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A multi-step classifier addressing cohort heterogeneity improves 
performance of prognostic biomarkers in three cancer types
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ABSTRACT

Cancer research continues to highlight the extensive genetic diversity that exists 
both between and within tumors. This intrinsic heterogeneity poses one of the central 
challenges to predicting patient clinical outcome and the personalization of treatments. 
Despite progress in some individual tumor types, it is not yet possible to prospectively, 
accurately classify patients by expected survival. One hypothesis proposed to explain 
this is that the prognostic classifiers developed to date are insufficiently sensitive and 
specific; however it is also possible that patients are not equally easy to classify by any 
given biomarker. We demonstrate in a cohort of 45 AJCC stage III melanoma patients 
that clinico-pathologic biomarkers can identify those patients that are most likely to 
be misclassified by a molecular biomarker. The process of modelling the classifiability 
of patients was then replicated in a cohort of 49 stage II breast cancer patients and 53 
stage III colon cancer patients. A multi-step procedure incorporating this information 
not only improved classification accuracy but also indicated the specific clinical 
attributes that had made classification problematic in each cohort. These findings show 
that, even when cohorts are of moderate size, including features that explain the 
patient-specific performance of a prognostic biomarker in a classification framework 
can improve the modelling and estimation of survival.

INTRODUCTION

The biological complexity of most disease states 
limits the performance of prognostic biomarkers [1–3]. 
Therefore, identifying and understanding the sources 
of this complexity is critical for improved prediction 

of prognosis. Due to the difficulties associated with 
classifying heterogeneous data, in many studies patients 
are often prospectively segregated with respect to known 
genetic or pathological features (e.g. pathologic tumor 
stage or hormone receptor status in breast cancer) that 
might confound interpretation before classification and data 
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analysis. The inherent complexity of most human cancer 
cohorts and practical limits of identifying enough patients 
of a similar demographic and pathologic stage create a 
reality whereby partitioning patients is still not guaranteed 
to produce a sufficiently large homogeneous study cohort. 
Demonstrating this, we previously observed that there were 
subsets of AJCC stage III metastatic melanoma patients 
whose clinical outcome could be more easily explained 
by different clinical pathological or molecular biomarkers 
than others [4], an observation subsequently confirmed in 
breast cancer [5]. One interpretation of these results is that 
even after prospectively restricting study inclusion criteria 
to a specific pathologic stage – e.g., metastatic lymph node 
samples from patients with AJCC stage III disease in the 
melanoma study – there is a further subset of patients for 
whom the different clinical, pathological or molecular 
measurements point to alternative, and even competing, 
predicted outcomes for a given individual patient. The 
observation that patients may vary by classifiability itself 
opens the question of whether it is possible to identify the 
subset of patients most likely to be correctly classified by a 
given biomarker of interest, compared with those who are 
not, prior to the application of that biomarker.

Herein we propose one such model capable of 
retrospectively identifying clinical and pathological 
features that identify and explain which patients are more 
likely to be successfully separated according to a good 
and poor prognosis by gene expression data. By including 
this identification step in a classification procedure 
we then show that we can substantially improve the 
accuracy of predicting prognosis in three cancer datasets; 
45 AJCC stage III melanoma patients [6], 49 stage II 
breast cancer patients [7] and 53 stage III colon cancer 
patients [8]. These three cancer datasets were chosen as 
for each patient they had well annotated pathological 
and treatment information as well as gene expression 
data and the cohorts maintained moderate sample sizes 
after restricting focus to tumour stages that had a similar 
number of patients with good and poor prognosis. Our 
proposed approach to classifying these patients not only 

improves the prediction of their prognosis by identifying 
potential sources of heterogeneity, it also helps identify 
the clinical or pathological features which might explain 
whether a patient would be more accurately classified by 
readily available clinical information or more cost and 
time sensitive gene expression data.

RESULTS

We previously observed that there were subsets 
of AJCC stage III metastatic melanoma patients whose 
prognosis, death within a year of resection or survival 
for more than four years after resection, was more easily 
predicted than others for a variety of biomarkers [4]. This 
insight is demonstrated in Figure 1 which shows the 
classification performance at a patient level for a biomarker 
constructed with either gene expression data or clinico-
pathologic and mutation variables (“clinical” variables) in the 
melanoma cohort [4]. The two data types – gene expression 
and clinical - classified different patients as having a good or 
poor prognosis with: 1) some patients classified correctly by 
both biomarkers; 2) patients for which only one biomarker 
was accurate; and, 3) patients where both failed. While the 
gene expression and clinical biomarkers classified the patient 
samples differently, they had a similar predictive performance 
on average. The balanced leave-two-out error-rates are given 
in Figure 2a where the biomarker built on gene expression 
alone achieved an error rate of 29% in the melanoma data 
while the clinical data produced an error rate of 34%.

