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ABSTRACT

Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the 
two major subtypes of lung cancer, with LUSC exhibits faster progression rate than 
LUAD. To investigate the roles of immune-response related genes (IRGs) in lung 
cancer progression, we used LUAD and LUSC samples at different cancer progression 
stages, and identified that the expression profiles of IRGs could serve as a better 
classification marker for cancerous tissues of both LUAD and LUSC. We found that 
the expression changes of IRGs were different between LUAD and LUSC. Cell cycle 
promoting genes, including KIFs and proteasomes, showed faster up-regulation in 
LUSC, whereas immune response promoting genes, including MHC molecules and 
chemokines, were more rapidly repressed in LUSC. Comparative pathway analysis 
revealed that members of the Toll-like receptor and T cell receptor signaling pathways 
exhibited diverged expression changes between LUAD and LUSC, especially at the 
early cancer stages. Our results revealed the difference of LUAD and LUSC from the 
immune response point of view, and provided new clues for the differential treatment 
of LUAD and LUSC.

INTRODUCTION

Lung cancer is a common and severe disease 
which ranks the top among cancers worldwide in terms 
of mortality for both men and women [1, 2]. Most of 
diagnosed lung cancers are malignant epithelial tumors, 
which could be further classified into small cell lung 
carcinoma (SCLC) and non-small cell lung carcinoma 
(NSCLC). NSCLC counts for about 85-90% of lung 
cancers, among which the most common subtypes are 
lung adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUSC) [3]. According to the tumor node 
metastasis (TNM) taxonomy, both LUAD and LUSC 
can be classified into four stages, namely stages I, II, 
III and IV [4]. Stage I refers to the early, non-metastatic 
stage. Stages II and III usually indicate the intermediate, 
regional lymphatic metastatic stages, of which stage III 

has a higher lymphatic metastasis degree than stage II. 
And stage IV usually represents the late stage with distal 
metastasis. Each stage can be further divided into A and B 
sub-stages, of which sub-stage B has higher cancer degree 
than sub-stage A.

LUAD is at present the most common lung cancer 
subtype among non-smokers and women, although it has 
been shown that smoking may increase the risk of LUAD 
[5, 6]. By contrast, LUSC is closely associated with 
smoking, and is more common in men than in women [7]. 
Generally LUAD grows more slowly with smaller masses 
than LUSC of the same stage, but LUAD tends to initiate 
metastasis at the early stages [8]. Pan-cancer studies have 
shown that the molecular mechanisms of carcinogenesis 
could be highly heterogeneous between LUAD and LUSC, 
even in LUAD itself [3, 9, 10]. Consequently, therapies for 
LUAD are often ineffective for LUSC [11].
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A number of genes have been reported to be 
associated with lung cancer, including EGFR, TP53, 
AKT1, DDR2, FGFR1, KRAS, PTEN, and others [12–18]. 
Previous studies have shown that the patients’ immune 
system plays a key role in controlling the development 
of lung cancer [19]. Cancer cells with abnormal mutation 
could provoke the body’s immune responses therefore 
to be identified and eliminated. It has been shown that 
animals with deficiency in key immune response related 
genes are more prone to develop cancers [20, 21]. On the 
other hand, cancer cells have also acquired the ability to 
alter host immune response to facilitate cancer progression 
[22–25]. Although methods have been developed to 
diagnose or predict the clinical treatment outcomes of 
lung cancers basing on the expression profiles of certain 
immune-response related genes (IRGs) [26–28], thorough 
comparison of the expression changes of IRGs and their 
participated pathways/networks during the progression 
process of LUAD and LUSC is still lacking.

Here, we systematically studied the expression 
changes of IRGs during the progression process of 
LUAD and LUSC. Through comparative analysis, we 
have revealed the expression difference of IRGs between 
LUAD and LUSC, and identified genes and pathways that 
may contribute to the faster progression rate of LUSC in 
comparison to LUAD.

