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Error-prone DNA polymerase and oxidative stress increase the 
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ABSTRACT

Mutational processes for A→G mutations in tumors are not well understood. To 
uncover the mutational mechanisms, we analyzed molecular profiles of more than 
9,000 tumor samples from The Cancer Genome Atlas (TCGA). The present study found 
that error-prone DNA polymerases were involved in stomach tumors with high fraction 
of A→G mutations. High levels of apoptosis in kidney cancers and high levels of energy 
metabolism in thyroid cancers increased A→G mutation rate, which was associated 
with high oxidative stress. We also found that the frequencies of RAS gene mutations 
were increased in thyroid cancers with high level of energy metabolism because of 
high-frequency A→G mutations.

INTRODUCTION

Somatic mutations are essential for cancer formation 
and progression [1]. Exposure to exogenous mutagens can 
cause somatic mutations in cancers. For example, exposure 
to cigarette smoke causes a high proportion of C→A 
transversions in lung cancer [2–4]. Large numbers of C→T 
transitions at YpC (Y=C/T) dinucleotides in melanoma are 
attributed to ultraviolet light-induced cyclobutane pyrimidine 
dimers [5, 6]. Endogenous mutagens can also cause somatic 
mutations in cancers. Endogenous methyltransferases can 
methylate cytosines at CpG dinucleotides. Spontaneous 
deamination of the 5-methylcytosine base produces thymine 
and causes C-to-T mutation [7]. Activation-induced cytidine 
deaminases (AID) convert cytosine bases to uracil, which 
has been implicated in carcinogenesis [8]. Recent studies 
indicated that several homologous APOBEC cytidine 
deaminases induced C→T transitions in multiple tumor 
types [9, 10]. AIDs prefer adenine or guanine immediately 
5’ to the target cytosine and APOBECs prefer thymine base 
5’ to the target cytosine [11–13].

Fewer studies have focused on A→G (T→C) 
transitions in cancers. However, A→G (T→C) transitions 
may also be involved in the development of cancers. 
Predominance of A→G (T→C) transitions was observed 
in the genome of hepatitis C virus (HCV) positive 

hepatocellular carcinoma [14]. HCV-induced error-prone 
DNA polymerases may contribute to the high fraction of 
A→G (T→C) transitions [15]. High fraction of A→G 
(T→C) transitions was also reported in kidney cancer [7], 
but the mutational mechanism is unclear.

To investigate the mutational mechanism for 
high fraction of A→G (T→C) transitions in tumors, we 
performed a pan-cancer analysis on TCGA data. The result 
revealed that high fractions of A→G (T→C) transitions 
in stomach, kidney and thyroid cancers were closely 
associated with error-prone DNA polymerases or oxidative 
DNA damage.

RESULTS

A→G mutations in tumors

The fraction of A→G (T→C) mutations ranges from 
a low of 3.6% in cervical cancers (CESC) to a high of 
26% in liver cancers (LIHC) (Figure 1). Low fractions 
of A→G mutations in cervical (CESC) and bladder 
(BLCA) cancers are largely attributed to high frequency 
of APOBEC-mediated C→T transitions [9, 10]. Low 
fractions of A→G mutations in skin cancers (SKCM) 
and lung cancers (LUSC and LUAD) are probably due to 
cyclobutane pyrimidine dimers induced by ultraviolet in 
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skin and frequent C→A transversions induced by tobacco 
in lung [2, 3, 5, 16]. The tumor types with high fraction of 
A→G mutations included liver (LICH), stomach (STAD), 
kidney (KIRP and KIRC) and thyroid (THCA) cancers.

Function enrichment for the genes associated 
with A→G mutation rate

We conducted function enrichment analyses on 
the top 100 genes having significant association between 
gene expression and A→G mutation rate. Function of 
translation was associated with A→G mutation rate in 
liver cancer (Supplementary Figure S1A). Our function 
enrichment analyses also associated cell cycle with A→G 
mutation rate in stomach cancers (Supplementary Figure 
S1B) and associated apoptosis with A→G mutation rate in 
renal clear cell carcinoma (Supplementary Figure S1D). 
In thyroid cancers, energy metabolism and mitochondrion 
organization were significantly correlated with A→G 
mutation rate (Supplementary Figure S1E).