Given that the gene expression and clinical data 
might be detecting different prognostic signals for 
different patients, two standard methods for integrating 
gene expression and clinical data were applied to the 
melanoma data and two additional cohorts in separate 
cancers: breast [7] and colon [8]. Figure 2 contains the 
balanced error-rates of these integration approaches, 
pre-validation (PV) [9] and random forests (RF) [10], 
for estimating prognosis. PV is a linear classification 
approach, which reduces the likelihood of the potentially 
many gene expression measurements swamping the 

Figure 1: Classification errors from melanoma data. The leave-one-out cross-validation errors for each patient in a melanoma 
cohort [6] from biomarker models built using DLDA [16] for the gene expression data and logistic regression on the clinical data are split 
on prognosis.
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relatively few clinical variables. RF is a classification 
approach that can handle non-linear interactions and can 
thus fit more complex models. In all datasets PV and RF 
were either inferior, or, only marginally superior to the 
clinical or gene expression biomarkers alone in estimating 
prognosis for overall or disease-free survival, with each 
of the integration approaches performing worse than 
at least one of the individual biomarkers in at least one 
cohort. Any actual improvement from either PV or RF was 
modest at best, with the exception of the RF approach in 
the colon cancer data.

We then took a different approach, hypothesizing 
that there would be clinical variables associated with the 
classification accuracy of the gene expression biomarker. 
Extranodal spread was identified as the most informative 
clinical variable for accurate classification of melanoma 
patient outcome by the biomarker constructed with gene 
expression data. Figure 3a shows a heat map of expression 
of the 100 genes with the largest fold changes between 
good and poor prognosis in that cohort. We observed clear 
differences in the gene expression signal between patients 
with and without extranodal spread. Similar observations 
were made in the breast cancer and colon cancer 
cohorts; we identified hormonal therapy and adjuvant 
chemotherapy in those two cancers, respectively, as the 
most informative clinical variables for explaining the 
classification accuracy of the gene expression data. Figure 
3b and 3c show that the gene expression data contained 
prognostic signal for patients without hormonal therapy 
and with adjuvant chemotherapy.

We therefore propose a new multi-step classification 
framework that includes modelling of gene expression 
biomarker performance, and which markedly improved 

estimation of prognosis in three different cancer types 
(Figure 2). First, a classifier is built using the gene 
expression data to predict a clinical outcome of interest. 
The associated clinical data are then used to determine 
which clinical variable is able to predict the subset 
of patients that can be reliably classified by the gene 
expression information. The cohort is then divided into 
‘easy-to-classify’ and ‘hard-to-classify’ groups. The 
gene expression data are then used to build a classifier 
only for patients in the easy-to-classify group, leaving 
the clinical data to predict the outcome of the remaining 
subset of patients i.e., those identified as hard-to-classify. 
This procedure, which is described in further detail in the 
methods section and in Figure 4, led to clear reductions in 
patient outcome classification error rates relative to any 
of the aforementioned approaches as shown in Figure 2 
and Supplementary Tables S2, S3 and S4. Compared with 
the best performing individual biomarker in each cohort 
our multi-step classifier had a balanced error-rate of 26% 
compared to 29%, in the melanoma cohort, 22% compared 
to 42% in the breast cancer cohort and 28% compared to 
40% in the colon cancer cohort. When further contrasted 
to pre-validation and random forest, these improvements 
in classification performance are substantial given the 
sample sizes in these cohorts are only moderate.

We further analyzed why classification performance 
in each of the three cancer cohorts could be improved 
by the multi-step approach. Specifically, we aimed to 
investigate whether there may simply be multiple signals 
in the data with one signal overpowering the others. 
Figure 5a shows the classification error rates produced 
after biomarkers were independently built and validated 
within the hard-to-classify (with extranodal spread) and 

Figure 2: Comparison of predictive performance. The leave-two-out cross-validation balanced error-rates from five methods 
performed on the melanoma, breast cancer, and colon cancer data were compared to assess predictive performance. The five methods were: 
1) DLDA [16] on the gene expression data only; 2) logistic regression on the clinical variables only; 3) a pre-validation approach [9] for 
integrating the gene expression and clinical data; 4) Random Forests [10] on the gene expression and clinical data to capture interaction 
effects; and, 5) our proposed multi-step classification approach. Error bars represent the 95% confidence intervals.
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Figure 3: Heat maps of gene expression signal. The standardized gene expression signal is plotted for the top 100 genes with largest 
fold change for each patient in the melanoma, breast cancer and colon cancer cohorts. In the heat map, each row represents a different 
gene and each column represents a different patient sample. The patients from each dataset have been ordered by both prognosis and either 
extranodal spread, hormonal therapy or chemotherapy in the melanoma, breast cancer and colon cancer cohorts respectively.

