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ABSTRACT
Epigenetic enzymes are at the nexus of cellular regulatory cascades and can drive 

cancer-specific deregulation at all stages of the oncogenic process, yet little is known 
about their prognostic value in human patients. Here, we used qRT-PCR to profile 
at high resolution the expression of fifty-five epigenetic genes in over one hundred 
human breast cancer samples and patient-matched benign tissues. We correlated 
expression patterns with clinical and histological parameters and validated our 
findings in two independent large patient cohorts (TCGA and METABRIC). We found 
that human breast malignancies have unique epigenetic profiles and cluster into 
epigenetic subgroups. A subset of epigenetic genes defined an Epigenetic Signature 
as an independent predictor of patient survival that outperforms triple negative status 
and other clinical variables. Our results also suggest that breast cancer grade, but 
not stage, is driven by transcriptional alterations of epigenetic modifiers. Overall, 
this study uncovers the presence of epigenetic subtypes within human mammary 
malignancies and identifies tumor subgroups with specific pharmacologically 
targetable epigenetic susceptibilities not yet therapeutically exploited.

INTRODUCTION

It has been estimated that epigenetic changes are ten 
to forty times more frequent in cancers, including breast 
cancer, than genetic mutations [1-4]. Recent reports have 
described the over-expression, amplification, fusion or 
mutation of many individual epigenetic enzymes across 
a variety of tumor types. Epigenetic enzymes have the 
potential to influence cellular pathways beyond control 
of chromatin structure [1-4], affecting the modulation of 
transcription factor function [5, 6] and of protein synthesis 
[7] and stability [8]. These facts put epigenetic enzymes at 
the nexus of cellular regulatory cascades and define them 
as potential drivers of cancer-specific deregulation at all 
stages of the oncogenic process.

Individual epigenetic genes have been found to be 
oncogenic drivers and thus therapeutic targets [9-11] or 
to contribute to the oncogenic process through loss of 
function, or new mutant activities [12, 13]. The epigenetic 
landscape impacts breast cancer susceptibility and affects 

metabolic status, oncogene addiction, tumor suppressor 
silencing and even the development of drug resistance 
[1-4, 14-19]. Here, we used quantitative high throughput 
RT-PCR to measure the expression of 55 epigenetic genes 
in over 100 fully annotated breast cancer patient samples 
and the corresponding patient-matched benign specimens. 
We then validated our results using The Cancer Genome 
Atlas (TCGA) data (https://tcga-data.nci.nih.gov/tcga) 
and, separately, using the Molecular Taxonomy of Breast 
Cancer International Consortium (METABRIC) dataset 
[20]. We found that levels of epigenetic genes distinguish 
normal vs. malignant tissues, that epigenetic subtypes 
exist within human breast cancers, and in particular, that a 
unique epigenetic gene signature has stronger prognostic 
value than triple negative status, and identifies enzymes 
that can be pharmacologically targeted, suggesting novel 
therapeutic options for human patients. 
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RESULTS

Human breast cancers exhibit altered epigenetic 
gene expression profiles

We obtained over 100 tumor specimens (and more 
than 80 corresponding patient-matched benign tissues) 
through UTSTR core facility (Supplementary Table 1) 
scored pathologically to contain > 70% tumor tissue and 

otherwise randomly selected [21]. We performed qRT-PCR 
analysis in triplicate to measure the expression level of 55 
detectable epigenetic enzyme genes (Supplementary Table 
2), plus three reference and three tissue specific control 
genes. Expression profiles of the 55 genes were sufficient 
to cluster tumor samples away from benign tissue (Figure 
1 and Supplementary Figure 1). No lobular breast cancers 
clustered with benign tissues although a few ductal 
samples did. Among the changes driving this benign vs. 
tumor separation (Figure 1 and Supplementary Figure 1A), 
we observed the downregulation of HDAC3 and Sirt2 as 

