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ABSTRACT

Malignant pleural mesothelioma (MPM) is a rare asbestos related cancer, 
aggressive and unresponsive to therapies. Histological examination of pleural lesions 
is the gold standard of MPM diagnosis, although it is sometimes hard to discriminate 
the epithelioid type of MPM from benign mesothelial hyperplasia (MH).

This work aims to define a new molecular tool for the differential diagnosis of 
MPM, using the expression profile of 117 genes deregulated in this tumour.

The gene expression analysis was performed by nanoString System on tumour 
tissues from 36 epithelioid MPM and 17 MH patients, and on 14 mesothelial pleural 
samples analysed in a blind way. Data analysis included raw nanoString data 
normalization, unsupervised cluster analysis by Pearson correlation, non-parametric 
Mann Whitney U-test and molecular classification by the Uncorrelated Shrunken 
Centroid (USC) Algorithm.

The Mann-Whitney U-test found 35 genes upregulated and 31 downregulated in 
MPM. The unsupervised cluster analysis revealed two clusters, one composed only 
of MPM and one only of MH samples, thus revealing class-specific gene profiles. The 
Uncorrelated Shrunken Centroid algorithm identified two classifiers, one including 
22 genes and the other 40 genes, able to properly classify all the samples as benign 
or malignant using gene expression data; both classifiers were also able to correctly 
determine, in a blind analysis, the diagnostic categories of all the 14 unknown 
samples.

In conclusion we delineated a diagnostic tool combining molecular data (gene 
expression) and computational analysis (USC algorithm), which can be applied in the 
clinical practice for the differential diagnosis of MPM.

INTRODUCTION

Malignant pleural mesothelioma (MPM) is a highly 
aggressive and relatively rare tumour originating from 
mesothelial cells showing a diffuse pattern of growth over 
the pleural surface. MPM is an asbestos related cancer and 
its incidence in Europe is about 20 per million, with a great 
intercountry variation and an incidence peak expected 

around 2020 according to the widespread exposure to 
asbestos in environmental and occupational situations [1, 
2]. The long-term survival rate of MPM patients is poor 
and, presently, there is no satisfactory treatment for MPM 
[3–6].

MPM is an heterogeneous tumour, including 
three main histological subtypes: epithelioid (60-
80%), sarcomatoid (< 10%) and mixed (10-15%) [7]. 
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Cancerogenic mechanisms of MPM are still largely 
unknown and there are only few biomarkers available for 
diagnosis, prognosis and treatment.

The histological diagnosis of MPM is mainly based 
on the histological analysis of pleural lesions [8], but the 
morphological criteria of a lesion are not always clear and 
sometimes the analysis is challenging. One of the principal 
diagnostic issues is the separation of the epithelioid type 
of MPM from reactive mesothelial hyperplasia (MH) [9]. 
MH may be extremely florid mimicking mesothelioma 
in the context of a wide variety of diseases, such as 
infections, collagen vascular disease, pulmonary infarction 
and pneumothorax. The major criteria for distinguishing 
malignant mesothelioma from reactive mesothelial 
proliferations are based on the evaluation of cellularity, 
papillae, growth pattern, zonation, vascularity and stromal 
invasion, with the latter considered the most reliable 
indicator of malignancy [7, 10, 11]. In several cases the 
application of the previously reported criteria may be 
difficult according to the size of the biopsy specimen, 
the sampling, the tangential cuts and the entrapment of 
mesothelial cells [11].

Nowadays the status of MPM diagnostic biomarkers 
is not completely satisfactory. The protein mesothelin has 
been described as an absolutely promising biomarker, 
because its altered levels in serum and pleural fluid 
are usually associated with MPM, however, in spite 
of its high specificity, its sensitivity is low [12, 13]. In 
addition, the deletion of CDKN2A and BAP1 are the 
most common genetic alterations in MPM [14] and for 
this reason they have been suggested as diagnostic and 
prognostic markers. The FISH analysis of CDKN2A 
and the immunohistochemistry analysis of BAP1 could 
enable the differential diagnosis of benign and malignant 
mesothelial proliferations, either alone or together [15]. 
The analyses of BAP1 and CDKN2A were shown to be 
highly specific for malignant pleural mesothelioma, both 
on tissue samples and pleural effusions, but their low 
sensitivity limits their clinical utility, as a negative result is 
not able to rule out a diagnosis of malignant mesothelioma 
[16, 17].