The high fraction of A→G mutations in stomach 
cancers is associated with error-prone DNA 
polymerases

The function associated with A→G mutation 
rate in stomach cancers was cell cycle, implying the 

potential involvement of error-prone DNA polymerases. 
The fraction of A→G mutations was increased in 
stomach cancers with concurrent mutations on POLD1 
and POLE genes (Figure 2A). Three replicative DNA 
polymerases have been identified in eukaryotes: DNA 
Polε (catalytic subunit: POLE) and Polδ (catalytic 
subunit: POLD1) synthesize the leading and lagging 
strands after priming by Pol α (catalytic subunit: 
POLA1) [17]. Concurrent defects of POLD1 and POLE 
may increase the chance of the involvement of error-
prone DNA polymerases in DNA replication. Few 
alternation of A→G mutation frequency in cancers with 
only POLD1 or only POLE mutations can be explained 
by the strong function complementarity between POLD1 
and POLE, reducing the influence of error-prone DNA 
polymerases.

In order to identify the DNA polymerase involved 
in the mutation induction, stomach cancers were 
divided into low-expression and high-expression groups 
according to gene expression levels of all the fifteen DNA 
polymerases in human [17]. Only the gene expression 
of POLQ (catalytic subunit of Polθ) was significantly 
associated with mutation induction in stomach cancers 
(Figure 2B). Polθ is a proofreading-deficient DNA 
polymerase involved in translesion DNA synthesis (TLS), 
which has a much lower fidelity than replicative DNA 
polymerases. Consistent with it, the mutation rates of 

Figure 1: Proportion of each mutation type in 19 tumor types. Stacked bar chart summarized the proportions of the six types of 
base-substitution mutations for each tumor type.
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the six types of base substitutions were all significantly 
increased in stomach cancers with high-expression 
POLQ (Figure 2C). High rate of A→G mutations led to 
an increase of the fraction of A→G mutations in stomach 
cancers with high-expression POLQ (Supplementary 
Figure S2).

High-level apoptosis increases A→G mutation 
rate in kidney cancers

According to the expression profile of 13 associated 
genes of apoptosis, tumors of renal clear cell carcinoma 
can be divided into two groups (Figure 3A). The mutation 
rate was much higher in tumors with high-level apoptosis 
than tumors with low-level apoptosis (Figure 3B). The 
elevation of A→G mutation rate was the highest in all the 
six types of base substitutions (Figure 3C). By contrast, 
no function was significantly associated with A→G 

mutation rate in renal papillary cell carcinoma (KIRP) 
(Supplementary Figure S1C), implying the different gene 
regulation between renal papillary cell carcinoma and 
renal clear cell carcinoma.

High-level energy metabolism increases A→G 
mutation rate in thyroid cancers

Mitochondrion organization is an important 
biological process of energy metabolism. According to 
the expression profile of 11 associated genes of energy 
metabolism and 6 associated genes of mitochondrion 
organization, thyroid cancers were divided into two 
groups: low-level and high-level tumors of energy 
metabolism (Figure 4A). The mutation rate of tumors with 
high-level energy metabolism was significantly higher 
than tumors with low-level energy metabolism (Figure 
4B). Like renal clear cell carcinoma, the elevation of 

Figure 2: Mutation rate associated with error-prone DNA polymerases in stomach cancers. A. Proportion of each mutation 
type associated with mutations on replicative DNA polymerases. Stacked bar chart summarized the proportions of the six types of base-
substitution mutations for stomach cancers with replicative DNA polymerase mutations. “wt” represented wide-type tumors and “mut” 
represented mutant tumors. B. Mutation rate difference between high- and low- expression tumors of DNA polymerases. Stomach cancers 
with mutant POLD1 or mutant POLE were excluded for the subsequent analyses. Positive value represented higher mutation rate in high-
expression tumors of DNA polymerases than low-expression tumors. Mutation rate was defined as the number of mutations per megabase. 
Red asterisks indicated significant difference of mutation rate (P<0.01 by Mann-Whitney U test). C. Mutation rate difference for all the six 
types of base-substitution mutations between high- and low- expression tumors of POLQ gene.
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A→G mutation rate by high-level energy metabolism was 
also the highest in all the six types of base substitutions in 
thyroid cancers (Figure 4C).

A→G mutations prefer single-stranded DNA in 
kidney and thyroid cancers

Transcription not only is a key control point for 
gene expression but also affects DNA mutation rate. 
Transcription-coupled repair (TCR) recognizes the 
stalled RNA-polymerases on DNA lesions and initiates 
DNA repair on the transcribed strand [18, 19], reducing 
mutation rate of transcribed regions. On the other hand, 
transcribed regions are exposed to mutagens as single-
strand DNA during synthesis of RNA transcripts and more 
prone to damage [20]. High levels of transcription are 
associated with increased mutation rates, which is termed 
transcription-associated mutation (TAM) [21]. Thus net 
impact of transcription on mutation rate can be used to 
measure the mutagenic strength of mutagens relative to 
TCR.