Figure 4: Schematic of the proposed multi-step classification approach. A diagram detailing the multi-step classification 
approach and the input data types required at each stage of the process.
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within the easy-to-classify (without extranodal spread) 
subsets of melanoma patients for both the gene expression 
and clinical data. Error rates were lower using the gene 
expression biomarker for those patients without extranodal 
spread and higher for those with extranodal spread, and 
vice versa for the clinical data. This observation is a clear 
indicator of why our approach worked for this cohort of 
patients; a lower error rate demonstrates that a respective 
data source is more informative for those patients since 
the hard-to-classify patients still had high error rates even 
when a model was fit only using these patients. Similar 
patterns were observed in the two other cancers examined 
(Figure 5b and 5c).

DISCUSSION

We have shown that by conceptualizing error rates 
as a measure of classifiablilty, we can identify clinical 
determinants of this classifiability and then leverage these 
determinants to construct superior classification models. 
Importantly, none of the key clinical determinants could 
have been selected a priori as most likely to confound 
classification. That is, pre-determining potential 
confounding variables before an experiment without 
sufficient evidence and using these to subset a cohort 
might have unnecessarily reduced power or further 
confounded the analysis [1, 11, 12]. Our results indicate 
that confounding variables can be identified empirically 
and then included within the classification model 
building process, with the effect of substantially reducing 
prognostic prediction error rates.

Our results imply that resources should be 
invested into both the measurement of gene expression 
and the collation of detailed clinical information to 
improve the accuracy of prognostic estimates for cancer 
patients. Both the clinical and gene expression data 
contain useful prognostic information, however, these 

two classes of information have different relevance to 
different patients. The pivotal message from Figure 
5 is that the poor performance of biomarkers built 
on the gene expression or clinical data alone (Figure 
1) is not a result of those biomarkers being unable to 
capture complex and multiple signals within each data 
level (although the gene expression data in the colon 
cancer cohort may perform better with either boosting 
[13] or more complex models [10, 14]). Instead, it 
appears that these single data type biomarkers justify 
the measuring of information at multiple molecular 
and phenotypic levels, as different levels of the data do 
appear to contain prognostic signal for different patients. 
The limited availability of high quality specimens with 
linked, well-annotated clinical and pathologic data 
is an ongoing challenge in many diseases including 
cancers [15]. Although restricted in power, studies such 
as the present one can make important contributions 
to the development of hypotheses and methodological 
approaches within a field, with a view to validation once 
larger cohorts are available.

Interestingly, standard methods for integrating gene 
expression and clinical data did not perform competitively 
on these datasets. This was surprising since, in the 
melanoma cohort, both the gene expression and clinical 
data classified different patients correctly suggesting 
that integrating the two would be superior. Nonetheless, 
the question remains: why did the two integrative 
approaches not provide more substantial improvements 
to classification performance in these three datasets? 
To begin with, since PV is simply a linear combination 
of the clinical variables and a biomarker built from the 
gene expression, it might not be capable of capturing 
the inherent complexity of the data. In contrast, RF is a 
non-linear classification method built using decision trees 
making it capable of describing complex models, but 
despite its use of resampling methods it may still be over-
fitting to the data [11].