Figure 1: Distinct patterns of epigenetic gene expression in patient-matched benign vs. tumor tissues. A., Epigenetic genes 
were measured by qRT-PCR. For each gene, the p value, false discovery rate (FDR) q value, and fold change (FC) are given across all tumor 
vs. benign samples (n = 103 and 83, respectively). Expression values were categorized by the number of standard deviations away from 
the average (-3 to +3) for each gene across all samples and are represented in a blue to red color scale. See also Supplementary Figure 1. 
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reported [22, 23]. In addition, we found altered expression 
of subsets of all major histone erasers, writers, readers and 
modifiers. For instance, among erasers, we saw general 
cancer downregulation of KDM4C/JMJD2C (negatively 
associated with invasive breast cancer [24]). In contrast, 
KDM2B/FBXL10 and KDM4B/JMJD2B were upregulated 
while KDM3A/JMJD1A, KMD2A/JMJD2A and KDM5C/
JARID1C were not altered. Among histone writers, MLL, 
EHMT2, PRMT5 and PRMT6 were downregulated with no 
changes in DOT1L and MLLT6. Of note was the increased 
expression of ARID1A (perhaps due to mutations that 
decrease protein levels [25]), and of DNMT3B. Patient-
matched benign vs. tumor paired analysis also revealed 
inter-patient heterogeneity (Supplementary Figure 1B). 
These results indicate that epigenetic enzyme genes are 
generally deregulated in breast tumors.

Transcriptional co-regulation of subsets of 
epigenetic genes in patient samples

Unsupervised hierarchical clustering grouped 
genes into four major subsets in tumors (Supplementary 
Figure 2A). Jumonji enzymes are over-represented 
in one subset, for example, while several histone 
methylases cluster together with AURKB. The gene to 
gene correlation profiles in benign tissue followed a 
distinct though partly overlapping pattern compared to 
tumor samples (Supplementary Figure 2B). The histone 
methylase/AURKB cluster, for example, is not present 
in benign tissue. Most striking were the large distances 
seen between PAD14, HDAC10 or DOT1L to other 
genes in the benign tissue dataset, with only PADI4 
remaining isolated in the tumor tissue, suggestive of new 
tumorigenic transcriptional networks involving HDAC10 
and independently, DOT1L. 

Epigenetic gene levels define breast cancer 
subgroups

Upon examination of correlations between 
expression levels and clinical information, several new 
findings became evident (Figure 2A and Supplementary 
Figure 3). We found, for example, that even after strict 
false discovery rate (FDR) correction, EZH2 and 
AURKB levels showed robust positive correlation with 
triple negative (TN) malignancies and high Ki67 index, 
as expected from their role in tumor aggressiveness 
(Supplementary Figure 3A). Levels of EZH2 and AURKB 
increased with tumor grade and positively correlated 
with p53 levels. Several novel genes also positively 
correlated with TN disease, high Ki67 levels and tumor 
grade: DNMT3B, SUV39H1 and SUV39H2 (Figure 2A and 
Supplementary Figure 3A). Levels of several epigenetic 
genes negatively correlated with TN disease including 
KDM4B/JMJD2B, MYST1 and MYST2, PRMT8 and 

SIN3A. Of these, KDM4B/JMJD2B, MYST1, MYST2 and 
PRMT8 were specifically upregulated in grade 2 tumors, 
while SIN3A was downregulated in grade 3 malignancies. 
Additionally, CHD3 levels negatively correlated with 
tumor grade, and PCGF2 and PCGF3 levels positively 
correlated with ER+ status (Figure 2A). Altogether, 
twelve genes showed strong correlations with tumor 
grade/receptor status after stringent FDR corrections 
(Figure 2A), which hereafter we denominate “Epigenetic 
Signature”. These correlations were all lacking in benign 
tissue (Supplementary Figure 3B), indicating that breast 
cancers may fall into functional epigenetic subgroups. 

