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ABSTRACT

Background: Genome-wide miRNA expression may be useful for predicting breast 
cancer risk and/or for the early detection of breast cancer.

Results: A 41-miRNA model distinguished breast cancer risk in the discovery 
study (accuracy of 83.3%), which was replicated in the independent study (accuracy 
= 63.4%, P=0.09). Among the 41 miRNA, 20 miRNAs were detectable in serum, and 
predicted breast cancer occurrence within 18 months of blood draw (accuracy 53%, 
P=0.06). These risk-related miRNAs were enriched for HER-2 and estrogen-dependent 
breast cancer signaling.

Materials and Methods: MiRNAs were assessed in two cross-sectional studies of 
women without breast cancer and a nested case-control study of breast cancer. Using 
breast tissues, a multivariate analysis was used to model women with high and low 
breast cancer risk (based upon Gail risk model) in a discovery study of women without 
breast cancer (n=90), and applied to an independent replication study (n=71). The 
model was then assessed using serum samples from the nested case-control study 
(n=410).

Conclusions: Studying breast tissues of women without breast cancer revealed 
miRNAs correlated with breast cancer risk, which were then found to be altered in the 
serum of women who later developed breast cancer. These results serve as proof-of-
principle that miRNAs in women without breast cancer may be useful for predicting 
breast cancer risk and/or as an adjunct for breast cancer early detection. The miRNAs 
identified herein may be involved in breast carcinogenic pathways because they were 
first identified in the breast tissues of healthy women.
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INTRODUCTION

Breast cancer is the most common cancer among 
women in the US, except for non-melanotic skin cancer, 
and is the second leading cause of cancer-related mortality 
in women [1]. Knowing which women will develop breast 
cancer remains elusive, and currently the most effective 
way of addressing breast cancer morbidity and mortality 
is through early detection and mammography [2, 3]. 
Statistical models based on breast cancer risk factors 
have been developed to assess life-time breast cancer 
risk in healthy women, guiding clinical decisions for 
early breast cancer detection (e.g., mammography and 
magnetic resonance imaging) and chemoprevention [4–
10]. A widely used risk assessment method is the Breast 
Cancer Risk Assessment Tool, typically referred to as the 
“Gail model” [4], and is the only model that has been 
repeatedly validated in large population-based studies [5, 
11–13]. The Gail model incorporates age, history of breast 
biopsies, family history of breast cancer, and reproductive 
histories. However, the predictivity of the Gail model is 
limited, as is its application to tailoring early detection 
for the general population of women. Thus, improved risk 
assessment and/or early detection methods are needed, 
because many aggressive breast cancers escape detection 
by mammography for some women, while at the same 
time mammography can lead to overdiagnosis for other 
women [14, 15].

One approach to improve life-time breast cancer 
risk prediction and/or the early detection of breast cancer 
is to utilize molecular signatures from normal tissue, 
before women develop clinical abnormalities [16–18]. 
For example, one study showed that epigenetic markers 
(DNA methylation) may improve the accuracy of the Gail 
model [19]. Recently, miRNAs have emerged as potential 
biomarkers for early detection of cancer [20–24]. miRNAs 
are short non-coding RNAs that are abundantly present 
in human cells, and negatively regulate gene and miRNA 
expression changes in breast cancer [25–27]. In normal 
cells, miRNAs affect mammary gland development and 
other functions [28]. In breast cancer, miRNA expression 
is associated with diagnosis and prognosis [29–31].

In this report, we hypothesized that the identification 
of miRNAs in healthy women associated with breast 
cancer risk can be one way of developing models for 
breast cancer risk assessment, and/or be used as an 
adjunct for enhancing early detection. To address this 
hypothesis, two independent cross-sectional studies of 
women undergoing reduction mammoplasty (RM) who 
had no prior history of breast cancer were used to build 
and evaluate a multi-miRNA model for breast cancer risk 
(i.e., Gail risk) prediction. We subsequently analyzed the 
National Institute of Environmental Health Science’s 
Sister Study cohort (a publically available data set) [21], 
using a nested case-control design, to assess the utility of 
the multi-miRNA model using serum samples to directly 

assess breast cancer risk. This latter study includes women 
without breast cancer at the time of blood draw and were 
either diagnosed with breast cancer within 18 months 
(cases), or remained without breast cancer (controls).

