.13%) and CK (0.2%) groups. 
The abundance of Coprococcus was higher in the CACM 
(3.05%) and CIH groups (3.16%) compared to the CK 
group (0.86%). Finally, the abundance of Butyricicoccus, 
Clostridium, and Ruminococcus was higher in the CIH 
group than in the CACM and CK groups. Changes in 
butyrate-producing bacteria at the 12th week are shown in 
Supplementary Table S3.

DISCUSSION

Previous studies have indicated that bacteria 
are involved in the pathogenesis of colon cancer. For 
example, Newman et al. found that Citrobacter rodentium 
promoted colon cancer in ApcMin/+ mice, and Apidianakis 
et al. demonstrated a synergistic relationship between 
intestinal bacteria and genetic predisposition to intestinal 
dysplasia [14, 27]. Imbalances in microbiota can promote 
colon tumorigenesis through many pathways. The 
enterotoxigenic Bacteroides fragilis causes colitis, colonic 
hyperplasia, and tumor formation through activation of 
Stat3- and TH17-dependent pathways [28]. Additionally, 
vancomycin-sensitive bacteria induced colon inflammation 
and DNA damage by attracting neutrophils to damaged 
colon tissue, which promoted tumor formation [29]. 
In the present study, imbalances in the microbiota were 
observed in the CACM. Treatment with ISL alleviated the 
imbalances, reduced inflammation, and inhibited CAC 
development.

Table 1: Bacterial diversity analyzed by high-throughput sequencing

Treatment Richness PD_whole_tree Chao1 Shannon-Index

CACM 43343 b 34.15 a 958.53 a 6.37 a

CIH 51677 a 37.45 a 1034.16 a 6.13 ab

CK 41259 c 31.08 a 966.05 a 5.77 b

Note: Significant differences (P < 0.05) between groups are marked with the letters a, b, or c. The results are presented as 
the mean ± SEM; n = 4 for each treatment.
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Figure 4: Differences in the community structures of gut microbes among the CACM, CIH, and CK mice. A. Taxonomic 
representation of statistically and biologically consistent differences between CACM and CK mice. Significant differences are represented 
by different colors (red and green represent the core microbes in the CACM and CK treatment groups, respectively; and yellow represents 
microbes that were shared between the CACM and CK treatment groups. B-D. Histogram of the LDA scores for differentially abundant 
genera between the two treatment groups.

Figure 3: Phylogenetic tree. The numbers correspond to the specimens and treatment week (e.g. CK3-1 denotes the first sample for 
the CK mice at the 3rd week.
Figure 3: Phylogenetic tree. The numbers correspond to the specimens and treatment week (e.g. CK3-1 denotes the first sample for 
the CK mice at the 3rd week.
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Figure 6: Relative abundance according to family A. and genus B. for bacteria that exceeded 1% of the total in the 
three treatment groups. *, P < 0.05 compared to CK mice.

Figure 5: Relative abundance of the main phyla in the intestinal microbiota.
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Following ISL treatment, the abundance of 
Helicobacteraceae decreased while the abundance of 
Lachnospiraceae and Rikenellaceae increased. These 
changes were consistent with previous studies both 
in animal models and in patients. The abundance of 
Helicobacteraceae increased in IBD patients [30], while 
the abundance of Rikenellaceae decreased in Muc2-/- 
mice that spontaneously developed CAC [31]. Zackular 
et al. found reduced Lachnospiraceae in CRC patients. 
Some OTUs belonging to Lachnospiraceae may help 
to maintain healthy gastrointestinal tracts and could be 
tools to assess gut health [32]. Therefore, the increases 
in Lachnospiraceae and Rikenellaceae abundance could 
modify the gut environment and enhance the antitumor 
efficacy of ISL.

Previous studies have demonstrated a reduction in 
the abundance of Turicibacter in the gastrointestinal tracts 

of mice with colitis (DSS-induced and IL-22-deficient 
mice) [33–34]. However, we observed an increase in 
Turicibacter in the CACM. The increase in Turicibacter 
could have been induced by AOM treatment. In contrast, 
the abundance of Turicibacter was reduced in the CIH 
mice, which had a lower incidence of colon tumorigenesis.  
Thus, Turicibacter could be a tool to detect health status 
of the gut.