To validate these findings, we analyzed the twelve 
genes in the Epigenetic Signature derived from our qRT-
PCR UTSW cohort, in the BRCA-TCGA RNA-Seq as 
well as the METABRIC datasets [20] that had become 
publicly available. In the BRCA-TCGA set, we found 
that with the exception of PRMT8, for which only a few 
measurements were available, the remaining eleven genes 
showed highly significant correlations with TN tumors 
(Figure 2B), confirming our UTSW results. Similarly, 
the METABRIC dataset validated the correlation of 
ten of the twelve genes with TN status and additionally 
confirmed the correlation of nine of the Epigenetic 
Signature genes with tumor grade (Supplementary Figure 
4A). Note that grade information is not readily available 
on the TCGA portal. The expression levels of the eleven 
validated genes (common to UTSW and either TCGA or 
METABRIC, or both) were sufficient to cluster tumors 
into therapeutically relevant subtypes including grade 
for UTSW and METABRIC, and TN status for UTSW, 
BRCA-TCGA and METABRIC (Figures 2C and 2D and 
Supplementary Figure 4B). Randomly selected groups of 
11 genes out of 20,534 transcripts of the RNA-Seq data 
did not robustly segregate tumors into relevant subgroups 
(Supplementary Figure 4C), and neither did groups of 
11 genes from the measured 55 epigenetic genes after 
excluding the Epigenetic Signature (Supplementary Figure 
4D). To quantify the relative robustness of the separation 
seen with the Epigenetic Signature genes, we calculated 
arbitrary distances between the main cluster of normal 
samples (present in all cases) and the remaining samples, 
in TCGA. A one-sample t-test was performed to compare 
the distance of the eleven epigenetic genes vs. the other 
sets of random genes. As shown in Supplementary Figures 
4C-4D, the 11 genes had a distance equal to 0 which was 
significantly different than the other gene sets, which gave 
distances ranging from 65-135 (P = 0.044, Supplementary 
Figure 4C; P = 0.00002 for comparison to all non-
signature gene sets tested, Supplementary Figure 4C-4D). 

We next examined each of the eleven genes 
(AURKB, DNMT3B, EZH2, SUV39H1, SUV39H2, 
CHD3, KDM4B, MYST1, PCGF2, PCGF3 and SIN3A) 
in more detail in the three datasets, and generally found 
significant differences in their expression in TN vs. nonTN 
disease (Figure 3). These differences generally also held 
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Figure 2: A set of epigenetic modifiers correlates with breast cancer subtypes and defines an Epigenetic Signature 
associated with tumor grade and triple negative status. A., FDR-corrected p values (q) are shown for genes showing significant 
associations with at least two clinical variables in our qRT-PCR-based UTSW breast cancer dataset. B., FDR q values were calculated for 
the RNA-Seq-based BRCA-TCGA dataset analyzed for the genes of the Epigenetic Signature. In A. and B., positive correlations are shown 
in red and negative correlations in blue. C., Heatmap and unsupervised hierarchical clustering of tumors samples in the UTSW collection 
(n = 103) using the expression levels of the 12 genes shown in A. Grade and triple negative (TN) status of the samples is denoted by the 
color coded legend on the sides. D., Heatmap and unsupervised hierarchical clustering of tumors samples in the BRCA-TCGA collection 
(n = 730) using the expression levels of the genes shown in B. excepting PRMT8 for which too few samples had RNA-Seq data available. 
Triple negative status of the samples is denoted by the color coded legend on the sides. Grade information was not available in the TCGA 
portal. In C. and D., relative expression levels are shown in a blue (low) to red (high) scale representing standard deviations away from the 
average expression of all samples for each gene (grey). See also Supplementary Figures 3 and 4. 
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Figure 3: Deregulation of a subset of epigenetic modifiers in Triple Negative (TN) breast cancers across three 
independent datasets. A., Expression level in the UTSW cohort of the eleven genes from the Epigenetic Signature defined in the 
UTSW dataset (n = 25 TN, n = 75 nonTN) and validated in B. TCGA (n = 120 TN, n = 610 nonTN) and C. METABRIC (n = 320 TN, n = 
1672 nonTN) datasets. Bars represent mean/average and error bars show standard error. Note that PRMT8 is not included due to paucity of 
data in TCGA for this gene. 
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Figure 4: Epigenetic modifier expression levels predict breast cancer patient survival. A., Left: Kaplan-Meier survival 
curves of BRCA-TCGA patients showing low KDM4B levels (1st quartile, blue) are significantly associated with poorer survival than 
patients with high expression levels (4th quartile, red). Second and third quartiles are shown combined, in green. Note that KDM4B levels 
are negatively correlated with tumor grade and triple negative status. Right: BRCA-TCGA patients showing high levels of SUV39H2 
(4th quartile, red) are significantly associated with poorer survival than patients with low expression levels (1st quartile, blue). Note that 
SUV39H2 levels are positively correlated with triple negative status. B, METABRIC patients expressing high levels of AURKB, DNMT3B 
or SUV39H1 (red curves) or low levels of KDM4B (blue curve) have worse prognosis. Censored cases are designated by crosses. See also 
Supplementary Figure 5. 
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for individual receptor status as shown in Supplementary 
Tables 3-4. 