Moreover, in the last few years some methods 
combining supervised data mining and molecular analysis 
have been applied to classification tasks in mesothelioma. 
In 2014 Parodi et al. built a molecular classifier based on 
the concentration of three tumour markers (CEA, CYFRA 
21-1 and SMRP) in pleural fluid, by using the Logic 
Learning Machine (LLM). They used the LLM model to 
classify malignant mesothelioma, pleural metastases from 
other tumours and benign pleural diseases, reporting a 
classification accuracy of 77,5% [18]. In 2015 Tosun et 
al. developed a diagnostic model based on the nuclear 
chromatin distribution from digital images of mesothelial 
cells in effusion cytology specimens and on the k-nearest 
neighbourhood algorithm. They analysed 34 cases 
obtaining a 100% accurate prediction in the discrimination 

of malignant from benign mesothelial proliferations [19]. 
Despite the promising results of the above mentioned 
studies, a definitive diagnostic tool has yet to be identified.

Recently, different studies have revealed gene 
pathways specifically deregulated in MPM tissues with a 
crucial role in cancer development and progression [20–
25]. The majority of the deregulated genes in MPM belong 
to the following pathways: angiogenesis, cell adhesion, 
p53 signalling, integrin signalling, MAPK signalling, 
apoptosis and cell cycle regulation [26–32]. Although 
there is a clear implication of these genes in cancer, 
sensitive markers for MPM are still missing.

According to the high heterogeneity of MPM it is 
likely that it might not be sufficient to have only one or 
only a few genes for the differential diagnosis. For this 
reason, we investigated how the deregulated genes work 
together in discriminating malignant from benign pleural 
proliferations. Taking on board the latest papers about 
MPM genes we designed an nCounter custom codeset, 
consisting of 117 genes (Table 1), in order to perform a 
gene expression profiling of epithelioid MPM and MH 
samples, using nanoString technologies. Furthermore, 
we used the uncorrelated shrunken centroid (USC) 
classification algorithm to delineate molecular classifiers, 
which could be directly applied in the differential 
diagnosis of MPM and MH.

RESULTS

nanoString data normalization

Gene expression profiling using nanoString 
technology was performed on 36 epithelioid MPM 
samples and 17 MH samples. The raw data normalization 
was executed, as described in materials and methods 
section, in 2 steps, and 11 MPM samples and 2 MH 
samples were excluded from further statistical analysis 
on the basis of the biological normalization factor, thus 
indicating an mRNA input of poor quality. The samples 
which failed the biological normalization were obtained 
from archive materials older than two years.

Hierarchical unsupervised clustering analysis 
and Mann Whitney U-test

In order to model gene expression profiles of benign 
and malignant pleural lesions, an unsupervised hierarchical 
clustering analysis (HCA) of Pearson correlation similarity 
matrix was performed on genes and samples, 25 MPM and 
15 MH. Figure 1 shows the unsupervised cluster from the 
117 genes panel: the gene expression profile of epithelioid 
MPM differed from the one of MH, indeed all the 
malignant samples are grouped in a cluster (Correlation: 
0,15) and all the benign in another one (Correlation: 0,28).

When comparing gene expression with status 
condition: a) 25 genes resulted upregulated and 18 resulted 
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Table 1: nCounter custom codeset

nCounter custom codeset

FUNCTIONAL ANNOTATION GENES

ACETYLATION ACSL1, ASS1, DNMT1, EEF2, EIF4G1, GNAQ, SMARCA4, 
TNPO2, TOP2A, XPOT

CELL ADHESION

BMP1, CD44, CDH1, CDH11, CLDN15, COL16A1, 
CTNNA1, CXADR, EGFR, FN1, ITGA3, ITGA4, ITGA5, 
ITGA7, ITGAM, ITGB4, LAMA3, LAMC1, LGALS3BP, 