RESULTS

Participants’ characteristics

The characteristics of the participants are shown in 
Table 1. There were 90 and 71 subjects for the discovery 
and independent replication studies, respectively. The 
median age for the discovery subjects was 45 years 
(range: 35-76 years) and for the replication subjects it was 
46 years (range: 35-66 years). The majority of subjects 
were Caucasians (71.1% and 78.9%, for the discovery and 
replication studies, respectively), and most were classified 
as low risk women by the Gail model; 83.3% and 67.6%, 
for the discovery and replication studies, respectively). 
Race and Gail risk, but not other characteristics, differed 
significantly between the two studies (P = 0.0005 and P = 
0.032, respectively).

miRNAs in the RM discovery and independent 
replication studies

Five individual miRNAs (of the 168 miRNAs 
expressed above background) were differentially 
expressed in high vs. low risk women in the discovery 
study (P < 0.05), but none of these remained statistically 
significant after adjustment for multiple comparisons 
(Supplementary Table 1). To assess the applicability of 
miRNA-based model to predict breast cancer risk, we built 
a 41-miRNA model to distinguish between women with 
high vs. low risk of breast cancer (based upon the Gail risk 
model) in the discovery study (Supplementary Figures 1 
and 2) using a projection-based multivariate classification 
technique for high dimensional data called sPLS-DA. The 
miRNAs in the model along with their weights are listed 
in Supplementary Table 2. Figure 1 shows the sPLS-DA 
components separating the two groups of women. The 
model had 83.3% predictive accuracy, 84% specificity, 
80% sensitivity with 95.4% NPV and 50% PPV, in the 
discovery study. In an independent replication study, the 
same model achieved accuracy of 63.4% with specificity 
of 77.1% and sensitivity of 34.8%. The model had a 
NPV of 71.1% and a PPV of 42.1% for this data set 
(Table 2). The permutation test results show that our model 
predicteds high and low risk women with accuracies better 
than random chance (P = 0.09, Table 2 and Supplementary 
Information). In a sensitivity analysis, we additionally 
verified that classification using the 41-miRNA panel was 
not significantly influenced by race in the discovery RM 
study of women without breast cancer with 28% African 
American women (Supplementary Information).
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Table 1: Characteristics of RM studies participants ≥ 35 y.o.

Gail Characteristics

Discovery study subjects
(n = 90) [32]

Replication study subjects
(n = 71) [34]

No. % No. %

Race

 White 64 71.1 56 78.9

 Black 25 27.8 5 7.0

 Hispanic 1 1.1 8 11.3

 Other 0 1.1 2 2.8

Age, years

 < 50 62 68.9 44 62.0

 ≥ 50 28 31.1 27 38.0

 Median 45 46

 Range 35-76 35-66

Age at menarche, years

 < 12 15 16.7 17 24.0

 12-13 43 47.7 32 45.0

 ≥ 14 16 17.8 20 28.2

 Unknown 16 17.8 2 2.8

Age at first live birth, years

 Nulliparous 22 24.4 13 18.3

 < 20 9 10.0 16 22.6

 20-24 12 13.3 17 23.9

 25-29 16 17.8 10 14.1

 ≥ 30 11 12.2 13 18.3

 Unknown 20 22.2 2 2.8

No. of 1st degree relatives with breast cancer

 0 57 63.3 60 84.5

 1 8 8.9 9 12.7

 Unknown 25 27.8 2 2.8

No. of biopsies

 0 40 44.4 65 91.6

 1 6 6.7 4 5.6

 ≥ 2 2 2.2 2 2.8

 Unknown 42 46.7 0 0

Breast Cancer riskǂ

 Low 75 83.3 48 67.6

 High 15 16.7 23 32.4

ǂHigh breast cancer risk was defined as woman who has at least 10% increased risk of breast cancer relative to women at 
average risk of the same ethnicity and similar age, estimated by the Gail model.
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Functional analysis of the miRNAs targets

To examine the biologic function of the miRNA 
panel, we performed Ingenuity Pathway Analysis (IPA) 
of the 41 miRNAs associated with increased Gail breast 
cancer risk. Given that a single miRNA can target many 
genes, the focus herein was on experimentally validated 
targets (based on the IPA knowledge base) of the top 10 
miRNAs, ranked by their weights in the sPLS-DA model 
(Supplementary Table 2). Five out of the top 10 miRNAs 
had 94 experimentally validated targets. Figure 2A shows 
these five miRNAs and their respective gene targets that 
are known to be involved in cancer. The network that 
depicts the known direct interaction between these genes 
targets are shown in Figure 2B. This network is enriched 
in cell death and survival, cancer, and liver necrosis/cell 
death (P < 0.0001, Fisher’s test). IPA canonical pathway 
analysis revealed significant enrichment in HER-2 
signaling and estrogen-dependent breast cancer signaling, 
as well as other important cancer pathways such as PI3K/
AKT signaling, PTEN signaling, and TGF-beta signaling 
(P < 0.0001, Figure 3 and Supplementary Table 3). 
Functional analysis indicated significant representation 
related to cellular growth and proliferation, cell death and 
survival, cell cycle and cancer (Supplementary Figure 3 
and Supplementary Table 4).