Consistent with previous studies [35–36], we 
confirmed that the abundance of Bacteroidetes decreased 
while the abundance of Firmicutes increased during 
CAC development. ISL treatment prevented disease-
induced changes in the gut microbial community 
structure. The discrepancy in Bacteroidetes resulted 
in significant differences between the CACM and the 
CK mice. Zackular et al. found that the abundance 
of Prevotella (Bacteroidetes) decreased during CAC 

Table 2: Genera that differed significantly between CACM and CK mice, or CIH and CK mice

Phylum Genus
Relative abundance 

(%) Range (%)
P-value Direction 

of change
CACM CK CACM CK

Bacteroidetes AF12 0 0.32 0 0.21 - 0.41 0.0053 ↓

Bacteroidetes Bacteriodes 1.14 6.18 0.23 - 2.48 3.66 - 10.7 0.039 ↓

Bacteroidetes unclassified-S24-7(f) 14.5 38.55 9.57 - 23.6 26.31 - 52.65 0.05 ↓

Bacteroidetes Prevotella 0.66 3.26 0.011 - 1.85 2.10 - 3.07 0.05 ↓

Verrucomicrobia Akkermansia 9.00E-03 0 7.2e-3 - 9.91e-3 0 0.00059 ↑

Proteobacteria Escherichia 0.15 5.00E-03 0.108 - 0.18 2.5e-3 - 8.3e-3 0.0031 ↑

Bacteroidetes Butyricimonas 9.30E-02 0 1.4e-2 - 6.8e-2 0 0.02 ↑

Firmicutes Lachnospiraceae (f) 30.4 11.26 25.51 - 37.92 8.61 - 15.20 0.012 ↑

Firmicutes Coprococcus 3.05 0.86 2.42 - 4.08 0.52 - 1.49 0.023 ↑

Firmicutes Anaerotruncus 3.30E-02 0.0086 2.6e-2 - 4.1e-2 2.5e-3 - 8.3e-3 0.027 ↑

CIH CK CIH CK

Bacteroidetes AF12 0 0.32 0 0.21-0.41 0.0053 ↓

Actinobacteria Propionibacterium 5.20E-04 2.20E-03 0 - 1.6e-3 2.1e-3 - 2.45e-3 0.033 ↓

Bacteroidetes Bacteriodes 1.4 6.18 0.39 - 2.42 3.66 - 10.7 0.042 ↓

Bacteroidetes Butyricimonas 9.20E-03 0 7.1e-3 - 0.011 0 0.0016 ↑

Proteobacteria Sutterella 3.60E-02 0.016 3.2e-2 - 4.0e-2 1.5e-2 - 1.8e-2 0.0017 ↑

Tenericutes Anaeroplasma 2.70E-02 0 0.018 - 1.6e-2 0 0.0063 ↑

Firmicutes Coprococcus 3.16 0.86 2.68 - 3.72 0.52 - 1.50 0.0064 ↑

Firmicutes Anaerofustis 1.40E-02 0.00082 9.0e-3 - 1.8e-2 0 - 2.5e-3 0.0085 ↑

Firmicutes unclassified-
Christensenellaceae(f) 9.70E-03 0.0015 5.3e-3 - 1.3e-2 0 - 4.4e-3 0.036 ↑

Bacteroidetes Parabacteroides 3.70E-02 0.0074 1.9e-2 - 5.2e-2 4.4e-3 - 1.0e-2 0.039 ↑

Firmicutes Gemella 2.00E-02 0.00069 7.1e-3 -2.5e-2 0 - 2.1e-3 0.04 ↑
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development [37]. We also observed a decrease in 
Prevotella in the CACM compared to CK group. 
After treatment of CACM with ISL, the abundance of 
Prevotella increased to a normal level. No significant 
differences were observed compared to the CK group 
(4.28% in the CIH group vs. 3.26% in the CK group, 
P = 0.74), which suggested that ISL could increase the 
abundance of Prevotella in the CACM.

Increasing evidence suggests that gut microbial 
metabolites are crucial for the maintenance of health [38]. 
Imbalances in butyrate-producing bacteria have been 
commonly observed in CAC patients [39–41]. Previous 
studies reported that butyrate had potent activity against 
CRC. It reduced oxidative damage to DNA, induced 
apoptosis in cells with DNA damage, and inhibited tumor 
cell growth [42]. The increase of butyrate-producing 
bacteria in CIH mice suggested that ISL had the ability 
to increase some butyrate-producing bacteria in the gut 
(e.g. Butyricicoccus, Clostridium, and Ruminococcus). 
Butyricicoccus enhanced intestinal epithelial barrier 
function and protected the gastrointestinal tracts of CAC 
patients [43–45]. Clostridium and Ruminococcus were the 
core microbes detected in the CIH treatment group, which 
suggests that they may play a key role in maintaining 
normal microbial balance.

Akkermansia was detected in fecal samples 
from CACM and CIH mice, but not the CK mice. 
Previous studies have indicated that the abundance 
of Akkermansia was positively correlated with 
colonic tumor multiplicity and size [37, 46], and 
that the abundance of Akkermansia in the gut was 
significantly increased in CRC patients [39, 47] 
Akkermansia municiphila is a component of the healthy 
gut microbiome and a potential probiotic, but it was 
positively correlated with the ratio of colon cancer 
[48]. We suspect it may be correlated with the abnormal 
gut environment induced by colitis and CRC. The 
abundance of Escherichia and Enterococcus, which are 
both opportunistic pathogens, was increased in CAC 
patients [49–50]. Consistent with these data, we found 
that the abundance of Enterococcus was also increased 
in CACM compared to CK mice (0.011% vs. 6.9E-4%), 
and was below the detection limit in CIH mice. The 
substantial reduction in the abundance of Enterococcus 
in CIH mice could be related to the anti-cancer effects of 
ISL. ISL may inhibit CAC development by reducing the 
abundance of some opportunistic pathogens.