The epigenetic signature is prognostic of survival

To evaluate if levels of any of the eleven genes had 
predictive value, we examined each gene individually 
in the TCGA cohort, and then validated the results in 
METABRIC. Strikingly, levels of KDM4B on their own 
had prognostic value in TCGA, with patients harboring 
high expressing tumors surviving significantly longer 
(Figure 4A). SUV39H2 levels were also predictive 
of survival (9.7 yrs. [95% CI 7.9-11.4 yrs.] for high 
expressors vs. 12.7 yrs. [95% CI 9.9-15.5 yrs.] for low 
expressors; Figure 4A, right). Individually, the other 
genes in the signature did not segregate poor vs. good 
prognosis in TCGA. Levels of KDM4B were predictive of 
survival also in METABRIC as were levels of DNMT3B, 
SUV39H1, and as recently described [26], AURKB 
(Figure 4B). This larger dataset also uncovered significant 
prognostic value associated with PRMT8 and SIN3A 
(Supplementary Figure 5) as well as confirmed the well-
known association of high EZH2 expression levels with 
poor survival in breast cancer. 

We next measured the levels of signature genes 
whose protein products could be pharmacologically 
targeted in breast cancer lines (AURKB, SUV39H1, 
SUV39H2 and KDM4B). KDM4B levels in cell lines 
correlated with TN status in agreement with patient 
samples (Figure 5A). We thus tested the KDM/Jumonji 

inhibitor JIB-04 [27] across a panel of breast cancer 
lines (Supplementary Figure 6) and found that the line 
most sensitive to JIB-04 was HCC1419, which is derived 
from a nonTN grade 2 tumor and expresses high levels 
of KDM4B (Figure 5B). The most resistant line tested of 
known origin, HCC1937, represents TN grade 3 disease 
(Figure 5B). 

We then evaluated our Epigenetic Signature for 
prognostic value. We defined the Epigenetic Signature as 
high risk when the gene expression of at least four of the 
positive-correlated genes with poor prognosis (AURKB, 
DNMT3B, EZH2, SUV39H1, SUV39H2) are in the 4th 
quartile of the population and/or four of the negatively-
correlated genes (CHD3, KDM4B, MYST1, PCGF2, 
PCGF3, SIN3A) are in the 1st quartile of the population. 
This criterion to meet the Epigenetic Signature is not too 
stringent (just one third of the Epigenetic Signature genes 
were sufficient to identify patients of high risk), and it gave 
robust prognostic value in both TCGA and METABRIC 
(Figure 6A), establishing epigenetic subgroups of clinical 
significance. Patients with high-risk Epigenetic Signature 
displayed poor survival in both datasets (P = 0.007 and 
4·10-12, respectively; Figure 6A), with similar hazard ratios 
(1.6 and 1.8, respectively). The analysis of patient survival 
based on TN status (Supplementary Figure 7) showed 
lower significance in both datasets than the Epigenetic 
Signature (Figure 6A), indicating that the Epigenetic 
Signature is a stronger predictor of survival. 

To further investigate the prognosis potential of 
the Epigenetic Signature, we performed univariate Cox 
regression models on the clinical variables (Table 1). 

Figure 5: Epigenetic Signature gene KDM4B is targetable in nonTN grade 2 breast cancer cells. A., Levels of KDM4B 
measured by qRT-PCR across a panel of breast cancer cell lines based on the triple negative (TN) status is shown. Error bars represent 
standard deviations across triplicates. B., Response of nonTN, grade 2 HCC1419 cells (high KDM4B) vs. TN, grade 3 HCC1937 cells (low 
KDM4B) to Jumonji inhibitor JIB-04. See also Supplementary Figure 6.
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Figure 6: The Epigenetic Signature is a predictor of survival that outperforms other signatures. A., The Epigenetic 
Signature can identify breast cancer patients with poor survival in both TCGA and METABRIC datasets. The signature is met when at 
least the expression values of four positively-correlated genes with tumor grade and TN (AURKB, DNMT3B, EZH2, SUV39H1, SUV39H2) 
are high (in the 4th quartile of the population) and/or the expression values of four negatively-correlated genes with tumor grade and TN 
(CHD3, KDM4B, MYST1, PCGF2, PCGF3, SIN3A) are low (in the 1st quartile of the population). B., Receiver Operator Characteristic 
(ROC) curve analysis of the Epigenetic Signature on patient survival using the survivalROC package in R. The area under the curve (AUC) 
of the Epigenetic Signature is greater than the triple negative status in the TCGA and METABRIC datasets. C., Comparison of the ROC 
analysis of the Epigenetic Signature and TN status of this study with the data reported by Lehmann and colleagues [28] on the top three 
signatures in breast cancer. See also Supplementary Figure 7.
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Variables that were significant in the univariate Cox 
model were entered into an unsupervised stepwise forward 
conditional multivariate analysis to identify independent 
predictors of prognosis. The Epigenetic Signature was 
included in the multivariate Cox regression model of 
both TCGA and METABRIC (P = 2·10-4 and P = 4·10-4,  
respectively, Table 1), while variables that were not 
completely independent were not present in the final step 
of the model. Only high stage was a stronger independent 
prognostic factor in both datasets. Notably, tumor grade 
was an independent predictor of survival with respect to 
the Epigenetic Signature in METABRIC. TN status was 
significant in the univariate Cox model of the METABRIC 
dataset but excluded from the final multivariate model 
(Table 1), indicating that its contribution in prognosis 
is weaker compared to other variables, such as stage or 
the Epigenetic Signature. A detailed examination of the 
tumor characteristics of the high-risk Epigenetic Signature 
population revealed an over-representation of Basal-type 
and an under-representation of LumB and especially 
LumA breast cancers (Supplementary Table 5). 