Figure 5: Error rates calculated within the identified classifiability sub-categories. Boxplots of the leave-two-out cross-
validation balanced error-rates calculated within each of the two identified classifiability sub-categories for each cancer for models built 
using DLDA [16] in the gene expression data and logistic regression in the clinical data in the a. melanoma, b. breast cancer and c. colon 
cancer cohorts. For the gene expression data boxplots, two completely independent cross-validated classification schemes were performed 
within both of the two patient groups: a) with and without tumor extranodal spread; b) with and without hormonal therapy; c) with and 
without adjuvant chemotherapy.
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To conclude, we have demonstrated that by 
identifying clinical variables that confound gene 
expression biomarker performance in individual patients 
we were able to improve the prediction of patient 
clinical outcome in three cancer cohorts. The value in 
this finding is that it is not always clear which sources 
of heterogeneity might be confounding a discriminatory 
signal within a dataset, and this is especially true in 
complex diseases such as cancers. Our multi-step 
procedure identified the clinical variables that were most 
likely to obscure a potentially useful gene expression 
signal of interest. It therefore has strong potential to help 
build models of outcome that have greater translational 
relevance, including aiding clinicians in determining 
the most appropriate schedule for clinical follow up 
of cancer patients, through substantial improvements 
to their accuracy. There is also potential value in the 
cost-effectiveness of this approach, which begins by 
leveraging the clinic-pathologic information that is 
immediately available to the clinician in order to enhance 
the value of molecular biomarkers that are measured with 
more difficulty and at higher cost.

MATERIALS AND METHODS

Melanoma specimens – clinical and pathologic, 
and molecular data

We used the previously reported global mRNA 
expression profiles from 45 AJCC stage III metastatic 
melanomas (deposited in GEO Accession Number: 
GSE54467), and linked detailed clinico-pathologic data, 
including BRAF and NRAS mutation status, as described 
in [6]. Survival times were as previously analyzed [6], 
and we compared those same patient groups already 
reported: patients surviving more than four years after 
resection of lymph node metastatic disease with no 
sign of relapse (nMelanoma_GoodPrognosis=22), and patients 
who died of melanoma within 12 months of resection 
(nMelanoma_PoorPrognosis =23). We considered the following 11 
clinico-pathologic variables in our analysis: patient age 
(at banking), patient sex, size of nodal metastatic tumor 
(mm), extranodal spread (present vs. absent), number of 
metastatic nodes, primary melanoma cell shape (round 
vs. ovoid, elongated, and spindle), percentage of necrosis 
and degree of pigmentation. BRAF and NRAS mutation 
status were identified via the Sequenom OncoCarta v1.0, 
MelaCarta v1.0 platform followed by MassARRAY25 
mass spectroscopy, as previously described [6]. These 
variables and patients were selected from a larger pool 
available to avoid either the imputation of missing 
values or the discarding of more patients and are shown 
in Supplementary Table S1. Variables with information 
missing for five or less patients were selected for analysis 
and following this all patients with any remaining 
missingness were removed.

Breast cancer specimens – clinical and 
pathologic, and molecular data

We used previously reported global mRNA 
expression profiles of human breast cancer samples 
together with clinical history [7] (deposited in 
ArrayExpress, experiment number: E-TABM-158). 
Briefly, 83% of tumors were early stage (stage I and II) 
with an average diameter of 2.6 cm. Approximately half 
of the tumors were node positive and 67% were estrogen 
receptor positive. Most patients (60%) received tamoxifen 
and half received adjuvant chemotherapy (typically 
Adriamycin and Cytoxan). As with the melanoma cohort 
above, survival times had previously been analyzed [7]. 
Following on from this, and also restricting our analysis to 
stage II patients, we split the patients into two categories; 
those with recurrence less than five years (18 patients) and 
greater than five years (31 patients). The clinical variables 
used in the analysis are shown in Supplementary Table 
S1 and were chosen to avoid either the imputation of 
missing values or discarding of more patients. Variables 
with information missing for five or less patients were 
selected for analysis and following this all patients with 
any remaining missingness were removed.

Colon cancer specimens – clinical and 
pathologic, and molecular data

We used previously reported global mRNA 
expression profiles of human colon cancer samples 
together with clinical history [8] (deposited in GEO 
Accession Number: GSE39582). The French national 
Cartes d’Identité des Tumeurs (CIT) program involves 
a multicenter cohort of patients with stage I to IV colon 
cancer who underwent surgery between 1987 and 2007 
in seven centers. Patients who received preoperative 
chemotherapy and/or radiation therapy and those with 
primary rectal cancer were excluded from the study. 
Survival times for this study had previously been 
analyzed [8]. To limit heterogeneity and balance classes 
we restricted analysis to tumor node metastasis stage 
III patients and split them into two categories; those 
with over-all survival less than three years (25 patients) 
and greater than seven years (28 patients). The clinical 
variables used in the analysis are shown in Supplementary 
Table S1 and were chosen to avoid either the imputation 
of missing values or discarding of more patients. Variables 
with information missing for five or less patients were 
selected for analysis and following this all patients with 
any remaining missingness were removed.