ISL treatment is an effective means of controlling 
infection induced by certain types of bacteria and 
viruses. For example, Feldman et al. demonstrated 
that ISL has antibacterial activity against three major 
periodontopathogens: Porphyromonas gingivalis, 
Fusobacterium nucleatum, and Prevotella intermedia 
[51]. Moreover, the combination of ISL and oxacillin 
significantly lowered the systemic microbial burden of 
methicillin-resistant Staphylococcus aureus in the blood, 

liver, kidney, lung and spleen compared to ISL or oxacillin 
alone, as well as untreated controls [52]. However, the 
mechanisms underlying these effects are unclear. Some 
studies have reported that ISL suppresses inflammation 
through inhibition of nuclear factor-κB activation [53–
57]. However, further studies are needed to fully test this 
hypothesis.

In conclusion, we have confirmed that ISL has anti-
CAC effects. The composition of the gut microbiota in the 
CACM was restored upon ISL-treatment. The abundance 
of opportunistic pathogens were reduced (Escherichia 
and Enterococcus), while the abundance of Prevotella, 
Butyricicoccus, Clostridium, and Ruminococcus was 
elevated in the modified microbiota. These bacteria may 
cooperate with ISL to inhibit CAC development. Our 
study provides new evidence that traditional Chinese 
medicines may prevent CRC, in part through regulating 
the gut microbiota.

MATERIALS AND METHODS

Animals and reagents

Six-week-old male BALB/c mice (18–20g) 
were purchased from Vital River Laboratory Animal 
Technology Co. Ltd. (Beijing, China). All animals were 
housed in plastic cages (with eight mice/cage) under 
controlled conditions (humidity [55 ± 5%], light [12 h 
light/dark cycle], and temperature [23 ± 2°C]). AOM was 
purchased from Sigma-Aldrich (St. Louis, MO, USA) and 
DSS was purchased from MP Biomedicals (molecular 
weight: 36–50 kDa, MP Biomedicals, Santa Ana, CA, 
USA). ISL was purchased from Melone Pharmaceutical 
(molecular weight: 256.25, Dalian, China). Different 
doses of ISL (30, 75, and 150 mg/kg) were dissolved 
in 0.5% sodium carboxymethyl cellulose (CMCC-Na) 
solution. AOM was dissolved in normal saline to a final 
concentration of 0.5 mg/mL.

Experimental procedures

Forty-eight six-week-old male BALB/c mice were 
divided into six groups: blank control treatment (CK, 
n = 8), ISL control treatment (ISL + CK, n = 8), AOM/
DSS-induced CACM only (n = 8), and three groups of 
CACM mice treated with different dosages of ISL (CIL 
[30 mg/kg], CIM [75 mg/kg], and CIH [150 mg/kg) (n = 
8 in each treatment). CK and ISL + CK mice were given 
sterile drinking water and fed a standard rodent chow 
diet for 12 or 18 weeks. The procedure for generating 
the CACM is shown in Figure 7. The mice were injected 
intraperitoneally with a single dose of AOM (10 mg/kg) 
on the first day. One week after AOM injection, three 
experimental courses of DSS were administered. For 
each course, the mice (CACM) were given drinking water 
containing 2% DSS for one week followed by sterile 
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drinking water for two weeks. For ISL treatment, different 
doses of ISL (30, 75, and 150 mg/kg) were administered 
intragastrically six times per week starting on the first day 
of the study. ISL + CK mice were gavaged with 150 mg/
kg ISL six times per week without AOM/DSS treatment. 
Animal weights were evaluated and recorded at the end 
of each week.

Feces collection and bacterial DNA extraction

Fecal samples were collected at the end of each 
week and stored at -80°C. Bacterial DNA was extracted 
with the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions. 
The quality and quantity of the DNA was evaluated 
by 1% (w/v) agarose gel electrophoresis in 0.5 mg/
mL ethidium bromide and Nano Drop 2000 ultraviolet 
spectrophotometry.