To further inspect the prognostic accuracy and 
diagnostic potential of the Epigenetic Signature, we 
performed Receiver Operating Characteristic curve 
analysis (Figure 6B). The Epigenetic Signature showed a 
greater area under the curve (AUC) than the TN status in 
both TCGA and METABRIC, with an average prognostic 
value (c-index) of 0.71 for the Epigenetic Signature 
and 0.62 for TN status. In addition, the c-index for the 
Epigenetic Signature was greater than the ones observed 
for the top 3 gene expression signatures out of 351 reported 
breast cancer signatures from 206 studies evaluated 
by Lehmann and colleagues [28], namely BRmet50, 
PMID18271932Sig33 and PMID16505416Sig822 
(Figure 6C). This suggests that the Epigenetic Signature 
outperforms previous gene expression signatures in the 
prognosis of breast cancer.

DISCUSSION

Here we have identified the epigenetic modifiers that 
become deregulated during human breast oncogenesis. 
Among these, a set of 11 epigenetic genes distinguish 
between TN and nonTN human breast cancer specimens 
and two of these genes independently offer prognostic 
value. Our results from this novel UTSW dataset 
were validated in the TCGA and METABRIC datasets 
confirming the presence of epigenetic subgroups within 
mammary malignancies and additionally showing the 
prognostic value of several genes from our Epigenetic 
Signature, in these larger cohorts. Importantly, our 
studies reveal that human TN disease may be targetable 
by inhibitors of EZH2, AURKB, DNMT3B and/or 
SUV39H1/2 and that nonTN tumors may respond to 
KDM4B and PRC1 (PCGF2/3) inhibition. 

In line with reports that the estrogen receptor 
(ER) regulates KDM4B expression [29], we observed 
upregulation of KDM4B in ER+ but not in ER- or TN 
tumors in agreement with KDM4B’s oncogenic activity in 
other tumor types [10, 30, 31]. In nonTN tumors we also 
observed upregulation of members of the PRC1 complex, 
PCGF2 and PCGF3 [32]. Whether this upregulation of 
PCGF factors defines a susceptibility to PRC1 inhibitors, 
such as PRT4165 [33], remains to be investigated. 

In addition to the established EZH2 and the reported 
AURKB [34-36], three other targetable epigenetic genes 
were significantly upregulated in TN disease: DNMT3B, 
SUV39H1 and SUV39H2. The high expression of 
DNMT3B we report is consistent with the described 
hypermethylator phenotype of this breast cancer subtype 
[37] and itself has prognostic value (Figure 4B). Of 
interest, SUV39H1, shown to negatively regulate the ER 
promoter [38], is upregulated in TN patient samples and 
shows prognostic value in the large METABRIC cohort 
(Figure 4B). This is in agreement with the trend reported 
by Patani et al. in a smaller patient cohort [39] as is the 

Table 1: Univariate and multivariate Cox regressions of the clinical variables and the Epigenetic Signature in the 
TCGA and METABRIC datasets.