RESULTS

Immune-response related genes (IRGs) showed 
systematic expression changes in the LUAD and 
LUSC samples

To investigate the expression changes of immune-
response related genes (IRGs) from the LUAD and LUSC 
subtype cancer samples, we collected the RNA-Seq data 
of LUAD and LUSC patients from The Cancer Genome 
Atlas (TCGA) database. We considered patients with 
available RNA-seq data from both the tumor and matched 
normal samples as valid subjects, thus, data from a total 
of 36 LUAD patients and 32 LUSC patients at different 
cancer stages were included in this study (Supplementary 
Table S1 and Supplementary Table S2). We extracted 
the expression information of IRGs from each sample 
according to the list of IRGs curated by the Immunology 
Database and Analysis Portal (IMMPORT) website, 
which includes genes directly or indirectly involved in 
immune responses. A total of 6001 IRGs were curated 
by the IMMPORT dataset, among which, around 4100 
were detected in each stage of the LUAD and LUSC 
samples, respectively (Table 1). Principle component 
analysis (PCA) showed that the expression profiles of 
total expressed IRGs could better classify the tumor and 
normal samples than the profiles of the total expressed 
genes for both the LUAD and LUSC patients (Figure 1), 

indicating that the IRGs had undergone systematic and 
consistent expression changes among the tumor tissues of 
both LUAD and LUSC.

Using a cutoff threshold of fold change > 2 and 
FDR < 0.1 (with Benjamini–Hochberg multiple testing 
correction), differentially expressed immune-response 
related genes (DEIRGs) at each stage of LUAD or LUSC 
as compared to the corresponding normal tissues were 
identified by the edgeR software and used in the following 
analysis (Table 1). Comparative analysis revealed that 
more than 59% of the DEIRGs with unidirectional 
expression changes (see materials and methods) presented 
in both LUAD and LUSC (Supplementary Figure S1). 
GO analysis of the common DEIRGs with unidirectional 
expression changes revealed that genes involved in 
multiple immune related processes were down-regulated in 
both LUAD and LUSC, indicating that the development of 
both LUAD and LUSC is accompanied by the repression 
of patient immune responses (Supplementary Figure 
S2). To the contrary, cell cycle and cell division related 
genes were up-regulated, which was in concert with the 
fast proliferation feature of cancer cells (Supplementary 
Figure S2). In addition, more immune related GO terms 
were enriched among LUSC specifically repressed genes 
as compared to those of LUAD, which may partially 
contribute to the faster progression process of LUSC 
(Supplementary Figure S3).

Expression pattern changes of DEIRGs during 
cancer progression

To investigate the expression changes of DEIRGs 
during the progression of LUAD and LUSC, we classified 
the expression patterns of DEIRGs using the STEM (short 
time-series expression miner) software [29]. A total of 7 and 
8 significantly enriched expression patterns were identified 
among DEIRGs of LUAD and LUSC, respectively (p-value 
< 0.05, non-parametric clustering algorithm of STEM with 
Bonferroni correction) (Figure 2 and Supplementary Table 
S3). Patterns 11, 27, 35 and 42 were identified among 
DEIRGs of both LUAD and LUSC, whereas patterns 14, 
21 and 47 only presented among DEIRGs of LUAD, and 
patterns 2, 3, 12 and 39 were only detected among DEIRGs 
of LUSC (Figure 2). By comparing the gene expression 
level at the most significantly altered cancer stage to that 
of the normal samples, we roughly divided these patterns 
into up-regulated and down-regulated expression groups 
in both LUAD and LUSC (Figure 2). Unexpectedly, only 
few common genes were identified among the groups with 
identical patterns in LUAD and LUSC (Supplementary 
Table S3). Comparative GO analysis revealed that the 
enriched biological processes among DEIRGs with pattern 
42 of LUAD were similar to those among DEIRGs with 
pattern 35 of LUSC (Supplementary Figure S4), and 
most of these processes were related to cell proliferation, 
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Figure 1: Principle component analysis (PCA) of the expression levels of immune-response related genes (IRGs) and 
total genes (TGs) among the tumor (red points) and normal (blue points) samples from the LUAD and LUSC patients, 
respectively. Percentages in parenthesis are the proportion of variability presented by each PCA.