T-RFLP analysis

To evaluate the gut microbiota, feces were collected 
from all mice at the 1st, 3rd, 6th, 12th, and 18th week 
and T-RFLP analysis performed. Bacterial DNA was 
amplified with bacterial 16S rRNA gene-specific primers: 
8F (5’-FAM-AGAGTTTGATCATGGCTCAG-3’) and 
1492R (5’-GGTTACCTTGTTACGACTT-3’) [58], which 
included a FAM label at the 5’end of the 8F primer. The 
PCR products were purified with an agarose gel recovery kit 
(DP214, Tiangen, China) according to the manufacturer’s 
instructions. Restriction digests were performed with MspI 
(Hpa, Hap II) (Takara, Dalian, China) according to the 

manufacturer’s instructions. PCR products (20 µL) were 
incubated for 4 hr at 37°C followed by 80°C for 20 min. The 
fragments (T-RFs) were desalinated by ethanol precipitation 
and then mixed with an internal size standard (LIZ500) at 
95°C for 5 min. The fragments were sequenced with a DNA 
Sequencer in the range of 50–1000 bp (ABI PRISM 3700, 
USA) and the results analyzed using the Peak Scanner (v1.0) 
and Gene Marker 2.20 software.

High-throughput sequencing of 16S rRNA

Based on the results of the T-RFLP analysis, 16S 
rRNA high-throughput sequencing was performed on 
fecal samples from CK, CACM, and CIH mice collected 
at the 3rd, 6th, and 12th weeks. Genomic DNA was extracted 
from fecal samples using the QIAamp DNA Stool Mini 
Kit (Qiagen) according to the manufacturer’s instructions 
and evaluated by 1% agarose gel electrophoresis. Genomic 
DNA was then amplified in 50 μL triplicate reactions with 
bacterial 16S rRNA gene (V3-V5 region)-specific primers: 
338F (5’-ACTCCTACGGGAGGCAGC-3’) and 806R (5’-
GG ACTACHVGGGTWTCTAAT-3’) [59]. The reverse 
primer contained a sample barcode, and both primers 
were connected with an Illumina sequencing adapter. PCR 
products were purified and the concentrations adjusted 
for sequencing on an Illumina Miseq PE300 system 
(OEbiotech Co., Ltd., Shanghai, China).

Histopathological analysis

After the mice were sacrificed, colon specimens 
were dissociated and washed with cold PBS, cut 

Figure 7: Experimental protocol. Different doses of ISL are represented by the letters in the squares, (H, M, and L correspond to ISL 
doses of 150 mg/kg, 75 mg/kg, and 30 mg/kg, respectively). Mice in each treatment group were sacrificed at the 12th and 18th week based 
on the model.
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off approximately 3 mm piece and fixed in 10% 
formaldehyde. The remaining colon tissue was used to 
isolate enterocytes. The fixed tissues were embedded 
in paraffin, sectioned, and stained for histopathological 
analysis [58].

Reverse transcription qPCR

Mouse colonic epithelial cells were collected 
using published protocols [60–63]. Total mRNA was 
extracted using the Trizol reagent and colonic epithelial 
cytokines evaluated by reverse transcription qPCR 
(RT-qPCR). The results were analyzed using the ΔΔCt 
method [64]. Fecal DNA was amplified with bacterial 
16S rRNA-specific primers and the relative quantities 
of total bacteria and Bacteroides spp. analyzed. Target 
gene copy number was determined by comparison to a 
standard curve. PCR reactions were performed using the 
StepOne System (ABI). The primer sequences and qPCR 
amplification protocol are shown in Supplementary 
Table S4.

Bioinformatics and statistical analysis

For T-RFLP analysis, the abundance of T-RFs (< 
1%) with lengths < 30 bp were filtered. T-RFs that differed 
by ± 1 bp were combined into a single T-RF. CA of the 
bacterial community structures was performed using the 
Canoco for Windows 4.5 software.

For high-throughput sequencing, raw reads 
were processed with the Trimmomatic software. First, 
pair reads were merged according to their overlap. 
The sequences were then filtered according to the 
barcode and primer sequences (the barcodes could 
not be mispaired and the highest number of mispaired 
primer sequences was two. The optimized sequences 
were clustered into OTUs with 97% similarity using 
Usearch (version 7.1 http://drive5.com/uparse/). The 
OTUs were used to estimated community diversity and 
richness. The alpha diversity analysis was performed 
with mothur (version v. 1.30.1 http://mothur.org/). The 
Shannon index, PD_whole_tree, and Chao1 were used 
to estimate community diversity, while richness was 
calculated based on the number of OTUs. A heatmap 
based on Bray-Curtis was made with the R vegan kit (R 
package 2.7.1).

Statistical analyses

Microbial taxonomy features were analyzed using 
Mann-Whitney tests (SPSS 19.0, Chicago, IL, USA). 
Significant differences in the diversity index, richness, 
cytokine abundance, and tumor multiplicity were 
identified using repeated measures ANOVA with Tukey’s 
honestly significant difference (HSD) post hoc test in 
SPSS 19.0. Statistical tests were two-sided and a P < 0.05 
was considered significant.
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