Patient classification using gene expression data

Classification was undertaken on the gene 
expression data as follows: 1) Feature selection, selecting 
the genes to include in a model, was performed by 
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selecting the one thousand genes with largest fold change; 
2) Using the class information, a diagonalized linear 
discriminant analysis (DLDA) [16] was trained on the 
selected genes to build a classifier. DLDA was chosen 
due to its wide spread use as a simple gene expression 
classification method [17]. To avoid an additional level of 
cross-validation we decided to make a fixed and arbitrary 
choice of using the top one thousand genes. While DLDA 
was chosen here for illustration, in further application 
of our multi-step framework any classifier can be used 
instead.

Patient classification using clinico-pathologic and 
mutation (‘clinical’) data

Classifiers using the clinical data were built using 
logistic regression in conjunction with step-wise AIC 
variable selection. While logistic regression was chosen 
here for illustration, in further application of our multi-
step framework any classifier can be used instead. Step-
wise AIC was chosen as it is the default model selection 
choice for many logistic regression packages. Other 
choices are possible such as using step-wise methods with 
other information criteria [18]. However, investigating 
what method further improves on the gain in prediction 
accuracy observed in this study would distract from the 
main aim of this article.

Patient classification using clinical and gene 
expression data combined – a pre-validation 
approach

We used a pre-validation approach [9] to integrate 
the gene expression and clinical data for prediction of 
patient clinical outcomes. Leave-one-out cross-validation 
(LOOCV) was used to construct a pre-validated decision 
vector for the gene expression data via DLDA [16]. As 
LOOCV was used, then for each sample its value in the 
pre-validation vector is the predictor from the prediction 
rule constructed using DLDA with all other samples. This 
pre-validated decision vector was then integrated with the 
clinical data after step-wise AIC variable selection using 
logistic regression.

Patient classification using clinical and gene 
expression data combined – a random forest 
approach

Integration of gene expression and clinical 
information to predict patient clinical outcome was also 
performed using a random forest [10] classification 
scheme. Using a resampling strategy, Random forests 
is an approach that constructs multiple decision trees 
and combines these into an ensemble classifier. Unlike 
logistic regression, Random forests can handle highly non-
linear interactions and classification boundaries. We used 

LOOCV to construct a pre-validated decision vector for 
the gene expression data using DLDA. Random forests 
analysis was then used to build a model using the pre-
validated gene expression vector and the clinical data.

Identifying clinical variables that predict for 
which samples gene expression data would be 
informative

Classification error rates for individual patients 
were calculated by performing LOOCV of a classification 
scheme on the gene expression data. In general, such 
errors could alternatively be calculated using bootstrap, 
k-fold cross-validation or repeated k-fold cross-validation. 
Logistic regression was then used, treating the prediction 
errors as a response and using the clinical variables as 
explanatory variables. The clinical variable with smallest 
AIC was selected to divide the patients into two cohorts; 
those patients who could be classified with the gene 
expression data (referred to herein as ‘easy-to-classify’) 
and those who could not (‘hard-to-classify).

Assessing the signal within ‘easy-to-classify’ and 
‘hard-to-classify’ subgroups

If a clinical variable was identified as having the 
potential to explain the heterogeneity in the gene expression 
data there may me some question as to whether the samples 
within any of its levels contained signal on a given platform. 
To test if this was the case, the samples were divided by 
the levels of the clinical variable (melanoma: with and 
without extranodal spread, breast cancer: with and without 
hormonal therapy, colon cancer: with and without adjuvant 
chemotherapy). Within these splits, a leave-2-out cross-
validated classification scheme was independently performed.

A multi-step classification approach

First, the clinical variables were used to predict 
which samples the gene expression data could and could 
not classify in the LOOCV. Using this prediction, the 
samples were divided into ‘easy-to-classify’ and ‘hard-to-
classify’ subsets. A new classifier was built on the gene 
expression data for the patients in the former group while 
the clinical variables were used to construct a classifier for 
patients in the latter (i.e., where the gene expression data 
were predicted to be uninformative). This approach was 
implemented at the level of individual patients wherein 
for each case the clinical variable was first used to predict 
whether the gene expression data would be informative 
and then, depending on the result (hard or easy), the 
appropriate downstream classifier was then subsequently 
applied to predict an individual’s prognosis class. This 
process is further illustrated in Figure 5. Code for running 
the multi-step classification approach can be found at 
http://www.ellispatrick.com/classifiabilitycode.
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