For the other five miRNAs that had no 
experimentally validated targets, they had 98 predicted 
targets that are involved in breast cancer pathway 
(Supplementary Figure 4).

miRNAs in sister study cohort

Shifting from breast tissue to serum analysis for 
the prediction of actual breast cancer in the Sister Study 
cohort using a nested case-control design (n = 205 
cases and 205 controls), 34 of the 41 breast miRNAs 
identified in the discovery study were profiled in the 
serum of the Sister Study cohort. There were 20 of 34 
miRNAs detected above background level in more than 
50 women; these 20 miRNAs were then used to build a 
new classification model in the discovery RM set, rather 
than the 41 miRNAs. This model had 81.1% accuracy, 
81.3% specificity, and 80% sensitivity. The 20-miRNA 
model was then locked and applied to classify women in 
the breast cancer cohort subjects. The 20-miRNA model 
correctly identified 74.6% of women who remained 
cancer-free and 31.7% of women who were diagnosed 
with breast cancer (Table 2). The predictive accuracy was 
53.2%. It was obtained by applying breast tissue results to 
serum, using a different miRNA platform, and studying 
women with a different body habitus (the RM subjects 
have a higher BMI than the general population). However, 
the 20-miRNA model achieved better performance than 
random permutation (P = 0.06). To be applicable in the 
clinical setting, we derived continuous risk scores based 
on the sPLS-DA model prediction. Women in the highest 
quartile of this score had a 53% increased risk for breast 
cancer (odds ratio [OR] = 1.53; P = 0.20), albeit based 
on small numbers of subjects and a statistically non-
significant result.

Figure 1: Graphical 3D representations of the women using sPLS-DA components. Plot of the first 3 components of the 
women showing a good separation between the women with high (red) and low (black) risk of developing breast cancer as calculated by 
Gail model.
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Figure 2: A. Five of the top 10 miRNAs have experimentally validated gene targets. Gene targets involved in cancer are shown. 
Pink molecules are important in breast cancer pathway. The connections show experimentally validated targets (solid line) and targets predicted 
with high confidence (dash line). B. The top network of the validated gene targets is enriched in cell death and survival, cancer, liver necrosis/
cell death (P =10-50, right-tailed Fisher’s exact test). Fill colors represent molecules directly targeted by the corresponding miRNAs.

Table 2: Classification performance of the discovery, independent replication and serum studies

Studies Accuracy Specificity Sensitivity Negative Predictive 
Value

Positive Predictive 
Value P-value*

41-miRNA model performance in breast tissue
Discovery 0.833 0.840 0.800 0.954 0.500 -
Replication 0.634 0.771 0.348 0.711 0.421 0.090
20-miRNA*** model performance in breast tissue and serum
Discovery 0.811 0.813 0.800 0.953 0.461 -
Serum (GSE44281) 0.532 0.746 0.317 - - 0.064

*P-value testing the performance of miRNA model based on 10,000 random permutations.
***Only 20 out of 41-miRNA were profiled and detected above background level in serum samples.
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DISCUSSION

The use of molecular markers for cancer risk 
prediction is rapidly increasing [23, 32–35]. This study 
is the first to report on the accuracy of a miRNA model 
developed in breast tissues of women without breast 
cancer to predict breast cancer risk, serving as proof-of-
principle that miRNAs profiled in histologically normal 
breast tissue may be used to predict the risk of developing 
breast cancer before major carcinogenic changes and/or 
as a way to enhance the early detection of breast cancer. 
We observed that this miRNA model developed using 
normal breast tissue may have some predictive power to 
differentiate women with high and low breast cancer risk 
and that a subset of these miRNAs detectable in the serum 
could identify women who were then diagnosed with 
breast cancer within 18 months. The results for women 
without breast cancer and their breast tissues indicate that 
miRNAs might be useful for assessing life-time breast 
cancer risk (as does the Gail risk model). The analysis of 
serum in the case-control study of breast cancer nested 
within the Sister Study cohort validates the results herein 
as a breast cancer risk predictor, but also possibly as a 
marker for early detection because of the short time to 
breast cancer diagnosis. While there was some loss in 

