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ABSTRACT

Papillary thyroid microcarcinoma (PTMC) is a subtype of papillary thyroid 
carcinoma (PTC). Because its diameter is less than 10 mm, diagnosing it accurately 
is difficult with traditional methods such as image examinations and FNA (Fine 
Needle Aspiration). Investigating the metabolic changes induced by PTMC may 
enhance the understanding of its pathogenesis and provide important information 
for a new diagnosis method and treatment plan. In this study, high resolution magic 
angle spin (HRMAS) spectroscopy and 1H-nuclear magnetic resonance (1H-NMR) 
spectroscopy were used to screen metabolic changes in thyroid tissues and plasma 
from PTMC patients respectively. The results revealed reduced levels of fatty acids 
and elevated levels of several amino acids (phenylalanine, tyrosine, lactate, serine, 
cystine, lysine, glutamine/glutamate, taurine, leucine, alanine, isoleucine and 
valine) in thyroid tissues, as well as reduced levels of amino acids such as valine, 
tyrosine, proline, lysine, leucine and elevated levels of glucose, mannose, pyruvate 
and 3-hydroxybutyrate in plasma, are involved in the metabolic alterations in 
PTMC. In addition, a receiver operating characteristic (ROC) curve model for PTMC 
prediction was able to classify cases with good sensitivity and specificity using 9 
significant changed metabolites in plasma. This work illustrates that the NMR-based 
metabolomics approach is capable of providing more sensitive diagnostic results and 
more systematic therapeutic information for PTMC.

INTRODUCTION

Thyroid nodules is a common clinical problem 
affecting 20-40% of the world population [1]. Most 
thyroid nodules are benign, and only 5%-10% are 
diagnosed as malignant [2]. A common endocrine tumor 
in head and neck area, thyroid cancer can be classified 
into four classes: papillary thyroid cancer (PTC), follicular 
thyroid cancer (FTC), medullary thyroid cancer (MTC), 
and anaplastic thyroid cancer (ATC) [3]. PTC, the most 
common and treatable class, accounts for 80% of the 
total thyroid cancer cases. For early stage PTC, 10-year 
survival rates can be as high as 90%, whereas for later 
stage PTC, 10-year survival rates are significantly lower 

[2-5]. Therefore, early diagnosis is crucial for better 
prognosis in PTC patients.

Fine Needle Aspiration (FNA) is the most 
common diagnostic method for thyroid cancer, and it 
can greatly assist doctors in distinguishing malignant 
tumors from benign ones. In most cases, FNA results are 
used to determine whether the patient will go through 
conservative treatment or surgical resection [5, 6]. FNA 
cannot distinguish follicular thyroid cancer from follicular 
adenomas, and 10-30 % of surgeries are determined to 
be unnecessary given the post-operational histological 
diagnosis [6-10]. FNA accuracy can also be affected by 
other factors, such as the size of the nodule and experience 
of the physician, which can significantly increase false 
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negative rates, especially in patients with PTMC. Recent 
studies utilized several bio-molecular techniques to reduce 
false negative rates during the diagnosis. By incorporating 
genomic or proteomic markers such as BRAF [11-13], 
galectin-3 [14], E-cadherin, and CD44v6, accuracy can be 
effectively improved.

As part of a system biology approach, metabolomics 
is aimed at providing a comprehensive profile of all 
the metabolites present in a biological sample. Like 
other “Omics”, it has been applied in a broad range of 
applications, such as agriculture, environment monitoring, 
and medicine [15-17]. In recent years, metabolomics 
has been successfully applied in disease diagnosis [18]. 
In cancer research, Z. Huang et al. have used liquid 
chromatography-mass spectrometry based metabolomics 
in the early diagnosis of bladder and kidney cancer using 
urine as the sample [19]. Duartel et al. have utilized NMR 
based metabolomics techniques to discover biomarkers for 
lung cancer in urine [20].

However, little NMR based metabolomics research 
in thyroid cancer has been reported in last decade. Notably, 
Caldarelli’s team used an HRMAS-NMR method to build 
a diagnostic model to discriminate malignant tumors from 
the benign ones [21, 22]. The resulting model has better 
sensitivity and specificity compared to the gold-standard 
FNA method. Another laboratory utilized 1H-NMR 
methods and focused on the metabolome of tumor tissue 
extracts [23]. Their model can also clearly distinguish 
normal tissue from benign nodules in FTC and PTC. 