TCGA METABRIC
Univariate Analysis Multivariate Analysis Univariate Analysis Multivariate Analysis

Variable HR 95% CI P HR 95% CI P HR 95% CI P HR 95% CI P
Age (> median) 1.6 1.1-2.3 0.010 2.1 1.4-3.1 4·10-4 0.9 0.7-1.2 0.55
High Grade (3 vs. 1-2) 1.8 1.5-2.2 10-10 1.4 1.1-1.8 0.003
High Stage (III-IV vs. I-II) 2.0 1.3-2.9 7·10-4 2.2 1.5-3.3 7·10-5 3.4 2.5-4.7 8·10-15 3.5 2.6-4.8 7·10-15

ER Positive 0.7 0.5-1.1 0.15 0.5 0.4-0.6 9·10-12

PR Positive 0.7 0.5-1.0 0.042 0.5 0.4-0.6 2·10-12

HER2 Positive 1.3 0.7-2.4 0.36 2.2 1.8-2.7 10-12 1.8 1.4-2.3 6·10-6

Triple Negative 1.7 0.9-2.9 0.08 1.5 1.2-1.9 2·10-4

Epigenetic Signature 1.6 1.1-2.4 0.008 2.2 1.4-3.2 2·10-4 1.8 1.5-2.2 9·10-12 1.5 1.2-1.9 4·10-4

HR, Hazard Ratio; CI, Confidence Interval.
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better prognosis of patients with high MYST1/KAT8 
(Supplementary Figure 5). The functional significance of 
this enzyme as well as other epigenetic modifiers in our 
signature (CHD3, PRMT8, SIN3A) will surely be of future 
interest [40-42]. 

Remarkably, we have identified an Epigenetic 
Signature that is a strong independent predictor of 
patient survival in the TCGA and METABRIC datasets, 
according to the multivariate Cox regression models. This 
Epigenetic Signature outperformed TN status and other 
clinical variables for prognosis prediction. Notably, ROC 
analysis revealed a c-index for the Epigenetic Signature 
that was greater than any of the c-indices observed for 
the top 3 gene expression signatures out of 351 reported 
breast cancer signatures from 206 studies evaluated by 
Lehmann and colleagues [28]. Therefore, the Epigenetic 
Signature has the potential to be a novel biomarker of 
patient survival in breast cancer. In summary, we have 
identified epigenetic breast cancer subgroups overall, and 
within TN and nonTN human breast cancers, which define 
novel epigenetic targets and suggest target-combinations 
for these malignancies. 

MATERIALS AND METHODS

Clinical samples

The University of Texas Southwestern Medical 
Center Tissue Resource (UTSTR) was the source of 
tumor and benign samples from human patients. Samples 
were processed by the UTSTR after proper consent under 
IRB approved protocols and the first 103 samples in the 
collection scored to be > 70% tumor tissue for cancer 
samples were used for this study [21] along with matching 
benign tissue when available. UTSTR de-identified 
samples and extracted total RNA. Patient and tumor 
characteristics are described in Supplementary Table 1. 
A PAM50-like method was used to classify these breast 
cancers into Luminal A (LumA; tumor grade I or II, ER+, 
HER2- and Ki67≤18%), Luminal B (LumB; tumor grade 
III, ER+, HER2- and Ki67 > 18% or ER+ and HER2+), 
HER2 overexpressing (HER2; ER-, PR- and HER2+) and 
Basal/Triple Negative (TN; ER-, PR- and HER2-) [43].

qRT-PCR

Primers sets were designed against the 
corresponding human genes (sequences are listed in 
Supplementary Table 2) and validated as previously 
described [44]. RNA samples from the UTSTR were 
quantified, DNAse treated and reverse transcribed, and 
the resulting complementary DNA (cDNA) was amplified 
in SYBR real-time quantitative PCR assays (Applied 

Biosystems) using a high throughput robotic platform. 
Reactions were performed on an ABI Prism 7900HT with 
an initial 2-min pre-incubation at 50 °C, followed by 10 
min at 95 °C and then 40 cycles of 95 °C for 15 sec and 
60 °C for 1 min. hCyclophilin was used as the reference 
gene and hTBP or 18S used as a second reference gene 
to confirm expression changes. Data were analyzed 
following the ∆∆Ct method as described previously [44], 
using validated cDNA standard curves. Reactions were 
run in triplicate. Tissue specific genes were run in addition 
to the genes of interest and their expression patterns used 
in subsequent analysis to ensure correlations did not 
correspond to fat or stromal content of patient samples 
(Supplementary Figure 2). For quantification of KMD4B 
levels in breast cancer cell lines, RNA was extracted from 
exponentially growing cells and the exact same protocol 
and analysis was used as above except that reactions were 
prepared manually rather than with a robot.