Table 1: No. of expressed immune-response related genes (IRGs) and differentially expressed IRGs of the LUAD and 
LUSC samples at different cancer stages

Dataset Category of IRGs
Total Cancer stage

IA IB II III IV

LUAD

Expressed 4238 4158 4172 4185 4166 4082

Differentially 
expressed

Up

Down

1336 561 770 896 738 160

1048 551 686 570 746 119

LUSC

Expressed 4252 4177 4201 4199 4167 4015

Differentially 
expressed

Up

Down

1622 897 1029 1094 850 574

1405 678 1016 950 552 519

Up, up-regulated genes in tumor samples in comparison to normal samples;
Down, down-regulated genes in tumor samples in comparison to normal samples.
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cell cycle and DNA repair processes (Figure 3A). The 
expression of genes with pattern 35 reached the peak level 
at stage IA, whereas the expression of genes with pattern 42 
reached the peak level at stage IB. Such earlier activation of 
cell proliferation and cell cycle related genes in LUSC as 
compared to LUAD might be one of the causal factors for 
the faster progression of LUSC. Correspondingly, at stage 
IA, the expression levels of cell proliferation and cell cycle 
related genes with pattern 42 of LUAD were generally 
lower than those with pattern 35 of LUSC (Supplementary 
Table S4).

To be specific, we found that kinesin superfamily 
genes (KIFs) and proteasome complex subunit genes 
(PSMBs, PSMDs and PSME3) were among genes with 
pattern 42 of LUAD and pattern 35 of LUSC (Figure 3B 
and Supplementary Table S4). It has been shown that KIFs 
play important roles in tumor development and progression 
due to their crucial functions in regulating cell division as 
well as intracellular vesicle and organelle transportion [30, 
31]. Malfunction of the proteasome complex could also 
contribute to the pathogenesis of cancer [32–34].

On the other hand, immune response processes 
related GO terms were significantly enriched among 
DEIRGs with down-regulated expression patterns, 
including patterns 11 and 21 of LUAD, and patterns 
2, 3, 11, and 12 of LUSC (Figure 3C, Supplementary 
Figure S5, and Supplementary Table S5). We noticed 
that MHC molecules and chemotactic cytokines were 
overrepresented among the DEIRGs with down-regulated 
patterns. MHC molecules are crucial for mediating antigen 
processing and presentation during immune responses [22, 
35, 36]. Chemokine can guide the migration of cells, such 
as directing lymphocytes to the lymph nodes to provoke 
immune response during immune surveillance [37]. The 

expression levels of the above mentioned two types of 
genes at the early stage of LUSC were generally lower 
than those of LUAD (Figure 3D and Supplementary Table 
S5), implying their contribution to the faster tumor growth 
rate of LUSC by escaping the immune surveillance.

Comparative pathway analysis of DEIRGs 
during LUAD and LUSC progression

To thoroughly compare the signaling pathways in 
which DEIRGs participated during LUAD and LUSC 
progression, we carried out enriched signaling pathway 
analysis of all DEIRGs with unidirectional expression 
changes in LUAD and LUSC. Among the identified 
pathways, Toll-like receptor (TLR) and T cell receptor 
signaling pathways exhibited synergetic expression 
differences between LUAD and LUSC. For the TLR 
pathway, both the upstream TLRs (including TLR2, 
TLR3, TLR4, TLR5, TLR7 and TLR9) and the downstream 
effector genes (including CCL3, CCL4 and CCL5 in the 
complement and coagulation cascade, and CD80 and 
CD86 with T cell stimulation functions) all exhibited 
reduced expression in LUSC as compared with LUAD 
(Figure 4A). Similarly, genes involved in T cell mediated 
immune response, such as CD3D, CD3E, CD3G, CD247 
in the CD3-TCR complex and downstream effector 
ZAP70, were more rapidly repressed in LUSC than in 
LUAD, especially at the early cancer stage (Figure 4B).

DEIRGs with diverged and stage-specific 
expression patterns

Next, we searched for DEIRGs exhibited diverged 
expression changes in LUAD and LUSC. By searching for 

Figure 2: Schematic diagrams of the significantly enriched expression patterns of the differentially expressed immune-
response related genes (DEIRGs) during LUAD or LUSC progression. Patterns present in both LUAD and LUSC samples are 
marked with red boxes.
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DEIRGs with unidirectional up-regulation in one cancer 
subtype whereas with unidirectional repression in the 
other cancer subtype, we identified 60 DEIRGs being up-
regulated in LUAD but repressed in LUSC as compared 
to their corresponding normal tissues (Figure 5A and 5B 
and Supplementary Table S6), as well as 28 genes being 
repressed in LUAD but up-regulated in LUSC (Figure 5A 
and 5D and Supplementary Table S6). In concert with the 
pathway analysis results, T-cell related processes were 
the most enriched GO terms among DEIRGs being up-
regulated in LUAD but repressed in LUSC (Figure 5C). 
On the other hand, genes being repressed in LUAD but 

up-regulated in LUSC were enriched of cell adhesion and 
cell proliferation related functions, which again supported 
the faster proliferation rate of LUSC (Figure 5E).