These studies all focus on finding biomarkers in tumor 
tissues, and sample types such as plasma or urine has not 
yet been used for metabolomics research in PTMC.

The aim of the present study was to screen various 
metabolic changes and to discover significant changes 
in certain metabolites in thyroid tissue and plasma from 
PTMC patients by HRMAS and 1H NMR spectroscopy 
methods to create a diagnostic method and to predict 
clinical outcomes.

RESULTS

Histopathological evaluation of papillary 
microcarcinoma thyroid

Other than papillary thyroid microcarcinoma, 
2 cases of follicular carcinoma, 1 case of anaplastic 
carcinoma, and 6 cases of nodular goiter were also 
diagnosed in the 35 patients. Representative HE stained 
sections of thyroid from the patients are shown (Figure 1). 
Normal thyroid tissue showed clear lobules with follicles 
lined by flattened epithelium (Figure 1A). The nontoxic 
diffuse thyroid goiter showed colloid-rich follicles lined 
by flattened inactive epithelium, areas of follicular 
epithelial hypertrophy, and lymphocyte infiltration (Figure 
1B). Papillary carcinoma showed a typically complex 
papillary architecture with branching, which are covered 
by epithelium with disturbed polarity and eosinophilic 

Figure 1: Representative HE-stained sections of thyroid; ×200 A., diffuse thyroid nontoxic goiter×200 B., and papillary 
carcinoma×200 C., ×400 (C-a), ×800 (C-b).
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cytoplasm (Figure 1C). At the high power, the tumor 
presented typical overlapping, grooved (Figure 1Ca), 
ground glass nuclei with pseudoinclusion bodies and 
psammoma bodies (Figure 1Cb).

HRMAS NMR based metabolomics of thyroid 
tissue between the PTMC group and the healthy 
group

By using the sectional integration method, 
the NMR spectral segments were all used for 
multivariable analysis. PLS-DA was used to explore 
the metabolic profiles of PTMC thyroid tissue and 
healthy thyroid tissue. Based on the 1H NMR spectra, 

clear discrimination was shown between them (Figure 
2A). The parameters evaluating the PLS-DA model’s 
validity, included an R2 of 0.84, a Q2 of 0.76 and p 
values <0.001, demonstrating that the PLS-DA models 
were robust and credible (Supplementary Figure S1). 
The PLS-DA loading plot suggested that the separation 
could be attributed to metabolites that have higher VIP 
value (VIP >1) and correlation value (|r| >0.4) (Figures 
2, 3), including phenylalanine, tyrosine, serine, cystine, 
lysine, glutamine/glutamate, taurine, leucine, alanine, 
isoleucine, valine, fatty acids and lactate, compared 
with healthy group, saturated and unsaturated fatty acids 
with lower concentration and the others with higher 
concentration (Figure 3).

Figure 2: Multivariate data analysis of thyroid tissue metabolomics between PTMC and healthy groups. A. OPLS-DA 
score plot, R2=0.84, Q2=0.76; B. Loadings plot; C. VIP scores. 1. PTMC groups; 2. Healthy groups
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1H-NMR based metabolomics of plasma between 
PTMC group and healthy group

By using a targeted profiling method, 49 metabolites 
were identified and quantified (Supplementary Figure S2, 
Supplementary Table S1). All metabolites were used in 
the multivariable analysis. Clear discriminations of PTMC 
and healthy groups were observed in the PLS-DA score 
plots (Figure 4A). Two latent variables had performance 
values of R2 = 0.85, Q2 = 0.81. Additional permutation 
tests based on 1000 iterations were used to obtain p 
values of p <0.001 (Supplementary Figure S3). These 
validation plots assured the validity and robustness of the 
PLS-DA models. The PLS-DA loading plot visualized the 
distribution of 49 metabolites, and only those with a VIP 
of >1.0 was considered to be significant (Figure 4B, 4C). 
Accordingly, nine metabolites in plasma were considered, 
including glucose, mannose, 3-hydroxybutyrate, valine, 
tyrosine, proline, lysine, leucine, and pyruvate. Compared 
with the healthy group, the PTMC group had higher levels 
of glucose, mannose, and 3-hydroxybutyrate (p < 0.01; p < 
0.001). Pyruvate level were higher in PTMC samples with 
no significant difference (p > 0.05), however, amino acids 
such as valine, tyrosine, proline, lysine, and leucine were 
all in significantly lower quantities in the PTMC samples 
(p < 0.01; p < 0.001) (Figure 5).