C→T mutation rate was detected in high-expressed 
genes for most tumor types (Supplementary Figure S3A), 
indicating that the effect of TCR overwhelms that of TAM. 

Only bladder cancers (BLCA) showed a weak elevation 
of C→T mutation rate in high-expressed genes. The 
elevation may be attributed to APOBEC mutagenesis. 
High-level APOBEC mutagenesis has been reported in 
bladder cancers, with a stringent signature TCN→TTN 
for C→T mutations [9, 10]. Therefore, we divided C→T 
mutations into two groups TCN→TTN and VCN→VTN 
(V base: all but T base) according to adjacent bases. The 
mutation rate of TCN→TTN was increased in high-
expression genes of bladder cancers and cervical cancers 
(CESC: another tumor type enriched with APOBEC 
mutations) (Supplementary Figure S3B and S3C). 
Transcription produces single-stranded DNA, which is 
the ideal substrate of APOBEC enzymes [22]. In contrast, 
the mutation rate of VCN→VTN was decreased in high-
expression genes, which can be attributed to TCR.

Decreased A→G mutation rate was detected in 
high-expressed genes for most tumor types. However, 
as tumors with high fraction of A→G mutations, kidney 
cancers (KIRC and KIRP) and thyroid cancers (THCA) 
showed an elevation of A→G mutation rate in high-
expressed genes (Figure 5A). It suggested that A→G 
mutations in kidney and thyroid cancers may be induced 
by mutagens that prefer single-stranded DNA.

Figure 3: A→G mutation rate associated with apoptosis in renal clear cell carcinoma. A. Tumors with different levels 
of apoptosis. Samples of renal clear cell carcinoma (KIRC) were clustered into two groups according to the expression level of genes 
responsible for apoptosis. The expression value was normalized by dividing with median level for each gene. B. Higher mutation rates in 
tumors with high-level apoptosis. Each data point represents one tumor sample. Mutation rate was defined as the number of mutations per 
megabase. The P value for mutation rate difference was estimated by Mann-Whitney U test. C. Mutation rate difference for all the six types 
of base substitutions between tumors with high- and low- level apoptosis. Positive value represented higher mutation rate in tumors with 
high-level apoptosis than low-level apoptosis. Red asterisks indicated significant difference of mutation rate (P<0.01 by Mann-Whitney 
U test).
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An elevation of A→G mutation rate was also 
observed in high-expressed genes for acute myeloid 
leukemia (LAML) (Figure 5A). However, the elevation 
was only found in nonsynonymous substitution rate, rather 
than in synonymous substitution rate (Supplementary 
Figure S4A). The elevation of A→G mutation rate 
observed in acute myeloid leukemia may be derived 
from the positive selection of high-expressed genes. 
Unlike acute myeloid leukemia, synonymous and 
nonsynonymous substitution rate of other tumor types 
showed similar distributions for various gene expression 
levels (Supplementary Figure S4B-S4E).

The high fraction of A→G mutations is 
associated with oxidative stress in kidney and 
thyroid cancers

Significant genes associated with A→G 
mutation rate were enriched in the cellar component of 
mitochondria for kidney (KIRC) and thyroid (THCA) 
cancers (Supplementary Figure S5A and S5B), implying 

the same mechanism for high fraction of A→G mutations. 
The most likely mutagen associated with mitochondria 
was oxidative mutagens. The mitochondrial respiratory 
chain is the major source of reactive oxygen species 
(ROS), which are constantly produced in the processes of 
apoptosis and energy metabolism [23–25]. ROS can cause 
various types of oxidative damage to DNA bases. 8-oxo-
7,8 dihydroguanine (8-oxoG) is the most well-known 
DNA lesion of oxidative damage, resulting in G→A 
transition [26]. 8-oxoA is another common DNA lesion 
of oxidative damage, resulting in A→G transition [27]. 
Similar frequencies of 8-oxoA and 8-oxoG were observed 
in mammalian DNA [28, 29].