We next screened for DEIRGs with specific 
expression at certain cancer stage (Figure 6A, 
Supplementary Figure S6 and Supplementary Table 
S7). Using > 5 fold up- or down-regulation (FDR < 0.1) 
at one cancer stage and without > 2 fold up- or down-
regulation (FDR < 0.1) at the other three stages, DEIRGs 
with either significant up-regulation or repression at any 
of the examined cancer stages were identified (Figure 
6A). Enriched GO terms of these stage-specific genes also 

Figure 3: Functional analysis of DEIRGs with significantly enriched expression patterns. A. Commonly enriched GO terms 
of DEIRGs with pattern 42 of LUAD and pattern 35 of LUSC. Shown are significantly enriched GO terms (FDR < 0.001, Fisher’s exact 
test) of the biological process category. Dot size represents the frequency of the GO term in the Gene Ontology annotation (GOA) database. 
Dot color represents the log10-transformed enrichment p-value of each GO term. B. Expression changes of the KIFs and proteasome genes 
during LUAD and LUSC progression. The scaled relative abundances of log2-transformed RPKM ratio (tumor/normal) values are shown 
in the heatmap. C. Commonly enriched GO terms of DEIRGs with down-regulated expression patterns among LUAD and LUSC samples. 
Shown are the significantly enriched GO terms (FDR < 0.001, Fisher’s exact test) of the biological process category. Pattern 14 of LUAD 
is not included as no enriched GO terms were identified among genes of this pattern. D. Expression changes of the MHC and chemokine 
genes during LUAD and LUSC progression. The scaled relative abundances of log2-transformed RPKM ratio (tumor/normal) values are 
shown in the heatmap.
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Figure 4: Expression changes of the Toll-like receptor and T cell receptor signaling pathway genes during LUAD and 
LUSC progression. Each gene box is equally divided into ten pieces, sequentially representing the five stages (IA, IB, II, III, and IV) of 
LUAD and LUSC. Colors represent the scaled relative abundances of log2-transformed RPKM ratio (tumor/normal) values. A. Expression 
changes of DEIRGs in the Toll-like receptor signaling pathway. B. Expression changes of DEIRGs in the T cell receptor signaling pathway.
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Figure 5: Expression profiles and GO analysis of DEIRGs with diverged changes between LUAD and LUSC. A. Venn 
diagram analysis of DEIRGs with unidirectional expression changes in LUAD and LUSC. B. Expression profiles of DEIRGs up-regulated 
in LUAD and down-regulated in LUSC. Log2-transformed RPKM ratio (tumor/normal) values are shown in the heatmap. The CD3-TCR 
complex members and Toll-like receptor were highlighted with red asterisks. C. Enriched GO terms (p-value < 0.01, corrected with 
Bonferroni step down) of DEIRGs in panel B. The names of processes and their related GO terms are shown in the same colors. Circles 
are connected according to the hierarchical relationships of GO terms. The sizes of circles are negatively correlated with the enrichment 
p-values of GO terms. D. Expression profiles of DEIRGs down-regulated in LUAD and up-regulated in LUSC. Log2-transformed RPKM 
ratio (tumor/normal) values are shown in the heatmap. E. Enriched GO terms (p-value < 0.05, corrected with Bonferroni step down) of 
DEIRGs in panel D.
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differed between LUAD and LUSC, and majority of the 
GO terms were related to the proliferation and metastasis 
features of cancer cells (Figure 6B).