An ROC Curve analysis was used to evaluate the 
quality of this diagnostic model. A multivariable ROC 
curve was generated using the nine significant changed 
metabolites from plasma, which were glucose, mannose, 
3-hydroxybutyrate, valine, tyrosine, proline, lysine, 
leucine, and pyruvate, and was built based on the PLS-

DA model. The area under curve (AUC) was 0.992 with a 
Confidence Interval (CI) from 0.944 to 1 (Figure 6).

DISCUSSION

In this metabolomics study of thyroid tissues, as 
compared with the healthy group, the PTMC group had 
lower levels of saturated and unsaturated fatty acids, and 
higher levels of phenylalanine, tyrosine, lactate, serine, 
cystine, lysine, glutamine/glutamate, taurine, leucine, 
alanine, isoleucine, and valine. These results were 
consistent with a previous report by Torregrossa et al [21]. 
Lower concentrations of fatty acids could be caused by 
an increase in metabolic rate and enhanced membrane 
synthesis in the cancer tissue [21]. Higher lactate levels in 
cancer tissue could be caused by activation of glycolysis.

In this metabolomics study of plasma, as compared 
with healthy group, the PTMC group had increased 
glucose, mannose, and pyruvate levels, and an increase 
in concentration of these compounds might be associated 
with upregulated glycolysis and enhanced amino acid 
catabolism [24]. As described above, amino acids undergo 
glucoeogenic and ketogenic pathways that could also 
contribute to blood glucose. The significant increase in 
3-hydroxybutyrate, a precursor for fatty acid synthesis, 
in PTMC samples indicates that a higher rate of lipid 
synthesis might arise from altered lypolysis linked to the 
high-energy demands of these cells. These observations 
are also consistent with findings in other cancer research 
[24]. Amino acids such as valine, tyrosine, proline, lysine, 
and leucine were all significantly decreased in PTMC 
samples, which could have been due to increased protein 

Figure 3: Coefficient-coded loading plots for the models discriminating between PTMC group and healthy groups. 
Peaks in the positive direction indicate metabolites that are more abundant in the PTMC groups than healthy group (↑PTMC); Peaks in the 
negative indicate metabolites that are more abundant in the healthy group than PTMC group (↓Healthy).
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synthesis in cancer patients. A decreased level of valine 
and leucine, which are branched-chain amino acids that 
can be converted into acetyl coenzyme A (Acyl-CoA) 
derivatives, in the plasma of PTMC patients indicated 
high rates of catabolism. The catabolism of valine 
and leucine leads to reduced coenzyme nicotinamide 
adenine dinucleotide levels and reduced flavin adenine 
dinucleotide levels, which can be utilized for adenosine 
triphosphate (ATP) generation, further suggesting that 
the decrease may be due to the strong demand of ATP 
by tumor cells. A reduction in proline and lysine levels 
is also observed, which might be a resulted by high rates 
of catabolism, and leading to an upregulated production 
of glutamate. Moreover, the concentration of tyrosine is 
found to significantly decreased in the plasma of PTMC 

samples, as tyrosine is equally important for protein 
biosynthesis as well as an intermediate in the biosynthesis 
of the catecholamines (dopamine, norepinephrine, and 
epinephrine). The changed metabolic status may be linked 
to altered metabolic pathways.

In addition, a ROC curve model for the prediction 
of PTMC using nine significant changed metabolites from 
plasma was able to classify cases with good sensitivity 
and specificity.

Taken together, metabolic reprogramming in PTMC 
is reflected by the highlighted metabolic markers. One 
of the emerging hallmarks that distinguish cancer from 
normal tissue is its metabolic reprogramming [24, 25]. 
The adjustments for energy metabolism and biosynthesis 
provide metabolites and cofactors required for cell growth 

Figure 4: Multivariate data analysis of plasma metabolomics between PTMC and healthy groups. A. PLS-DA score plot; 
R2 = 0.85, Q2 = 0.81 B. Loadings plot; C. VIP scores. 1. PTMC groups; 2. Healthy groups.
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and division [26]. The altered metabolic schemes clearly 
indicate an alternation between PTMC patients and 
healthy peoples not only at the tissue sample level, but 
also at the plasma sample level.