NADPH oxidases are the “professional” ROS 
producers in mammalian cells, which catalyze the transfer 
of electrons from NADPH to molecular oxygen [30]. 
The family of NADPH oxidases is composed of NOX1, 
NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 [31]. 
NOX1, NOX2, NOX3 and NOX4 are CYBA-dependent 
NADPH oxidases. Notably, NOX4 was predominantly 
expressed in kidney cancers (KIRC and KIRP) (Figure 5B 

Figure 4: A→G mutation rate associated with energy metabolism in thyroid cancers. A. Tumors with different levels 
of energy metabolism. Samples of thyroid cancers (THCA) were clustered into two groups according to the expression level of genes 
responsible for energy metabolism. The expression value was normalized by dividing with median level for each gene. B. Higher mutation 
rates in tumors with high-level energy metabolism. Each data point represents one tumor sample. Mutation rate was defined as the number 
of mutations per megabase. The P value for mutation rate difference was estimated by Mann-Whitney U test. C. Mutation rate difference 
for all the six types of base substitutions between tumors with high- and low- level energy metabolism. Positive value represented higher 
mutation rate in tumors with high-level energy metabolism than low-level energy metabolism. Red asterisks indicated significant difference 
of mutation rate (P<0.01 by Mann-Whitney U test).
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and Supplementary Figure S6A). DUOX1 and DUOX2, 
formerly known as thyroid oxidases, were specifically 
expressed in thyroid cancers (THCA) (Figure 5C). The 
high expression of NADPH oxidases indicated high level 
of oxidative stress in kidney and thyroid cancers.

Gene expression of NOX4, DUOX1 and DUOX2 
was not increased in kidney and thyroid cancers with high-
level apoptosis and energy metabolism (data not shown), 
implying some other genes acting as the indicators of 
oxidative stress. The expression of gene CYBA, a critical 
component of NOX4 NADPH oxidase complex, was 

significantly increased by apoptosis in kidney cancers 
(KIRC) (Figure 5D). In thyroid cancers, the expression of 
peroxisomal-biogenesis genes PEX7, PEX11B and PEX19 
was significantly increased by energy metabolism (Figure 
5E and Supplementary Figure S6B-S6C). High level of 
peroxisomal biogenesis is associated with high level of 
oxidative stress [32].

High fraction of A→G mutations was associated 
with apoptosis in KIRC, but not in KIRP. Stronger 
depletion of mitochondria was observed in KIRC than 
KIRP [33], implying higher level of apoptosis in KIRC. 

Figure 5: High fraction of A→G mutations was associated with oxidative stress in kidney and thyroid cancers. A. 
Higher A→G mutation rates in high-expressed genes of kidney and thyroid cancers. Genes were categorized into three equal-size groups 
(low-, medium- and high-expressed) based on the rank of expression levels for each tumor type. The A→G mutation rates of each gene 
group were represented by the median value. Finally, the median rates of all gene groups were all normalized by dividing with the median 
rate of low-expressed genes. B. Expression levels of NOX4 gene across 19 tumor types. Each data point represents one tumor sample. 
Red horizontal lines indicated median fraction of each dataset. C. Expression levels of DUOX1 gene across 19 tumor types. D. Higher 
expression of CYBA gene in renal clear cell carcinoma with high-level apoptosis. Each data point represents one tumor sample. The P value 
for expression difference was estimated by Mann-Whitney U test. E. Higher expression of PEX7 gene in thyroid cancers with high-level 
energy metabolism.
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But in KIRP, significant elevation of A→G mutation 
rate was observed in tumors with high expression of 
CYBA gene (Supplementary Figure S7), suggesting the 
association between oxidative stress and A→G mutations 
in KIRP.

The high frequency of RAS mutations in thyroid 
cancers is attributed to A→G mutations induced 
by energy metabolism

RAS (HRAS and NRAS) mutations are the second 
most common genetic alterations in thyroid cancers, 

which were mutually exclusive with BRAF mutations (the 
most common mutations in thyroid cancers) [34]. RAS-
mutated thyroid cancers are aggressive tumors with a poor 
prognosis [35]. 81% of RAS-mutated thyroid cancers have 
a recurrent mutation of A→G mutation at nucleotide 182 
of coding sequences (Figure 6A and 6B). A→G mutation 
rate was significantly increased in thyroid cancers with 
high-level energy metabolism (Figure 4C). Thus higher 
frequency of RAS (HRAS and NRAS) mutations was 
observed in thyroid cancers with high-level energy 
metabolism because of high-frequency A→G mutations 
(Figure 6D).