Data analysis

Gene expression data was analyzed as previously 
described [45]. Briefly, unpaired t tests were performed 
between tumor and benign samples taking into account 
the group variances. The gene expression for each gene 
was associated with clinical variables using Spearman 
correlations, t tests or Fisher exact tests depending on the 
characteristics of the variables (continuous or categorical). 
All calculated p values were corrected using the Benjamini 
and Hochberg false discovery rate (FDR) method to 
discard false positives by the fact of performing multiple 
tests. Unsupervised hierarchical clustering was computed 
with Partek Genomics Suite v6.6.

TCGA data analysis

To validate the results, RNA-Seq and clinical data 
of breast invasive carcinoma (BRCA) was downloaded 
from The Cancer Genome Atlas (TCGA) data portal 
(https://tcga-data.nci.nih.gov/tcga) on June 14th, 2014 and 
tested for associations as indicated [46]. Gene expression 
levels were estimated by the RNA-Seq Expectation-
Maximization (RSEM) normalization method and 
analyzed as described above. The median and quartiles 
for the expression of each gene was calculated for all 
available patients. Gene expression was considered low 
for patients with expression values in the 1st quartile, 
intermediate for the 2nd and 3rd quartiles and high for the 
4th quartile. Tumors with negative estrogen receptor (ER) 
status, progesterone receptor (PR) status, and HER2 status 
by either IHC or FISH were considered as triple negatives. 
Tumors with undetermined or not evaluated status for 
any of ER, PR or HER2 were excluded. Overall survival 
was calculated from the date of diagnosis to the date on 
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which the patient dies from any cause. Patients alive at 
the end of the study period were censored at the date of 
last follow-up or the last date the patient was known to 
be alive, whichever was longer. Kaplan-Meier survival 
curves, log-rank tests and Cox regression models were 
calculated with SPSS Statistics 17. The hazard ratio (HR) 
and the 95% confidence intervals (CI) were estimated for 
each variable using univariate Cox regression models. 
To identify independent predictors of survival, only the 
significant variables in the univariate Cox regression were 
entered into the multivariate Cox proportional hazard 
model using a forward conditional method considering the 
default stepwise probabilities of 0.05 for entry and 0.10 for 
removal of covariates from the model. 

METABRIC data analysis

Clinical information from the Molecular Taxonomy 
of Breast Cancer International Consortium (METABRIC) 
was obtained from the original publication [20]. ER, PR 
and HER2 status was considered based on their reported 
expression. Gene expression data from METABRIC using 
the Illumina HT-12 platform was downloaded from the 
European Genome-Phenome Archive (http://www.ebi.
ac.uk/ega/) under accession number EGAS00000000083. 
Gene expression values for probes corresponding to the 
same gene were pooled. Only cancer-specific survival was 
considered and analyzed as described above.

ROC analysis

Receiver Operating Characteristic (ROC) curve 
analysis for the Epigenetic Signature and triple negative 
status on patient survival was performed using the 
survivalROC package in R 3.2.5 as described [47]. For 
the Epigenetic Signature, the total amount of genes in the 
1st and 4th quartile, according to the signature definition 
(Figure 6C), were taken into account for each patient 
instead of considering them only as low or high risk. Half 
of the median survival was considered as the time point of 
interest. The Area Under the Curve (AUC) was computed 
with the Kaplan-Meier estimator.

Cell culture and viability assays

Breast cancer cell lines were the gift of Dr. D. 
Euhus and Dr. J. Minna and include the following lines 
established at our institution: HCC712, HCC1500, 
HCC1419, HCC202, HCC2157, HCC1954, HCC2185, 
HCC1007, HCC70, HCC38, HCC1143, HCC1395, 
HCC1937 and HCC1806. Cell lines were previously 
characterized as described [48] and were routinely 
fingerprinted and mycoplasma tested, grown in RPMI 
media supplemented with 5-10% fetal bovine serum. 

For cell viability assays, cells were plated at low 
density in 96-well plates and grown overnight, then 
exposed to increasing doses of drug treatment or vehicle 
control. Standard MTS viability assays were performed on 
the 4th day of treatment and IC50 calculated, as described 
[27]. JIB-04 was synthesized in-house, as previously 
reported [27]. 
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