CONCLUSION

In this study, we provided a novel metabolomics 
research on papillary thyroid microcarcinoma. Our 
findings highlight several metabolic markers associated 
with a significant change in the PTMC tissues.

Moreover, we demonstrated that plasma, a more 
systematic and accessible sample type, can also be used 
to construct a predictive model with high sensitivity and 
specificity for papillary thyroid microcarcinoma. This 
could be a great alternative tool for PTMC diagnosis. 
These results are promising as a method to improve the 
diagnosis, prognosis and management of patients.

The preliminary model is based on limited number 
of cases; therefore, larger cohorts should be studied 
to further validate these results. It would be insightful 
to validate connections between systematic and tissue 

Figure 5: Box plots showing representative metabolite changes between PTMC and healthy groups. **p < 0.01;***p < 
0.001.
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specific metabolomics changes, and increase the number 
of sample cases in the future. It would be also interesting 
to examine other accessible samples, such as urine, and 
create a multivariable diagnosis model using metabolic 
biomarkers in this type of sample.

MATERIALS AND METHODS

Human patients selection and specimen 
collection

This prospective study was approved by the 
institutional ethical review committee of Qilu Hospital, 
Shandong Province, China. All the specimens were 
obtained in Qilu Hospital. All participants were provided 
written informed consent for the use of their thyroid tissue 
and blood samples for research purposes. In December 
2014, 42 consecutive patients (36 females and 6 males, 
45.1± 8.5 yr) underwent total thyroidectomy or lobectomy 
in the department of general surgery for a single thyroid 
nodule less than 10 mm, and 20 volunteers (17 females and 
3 males, 30±3.4 yr) were involved in this study. Thyroid 
nodules in 35 patients were preoperatively diagnosed as 
or suspected to be malignant by FNA according to the 
Bethesda classification. The FNA failed or was rejected in 
the remaining 7 patients, so the preoperative diagnosis was 
made based on image analysis. Participants who suffered 
from diabetes, hyperlipemia, hypertension, anaphylactic 
diseases or other metabolic diseases, or had a history 
of previous thyroid surgery or hormone treatment were 
excluded from the study, which included 7 patients and 3 
volunteers. (Figure 7)

Samples of nodule tissue and nearby tissue 
(control specimens) were collected successfully from 

29 patients during the surgical procedures, whereas in 
the remaining 6 patients, the size of the nodule was too 
small to ensure that sufficient tissue could be obtained 
after sample collection for subsequent histopathological 
examination. The tissue samples were frozen in liquid 
nitrogen immediately after harvest and stored at -80°C 
until HRMAS-NMR analysis.

Plasma samples were collected preoperatively from 
35 patients and 17 volunteers prior to the morning meal 
with over 8 hours fasting. No intravenous or intramuscular 
injections were performed in the past three days. Samples 
were collected by a registered medical technician using a 
plasma-collecting tube with heparin as the anticoagulant in 
Qilu Hospital of Shandong University. Samples were then 
centrifuged at 3000 rpm for 5 min. Plasma was collected 
in a sterilized 1.5 mL centrifuge tube. The plasma samples 
were flash frozen in liquid nitrogen and stored at -80°C 
until NMR analysis.

Histopathological examination

The formalin-fixed thyroid tissues were embedded 
in paraffin and then cut into 4-μ m sections. Thyroid 
sections were stained using hematoxylin and eosin (HE) 
or periodic acid-Schiff, and the slides were evaluated 
under light microscopy in whole thyroid sections by three 
pathologists specializing in thyroid disorders (mean:6.1 
years, 4~15 years of experience).

1H-HRMAS NMR experiments of tissue samples

20 mg frozen thyroid tissue was weighed, placed 
into a centrifuge tube, and then quickly rinsed in 0.9% 
NaCl solution (99.9% deuterated water). Samples 

Figure 6: A. Receiver operating characteristic curve showing PLS-DA model ability to predict thyroid tumor 
malignancy; B. Predicted class plot showing the discrimination between thyroid lesions and their healthy counterpart tissues.
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were placed in a 4 mm ZrO2 HRMAS rotor with 5 
uL D2O added to it. All HRMAS experiments were 
carried out in a Bruker 800 MHz Avance III NMR 
spectrometer equipped with a 4mm 1H/13C/31P HR-
MAS probe. Samples were spun at a rate of 8 kHz at 
283 ºK. 1H-HRMAS spectra were acquired by using a 
Carr Purcell Meiboom Gill (CPMG) NMR spin echo 
sequence to suppress the effect of macromolecules and 
lipids followed by a water pre-saturation pulse during 
relaxation time. For each sample, 64 transients were 
acquired with a spectral width of 12000 Hz and 32000 
data points.