DISCUSSION

Increasing lines of evidence have shown that 
immune system plays an essential role in controlling cancer 
progression [19, 38, 39]. Although much efforts have been 
devoted to identify the causal factors and genes of lung 
cancers, how are immune-response related genes (IRGs) 
being regulated in different subtypes of lung cancers is still 
largely unknown. Here we systematically examined the 
expression changes of IRGs during the progression process 
of LUAD and LUSC, and identified that the expression 
profiles of IRGs could be a better classifier to distinguish 
LUAD and LUSC from normal tissues.

As the most common subtypes of NSCLC, LUAD 
and LUSC differ from each other in many aspects [9, 

10]. Pathological studies have shown that LUSC grows 
faster than LUAD [8], but the underlining molecular 
mechanisms remain unclear. In concert with the clinical 
features, here we identified that cell cycle and cell 
proliferation related genes were up-regulated at earlier 
stage in LUSC than in LUAD, accompanied with the 
more severe repression of IRGs in LUSC than in LUAD. 
To be specific, KIFs and proteasome complex unit 
genes with cell cycle promoting functions had faster up-
regulated expression in LUSC. On the other hand, MHC 
molecules and chemokines, which involved in immune 
response activation, were more rapidly repressed in 
LUSC. These results could explain the faster progression 
rate of LUSC as compared with LUAD.

We have also identified Toll-like receptor (TLR) 
and T cell receptor signaling pathways to be repressed 
more severely in LUSC than in LUAD. Reports have 
shown that the Toll-like receptors play a fundamental 
role in pathogen recognition and activation of innate 

Figure 6: Expression profiles and GO analysis of the stage-specific DEIRGs in LUAD and LUSC. A. Relative expression 
profiles of the stage-specific DEIRGs. Rows represent stage-specific DEIRGs with their gene symbols to the right, columns represent 
cancer stages. Up and down indicate the specifically up- and down-regulated DEIRGs at each stage, respectively. Heatmap is generated 
using the scaled relative abundance of log2-transformed RPKM ratios (tumor/normal). B. Enriched GO terms (p-value < 0.05, Fisher’s exact 
test) of the stage-specific DEIRGs. X-axis represents log10-transformed p-values of GO term enrichment and y-axis stands for the enriched 
GO terms of the biological process category.
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immunity [40–42], and defects of the CD3-TCR 
complex could also facilitate tumor progression through 
immune evasion [43]. Thus, we speculated that more 
rapid repression of T cell mediated immune response 
may be correlated with the faster progression rate of 
LUSC.

In summary, our study revealed the differential 
expression profiles of IRGs during LUAD and LUSC 
progression, and identified significantly enriched 
expression change patterns as well as several other 
expression features of IRGs during cancer progression 
process. We discovered that the faster progression rate 
of LUSC may correlate with the faster activation of 
cell cycle promoting genes as well as the more rapid 
repression of immune system response. These results 
demonstrated the importance of IRGs in regulating the 
onset and progression of LUAD and LUSC, and may 
shed lights for the discovery of treatment methods for 
LUAD and LUSC.

MATERIALS AND METHODS

Data resources

The clinical information and RNA-Seq data of 
LUAD and LUSC patients were downloaded from TCGA 
database (Data version: 2014_06_14) through TCGA-
Assembler (Version 1.0.3) (http://health.bsd.uchicago.
edu/yji/TCGA-Assembler.htm) [44], using the commands 
TraverseAllDirectories, DownloadClinicalData, 
DownloadRNASeqData and the following parameters: 
assayPlatform ″RNASeqV2″, dataType ″rsem.genes.
results″ and ″rsem.genes.normalized_results″.

Sample collection and classification

RNA-Seq data in the TCGA database satisfying the 
following criteria were collected and used in this study: 1) 
samples were collected from the LUAD or LUSC patients; 
2) RNA-Seq data of both the tumor and matched normal 
samples of the same patient should be available; 3) tumor 
samples had definitive tumor node metastasis (TNM) 
classification information. Both the LUAD and LUSC 
samples of selected patients were classified into five stages 
(IA, IB, II, III, and IV) according to the TNM information 
assigned by TCGA.

Collection of immune-response related genes

The list of immune-response related genes (IRGs) 
was collected from the immunology database and 
analysis portal (IMMPORT) website (https://immport.
niaid.nih.gov) [45], which contains genes either directly 
or indirectly correlated with the immune system. The 
expressed IRGs (with normalized counts ≥ 3 in at least 
one patient) were selected for further analysis.