performance as the miRNA markers identified in breast 
tissues were applied to serum, this would be expected 
as serum analysis could reflect miRNA expression from 
many tissues, resulting in a loss of signal. The use of 
serum markers as surrogates for the target organ has been 
previously reported [22, 36–38]. Pathway analysis of the 
mRNA targets of the top miRNAs identified in the model 
suggested enrichment for HER-2 and estrogen-dependent 
breast cancer signaling, and other cancer-related pathways. 
Our study using tissues from women with no history 
of breast cancer provides a unique resource for risk 
assessment and early detection prior to abnormalities that 
are clinically detectable.

miR-222-3p, one of the top-ranked miRNAs 
detected in the model, has been shown to target the 
estrogen receptor 1 gene (ESR1) and was reported to be 
dramatically higher in ESR1 negative breast cancer cells, 
inhibiting ERα expression [39]. miR-222-3p can also 
trigger malignant transformation by altering the expression 
levels of genes involved in cell death and survival, such 
as CAV2, PTEN, FOXO3, CDK6 and promote aggressive 
ER-negative breast tumors by increasing proliferation 
and migratory activity of breast cancer cells [40, 41]. 
The miR-29c-3p, another top-ranked miRNA identified 
in the model, has been shown to up-regulate p53 and 

Figure 3: Canonical pathways that are significantly associated with the experimentally observed gene targets of the 
top 10 miRNA in the 41-miRNA panel using IPA. Fisher’s exact test was used to calculate a P value. Values greater than the 
threshold implies that the association between the miRNA gene targets and the pathway is not likely due to random chance alone.
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induce apoptosis in breast cancer cell lines [42]. For the 
other top-ranked miRNAs, five have no validated targets 
but have many predicted targets related to breast cancer 
such as AKT, AKT1, CCND1, EGFR1, ERBB2, SRC, 
PTEN which have been used as breast cancer biomarkers 
for prognosis, diagnosis, drug efficacy, and disease 
progression [43–45]. Thus, these miRNAs may have 
clinical potential as novel breast cancer biomarkers.

Three prior cohort studies have investigated miRNA 
expression in prospectively collected blood samples for 
breast cancer risk prediction, including the Sister Study 
Cohort used herein [21, 46, 47]. None were based on 
miRNA expression in the breast, none had independent 
replication and the miRNAs for each study do not overlap 
with each other. There were other substantial differences 
between the study reported herein and these other studies. 
For example, while the Hormones and Diet in the Etiology 
of Breast Cancer Cohort reported 20 differentially 
expressed miRNAs among 133 postmenopausal breast 
cancer cases and 133 controls, the miRNAs were assessed 
in leukocytes [46]. Leukocyte miRNA expression would 
only affect expression for that cell type, while serum 
miRNA levels likely reflects a contribution of multiple 
organs. Similarly, the Breast Cancer Family Registry, 
using high risk families, reported that five microRNAs 
were differentially expressed in blood cells, among 
20 breast cancer cases and 20 controls, but none were 

validated in an additional 28 case/control pair from the 
same study [47]. Lastly, the Sister Study Cohort utilized 
serum drawn only a short time before diagnosis (within 18 
months and a mean of 10 months), so these results reflect 
an assessment for early detection rather than long term risk 
prediction [21]. Each study also used a different laboratory 
assay for miRNA detection. The miRNAs identified herein 
using normal tissues were not observed in the Registry 
Study, but four overlapped with the Sister Study Cohort 
results (two of them were the highest expressing miRNAs 
in the Sister Study, i.e., miR-181a-5p and miR-222-3p) 
and 3 miRNAs overlapped with the Hormones and Diet 
Study (i.e., miR-1991-5p, miR-145-5p, and miR-199b-
5p). Whether the disparate results are due to differences in 
study design, blood component, or assay methodology is 
unclear. Currently there is no consistency in the scientific 
literature for which miRNAs might be predictive of breast 
cancer risk, however no other study has used independent 
validation and assessed the accuracy of a miRNA-based 
model.

The performance of the model applied to two 
independent studies is very modest albeit significantly 
better than random chance at P-value < 0.10. This most 
likely due to the small number of women in the discovery 
study (and limited number of high breast cancer risk 
women without breast cancer) that were used to train the 
model. Moreover, transition from breast tissue to blood 

Figure 4: Workflow of the data analysis performed in this study.
Abbreviation: sPLS-DA, sparse partial least square discriminant analysis.
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where some miRNAs may be expressed differently, the 
detection method differences, the broader range of ages 
and BMI, and the time from blood collection to diagnosis 
all could influence the results.