1H-NMR spectroscopy of plasma samples

Plasma was taken out from the -80°C freezer and 
thawed at 4°C. Then, 500 μL of plasma as added to a 3 
KDa ultra filtration filter (Millipore, USA). The filter 
unit was centrifuged at 13000 rpm for 30 min at 4°C. 
Then, 450 μL filtrate was collected and mixed with 50 μL 
Anachro DSS Standard Solution (4.0260M DSS quantified 
in 99.6% D2O, Anachro Technologies Inc., Calgary, 
Canada). Solutions were vortexed for 30 s followed by 2 
min centrifugation at 13000 rpm. 480 μL of the prepared 
sample was transferred into a 5 mm NMR tube (Norell 
Inc., Marion, USA). All plasma samples were run on a 
Bruker Avance III 600 NMR spectrometer equipped with 
Cryo Probe™. A MetNOESY pulse sequence was applied 
with 100 ms mixing time and 4 seconds acquisition time. 
990 ms saturation pulse was used to suppress water signal 
during acquisition. 64 transients were collected for each 
sample.

Spectrogram processing and multivariate 
pattern recognition analysis

For NMR spectra recorded in tissue samples, 
Spectra were phased, baseline corrected, and referenced to 
Alanine’s signal at 1.47 ppm in Chenomx NMR Suite 8.1 
(Chenomx Inc., Edmonton, Canada). Spectrum binning 
was performed on all 1H HRMAS data with a bin width of 
0.04 ppm from 0.1 ppm to 10.00 ppm. In order to avoid 
interference caused by water suppression, the region from 
4.65 ppm to 5.05 ppm was excluded. The resulting data 
matrix was normalized to the total area under spectrum 
curve. Metabolite signal assignment was performed 
in Chenomx NMR Suite 8.1 using a targeted profiling 
method with an internal database. Some ambiguous 
assignments were confirmed with 1H -1H COSY spectra, 
1H -1H TOCSY spectra, and 1H-13C HSQC spectra. For 
NMR spectra recorded in plasma samples, spectra were 
phased, baseline corrected, and reference deconvoluted 
against the DSS singlet at 0 ppm using Chenomx NMR 
Suite 8.1. The targeted profiling method [27] was used to 
qualify and quantify all metabolite compounds in these 
spectra.

The normalized integral values from tissue samples 
and compound concentration data from plasma samples 
were then subjected to multivariate pattern recognition 
analysis using “PCA Methods” [28], “PLS” [29] 
package, and data visualization was performed using the 
“ggplot2” package [30] in the R programing environment. 
Principle Component Analysis (PCA) was first used to 
detect grouping trends and outliers. Partial least squares 
discriminant analysis (PLS-DA) was then performed for 

Figure 7: Flow chart of participant selection.
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class discrimination and biomarker selection. Evaluation of 
the PLS-DA models was performed using the goodness of-
fit parameter R2 (variation in class membership explained 
by the model) and the predictive ability parameter Q2 
(goodness of prediction, calculated by 7-fold internal 
cross-validation), where values of R2 and Q2 close to 1.0 
represent excellent modelling. In addition, a permutation 
test on the response (1000 random permutations) was 
also computed (P<0.001 means there is no random 
model found with better model quality, compared with 
the original one). Potential biomarkers were discovered 
according to variable importance in the project (VIP) 
value and the loading plot was generated from PLS-DA 
analysis. A Receiver Operating Characteristic (ROC) 
Curve was used to build a diagnosis model by an online 
metabolomics analysis platform, “MetaboAnalyst 3.0” 
[25] with the plasma metabolomics data.

Statistical analysis

A Welch’s t test was performed using “t.test” in R 
programing environment to determine the significance of 
each metabolite. p< 0.05 was considered to be statistically 
significant.
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