Identification of the differentially expressed 
immune-response related genes (DEIRGs)

The read count and RPKM matrix tables of IRGs 
were extracted from classified TCGA RNA-Seq data. IRGs 
with differential expression (DEIRGs) between the cancer 
and normal tissues were identified using edgeR (Version 
3.10.0) with read count and RPKM matrix tables through 
the scripts ″run_DE_analysis.pl″ and ″analyze_diff_expr.
pl″ with default parameters from Trinity software (Version 
2.1.1) [46, 47]. The resulting p-values were subjected to 
Benjamini–Hochberg multiple testing correction to derive 
FDRs. Only genes with > 2 fold expression (tumor/
normal) difference and FDR < 0.1 were considered for 
further analysis.

Principle component analysis

The expressed IRGs and total genes (TGs) (with 
normalized counts ≥ 3 in at least one patient) were selected 
to conduct principle component analysis (PCA) by the 
prcomp function in R (Version 3.1.0) with the parameter 
″scale = T″.

Selection of DEIRGs with unidirectional 
expression changes in LUAD or LUSC

DEIRGs without significant down-regulation at 
any cancer stage and with > 2 fold up-regulation (FDR 
< 0.1) at one or more cancer stages were selected as 
unidirectional up-regulated DEIRGs. Conversely, 
DEIRGs without significant up-regulation at any 
cancer stage and with > 2 fold down-regulation (FDR 
< 0.1) at one or more cancer stages were selected as 
unidirectional down-regulated DEIRGs. The Venn 
diagram and pie chart representing the comparative 
results of DEIRGs with unidirectional expression 
changes were plotted using BioVenn, an online tool for 
comparison and visualization of biological lists (http://
www.cmbi.ru.nl/cdd/biovenn/) [48].

Identification of significantly enriched expression 
patterns

Significantly enriched expression patterns of 
DEIRGs were identified by the STEM (Short Time-
series Expression Miner) software (Version 1.0) 
[29] using log2-transformed RPKM ratio (tumor/
normal) values as input. Patterns with p-value < 0.05 
(non-parametric clustering algorithm of STEM with 
Bonferroni correction) were identified as enriched 
patterns. Expression data from stage IV of neither 
LUAD nor LUSC were included in the analysis due  
to the limited number of patients (Supplementary  
Table S2).
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Comparative gene ontology enrichment 
analysis

Gene Ontology (GO) enrichment analysis of the 
common and specific DEIRGs was performed using 
DAVID Bioinformatics Resources 6.7 (http://david.abcc.
ncifcrf.gov/) [49–51] supplemented by the REVIGO 
visualization toolbox [52]. Plots for enriched GO terms of 
DEIRGs were generated using the ggplot package (Version 
2.1.0) in R [53]. GO enrichment analysis of DEIRGs with 
diverged expression patterns between LUAD and LUSC 
was performed by the ClueGO package (Version 2.2.5) of 
cytoscape (Version 3.3.0) [54, 55].

Pathway enrichment analysis

Pathway enrichment analysis of DEIRGs with 
unidirectional expression changes in LUAD and LUSC 
was performed using EnrichNet (http://www.enrichnet.
org/) [56–58]. Enriched genes in selected pathways were 
shown using the Pathview package (Version 1.8.0) in R 
[59, 60].

Screen for DEIRGs with diverged or stage-
specific expression patterns

DEIRGs with diverged expression patterns were 
obtained through comparing the unidirectional up-
regulated genes in LUAD with the unidirectional down-
regulated genes in LUSC, and vice versa.

DEIRGs with > 5 fold up-regulation (FDR < 0.1) at 
one cancer stage and without significant up-regulation at 
other cancer stages were selected as up-regulated stage-
specific DEIRGs. Conversely, DEIRGs with > 5 fold 
down-regulation (FDR < 0.1) at one cancer stage and 
without significant down-regulation at other cancer stages 
were selected as down-regulated stage-specific DEIRGs. 
The heatmaps were generated using pheatmap package 
in R or GENE-E software (Version 2.1.134) (http://www.
broadinstitute.org/cancer/software/GENE-E/). Expression 
data from stage IV of neither LUAD nor LUSC were 
included in the analysis due to the limited number of 
patients.
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