Findings from this study should be considered in 
light of some limitations. The first relates to the use of 
the Gail risk model, which has limited accuracy, despite 
the fact that it is a widely used model. Other models 
could have been used, such as Tyrer-Cuzick [9] and 
BRCAPRO [48], but these have not been validated in 
large population studies. Another limitation is the use 
of reduction mammoplasty patients for discovery and 
replication, where the women are mostly overweight 
or obese, thus limiting the generalizability of results to 
normal weight women. However, finding concordance 
with the Sister Study directly minimizes concerns 
about the generalizability of these findings. Separately, 
this study was limited to the publically available 
data from the Sister Study, limiting our ability to 
directly compare our miRNA model with Gail model 
and to explore additional covariates and confounding 
(e.g., BMI).

This study approaches the discovery of breast 
cancer risk miRNA models by first studying breast 
tissues of women without breast cancer providing 
comprehensive molecular measurement in target tissue. 
The results indicate modest concordance of miRNA 
expression between breast tissues and serum of women 
who later develop breast cancer, but given the reasons 
discussed above while applying breast modeling results 
to serum in different studies, the results indicate that the 
novel approach used herein has the utility to provide 
corroborative evidence for the ultimate development of 
a miRNA model for predicting breast cancer risk and/or 
early detection. Future prospective cohort studies with 
large sample size and long follow-up data are needed 
to confirm the promise of miRNAs in breast cancer risk 
prediction and early detection.

MATERIALS AND METHODS

Study population and biospecimen collection

Reduction mammoplasty (RM) discovery study

Healthy women with no prior history of breast 
cancer who underwent RM were studied, as described 
previously [49, 50]. Briefly, subjects aged 35 and older 
were recruited at Georgetown University Medical 
Center (Washington, DC), the University of Maryland 
(College Park, MD), the Washington Hospital Center 
(Washington, DC) and the Center for Plastic Surgery 
(Buffalo, NY) from 1997 to 2009. Recorded data by 
personal interview included demographics, lifestyle, 
reproductive history, family medical history, diet, and 
other exposures. Upon pathological review, subjects 

with gross pathology, epithelial hyperplasia, or focal 
microcalcifications were excluded. Tissues were 
dissected to remove adipose tissue, fixed in formalin, 
and embedded in paraffin.
RM independent replication study

Women ages ≥35 who underwent RM at Baystate 
Medical Center (Springfield, MA) between 2007 and 2009 
were studied, as previously described [51]. Participants 
were interviewed by phone following surgery and data 
available from the questionnaires were similar to those 
in the discovery study. Breast tissues were collected 
similarly, except that the breast epithelial tissue was not 
dissected from fat before storage. Participants with benign 
biopsy results also were excluded.
Cohort study of breast cancer - Sister Study

A cohort study for breast cancer where there are 
publically-available serum-based miRNA profiles were 
then analyzed in relation to miRNA model identified 
from the above RM discovery study, using a nested 
case-control study design. The National Institute of 
Environmental and Health Sciences (NIEHS) Sister 
Study (NCBI Gene Expression Omnibus, accession 
number GSE44281) [21] includes 50,844 women from 
US or Puerto Rico who never had breast cancer but had 
a sister diagnosed with breast cancer. Baseline serum 
samples of 205 women without breast cancer who were 
subsequently diagnosed with breast cancer within 18 
months following blood collection (mean = 10 months) 
were matched with 205 women who remained cancer 
free. The matching criteria were no prior history of 
cancer except non-melanoma skin cancer, race, age, 
date of blood draw and available blood sample. For this 
cohort, miRNA expression levels were determined using 
GeneChip miRNA 2.0 arrays (Affymetrix Inc., Santa 
Clara, CA, USA) as described by the original authors 
[21].

All participants in the three studies provided 
informed consent and studies were approved by 
the Institutional Review Boards of all participating 
institutions.