Figure 6: Higher frequency of RAS mutations in thyroid cancers with high-level energy metabolism. A. Mutation profile 
of gene HRAS. Green bar showed the range of coding region. One red point indicated one recurrent mutation, following by the mutation 
position and mutation type. The number in parenthesis indicated the number of mutations. B. Mutation profile of gene NRAS. C. Mutation 
profile of gene BRAF. D. Driver mutations associated with energy metabolism in thyroid cancers. Blue and red bars indicated the mutation 
frequency of driver genes in tumors with low-level and high-level energy metabolism respectively. Red asterisks indicated significant 
difference of mutation frequency (P<0.01 by Fisher’s exact test).
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The vast majority of BRAF mutations in thyroid 
cancers were A→T mutations at nucleotide 1799 of 
coding sequences (Figure 6C). The frequency of BRAF 
mutations was significantly reduced in tumors with high-
level energy metabolism (Figure 6D), which should result 
from the mutual exclusiveness between BRAF and RAS 
mutations. Excluding all the RAS-mutated tumors, similar 
frequencies of BRAF mutations were observed between 
tumors with low-level and high-level energy metabolism 
(Supplementary Figure S8).

DISCUSSION

Oxidative DNA damage is very common in human 
cells. Oxidative mutagens can cause DNA damage 
which might increase the risk of cancer [36]. This study 
found that high-level oxidative stress may increase the 
frequency of RAS mutations in thyroid cancers with high-
level energy metabolism. BRAF mutations were enriched 
in thyroid cancers with low-level energy metabolism 
because of the mutual exclusiveness between BRAF and 
RAS mutations. This finding may explain the lower level 
of iodine metabolism observed in mutant-BRAF thyroid 
cancers [37]. Iodine metabolism was highly correlated 
with energy metabolism (Supplementary Figure S9A-
S9C).

HCV-induced error-prone DNA polymerases 
were reported to be involved in the induction of A→G 
(T→C) mutations of liver cancer [14]. But our function 
enrichment analyses did not found any association 
between DNA polymerases and A→G mutation rate in 
liver cancers, which may be the result of few liver cancers 
in TCGA affected by hepatitis C virus. Only one single 
liver cancer in TCGA expressed hepatitis C virus but at 
low levels [38]. Instead, we found significant associations 
between function of translation and A→G mutation rate in 
liver cancer. The connection between A→G mutations and 
function of translation in liver cancer was unclear.

This study found the association of A→G mutations 
with error-prone DNA polymerase and oxidative stress 
by bioinformatic approaches, which needs experimental 
validation in future. The association can be confirmed by 
the mutation profiles of human cell lines with reduced 
activity of error-prone DNA polymerase or oxidative 
stress. Future studies can examine the POLQ knockdown 
in stomach cancer cell lines with concurrent defects of 
POLD1 and POLE.

MATERIALS AND METHODS

TCGA datasets

Somatic mutations and expression profile were 
retrieved from The Cancer Genome Atlas (TCGA) 
on February 4, 2015. Tumor types with less than 100 
individuals were excluded from the subsequent analyses 

to reduce the influence of small sample number. Point 
mutations were extracted from MAF files from the TCGA 
database. Mutation rate of each tumor was estimated for 
the six types of base substitutions. Mutant genes were 
defined as genes with non-silent somatic mutations. The 
expression level of each gene was extracted from the 
RSEM RNA-Seq data of TCGA.

Function enrichment analysis

For each tumor type, Spearman correlation and 
associated P-value were estimated between expression 
level of each gene and A→G mutation rate in tumors. 
We filtered out the genes with P-values greater than 0.01. 
Then the top 100 genes with the positive correlation were 
defined as the significantly associated genes. Function 
enrichment analysis was performed on the significantly 
associated genes with DAVID tools [39].

Mutation rate associated with gene 
expression level

Genes were categorized into equal-size groups 
based on the rank of expression levels for each tumor 
type. The median expression value was used to represent 
the expression level of each gene group. Median mutation 
rates of six types of base substitutions were estimated for 
each gene group.

Synonymous and nonsynonymous 
substitution rate

Point mutations in protein-coding regions can be 
divided into synonymous (silent) and non-synonymous 
(amino acid-altering) mutations. The numbers of 
synonymous and non-synonymous sites of each 
gene were estimated using YN model implemented 
in KaKs_Calculator tools [40, 41]. Synonymous 
substitution rate was calculated as the number of 
synonymous substitutions per synonymous site [42, 43]. 
And non-synonymous  substitution rate was calculated 
as the number of non-synonymous substitutions per non-
synonymous site.
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