RNA extraction and miRNA profiling in breast 
tissues

Total RNA was extracted from the two RM studies 
using formalin-fixed paraffin embedded (FFPE) tissues 
according to the manufacturer’s instructions (FFPE RNA 
purification kit, Norgen, Canada). miRNA expression was 
quantified using the nCounter digital detection miRNA 
expression assay (NanoString® Technologies, Seattle 
WA), with 10 % duplicates for quality control purposes. 
Coefficients of variation (CV) were calculated to assess 
assay reliability (3.76% and 4.62% in RM discovery and 
replication studies, respectively).
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RM subjects breast cancer risk assessment

For the RM studies, each woman’s Gail score was 
calculated [10]. We defined “high risk” women as those 
with a 10% or greater increased risk relative to women 
of the same race and age who is at average risk (e.g. > 
1.1% risk if the average 5-year risk is 1%). We refer to low 
risk as average risk in the population for a given age and 
racial/ethnic demographic. Five year risks were calculated 
using the latest update (May 2011) of source code for the 
breast cancer risk calculation engine [52]. We verified the 
risks calculated using the source code with risks calculated 
using the online tools for 30 random women. All risk 
estimates showed complete agreement.

Data analysis

Figure 4 shows an overview of the data analysis 
performed in this study. Raw expressions were normalized 
using the top quartile mean normalization method [53], 
which has been shown to be more sensitive and accurate 
than using invariant miRNA [54] or quantile normalization 
[55, 56] (Supplementary Figure 5). 800 miRNAs were 
measured using the NanoString nCounter platform [57]. 
We filtered out miRNAs whose expressions were below 
NanoString’s internal negative control in at least 50% 
of the samples, leaving 168 for downstream analysis. 
Principal Component Analysis (PCA) was used to detect 
the presence of potential confounding factors including 
technical artifacts and batch effects. In our miRNA dataset, 
no confounding was found (Supplementary Figure 6).

To confirm that patient characteristics in the 
RM studies were similar, chi-squared tests were used 
to compare the categorical characteristics between 
participants in the two studies. Two-sided Wilcoxon rank 
sum tests were used to compare expression of each miRNA 
individually between high and low risk women. P-values 
were corrected for multiple testing using the Benjamini-
Hochberg False Discovery Rate (FDR) algorithm. [58] 
An FDR value less than 0.10 was considered statistically 
significant.

In order to build a multi-miRNA model associated 
with breast cancer risk in the discovery study, we used a 
projection-based multivariate sparse partial least squares 
discriminant analysis (sPLS-DA [59]) approach to classify 
women into low and high breast cancer risk groups. sPLS-
DA was designed to classify high dimensional data that 
also performed variable selection [59]. Optimal parameters 
tuning was performed based on 10-fold cross validation 
(CV) to avoid overfitting [60].

In order to replicate the findings of the RM 
discovery study, the miRNA model which was developed 
in the discovery study was used to predict the breast 
cancer risks of women in the replication study. The 
accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) of the miRNA 
model were calculated to evaluate the discriminatory 

performance of the miRNA panel in classifying women 
with low versus high Gail risk [60]. To assess whether 
our model is better than random chance, we applied a 
permutation test by reshuffling the labels, applying the 
same model 10,000 times and calculating the p-value. The 
null distribution of the accuracies given by the permutation 
is the accuracy of the model when it is a random signature. 
Small p-value indicates that the accuracy of the model is 
significantly better than random chance.

To assess whether the miRNA panel can 
prospectively predict breast cancer risk using serum in the 
Sisters Study, miRNAs by Affymetrix® used for the Sister 
Study and NanoString for the RM studies were matched 
based on their sequences to identify available miRNAs for 
further analysis. Since only 20 out of 41 miRNAs were 
detected above background by the Affymetrix method 
in serum, we used these 20 miRNA to build a sPLS-
DA model in the discovery study. This model was then 
applied to classify women into breast cancer and cancer-
free categories in the Sister Study cohort. Finally, the same 
permutation test as described above was applied to assess 
whether the performance of our model was better than 
what chance alone could produce. Continuous risk scores 
were derived by taking the difference of the two outcomes 
variables predicted by sPLS-DA. Logistic regression was 
used to estimate breast cancer odds ratios (OR) and 95% 
confidence intervals (CI) for comparisons of the second 
through fourth quartiles of the risk score relative to the 
first. All analyses described in this section were performed 
in the R statistical environment v3.1.1. Further details are 
available in the Supplementary Information.

Functional and pathway analysis

Functional analysis was performed using QIAGEN’s 
Ingenuity Pathways Analysis (IPA® QIAGEN Redwood 
City, www.ingenuity.com). miRNA targets were identified 
using TarBase [61], miRecords [62], TargetScan [63] and 
Ingenuity® knowledge base. Methodology and approaches 
are described in detail in Supplementary Information.
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