MSLN, NME2, PECAM1, SELE, THBS2, VWF

CELL CYCLE

AURKA, BIRC5, BUB1, CCNB1, CCNB2, CCNO, CDK1, 
CDK4, CDK7, CDKN2A, CDKN2B, CENPF, CHEK1, 

EGFR, FANCI, MAD2L1, MCM2, MCM4, MK167, NDC80, 
PCNA, PLK1, PLK2, RAD21, TACC1, TUBB2B

DNA MODIFICATOR DNMT1, DNMT3

ECM RECEPTOR INTERACTION CD44, COL1A1, COL4A2, FN1, ITGA3, ITGA4, ITGA5, 
ITGA7, ITGB4, LAMA3, LAMC1, SOD1, THBS2, VWF

EXTRACELLULAR MATRIX

ADAMTS8, CD44, COL16A1, COL1A1, COL4A2, FN1, 
HEG1, LAMA3, LAMC1, LGALS3, LGALS3BP, MMP1, 

MMP10, MMP12, MMP14, MMP3, MMP7, MMP9, SFRP1, 
SOD1, TIMP3, VEGFA, VWF

FOCAL ADHESION
CAV1, COL1A1, COL4A2, EGFR, FN1, ITGA3, ITGA4, 

ITGA5, ITGA7, ITGB4, LAMA3, LAMC1, PAK4, PDGFRB, 
PIK3CA, THBS2, VEGFA, VWF

INTRACELLULAR NON MEMBRANE BOUNDED 
ORGANELLE

DNMT3A, DSP, JUNB, MICAL2, MYH11, SMARCA4, 
TERT, TOP2A, TPPP

METAL ION BINDING GALNT7, PKM2, PTGIS, SDHB

NUCLEOTIDE BINDING ACSL1, ADCY4, ASS1, EEF2, EGR3, EMX2, GNAQ, JUNB, 
MYH11, PPARA, SMARCA4, TERT, TOP2A, UBE2T

NUCLEUS DNMT3A, DNTM1, EGR3, EMX2, JUNB, PPARA, 
SMARCA4, TERT, TNPO2, TOP2A, TPPP, XPOT

PATHWAYS IN CANCER

BIRC5, CDH1, CDKN2A, CDKN2B, COL4A2, CTNNA1, 
EGFR, FGF2, FN1, GLI1, GLI2, ITGA3, LAMA3, LAMP1, 

MMP1, MMP9, PDGFRB, PIK3CA, PTGS2, TGFBR2, 
VEGFA

REGULATION OF CELL PROLIFERATION

ADAMTS8, BAP1, CAV1, CD274, CDK4, CDKN2A, 
CDKN2B, CHEK1, CXADR, EGFR, ESR2, FGF2, GLI1, 

GLI2, IFITM1, JAG1, KRT5, LAMC1, MAGED1, MMP12, 
MMP7, NF2, NME2, NOTCH1, PDGFRB, PTGS2, 

SERPINE1, TGFR2, VEGFA

SIGNALING

ADAMTS8, BMP1, CD274, CD44, CDH1, CDH11, CFB, 
COL16A1, COL1A1, COL4A2, CXADR, EGFR, FN1, 

HEG1, ITGA3, ITGA4, ITGA5, ITGA7, ITGAM, ITGB4, 
JAG1, LAMA3, LAMC1, LGALS3BP, MMP1, MMP10, 

MMP14, MMP3, MMP7, MMP9, MSLN, NMU, NOTCH1, 
PAPPA, PDCD1, PDGFRB, PECAM1, SDC1, SELE, 
SERPINE1, SULF1, THBS2, TIMP3, VEGFA, VWF

REFERENCE GENES CLTC, GAPDH, GUSB, HPRT1, PGK1, TUBB

Genes included in the nanoString custom panel. Functional annotation of the selected genes was obtained from the Database 
for Annotation, Visualization and Integrated Discovery (DAVID-david.ncifcrf.gov).
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downregulated in MPM, using a p-value lower than 0.005; 
while, b) 35 genes resulted upregulated and 31 resulted 
downregulated in MPM using a p-value lower than 0.05. 
Fifty-one genes did not result statistically deregulated in 
MPM (Table 2).

Considering that the average age of MPM and 
MH patients was different, a Spearman’s correlation test 

was executed to evaluate the influence of age on gene 
expression either considering all the samples together and 
MH and MPM groups separately. None of the analysed 
genes showed a strong and statistically significant 
correlation with age.

An unsupervised cluster analysis was also 
performed after we filtered for the differentially expressed 

Figure 1: Unsupervised cluster analysis of all the analysed genes and samples. Each column represents a single sample and 
each row a single gene. IP: reactive mesothelial hyperplasia (MH); ME: Epithelioid mesothelioma (MPM); .RCC: file extension. Red 
indicates a high level of expression relative to the mean expression, and green indicates a low level of expression relative to the mean 
expression.



Oncotarget2762www.impactjournals.com/oncotarget

Table 2: Differentially expressed genes between MH and MPM

UP REGULATED GENES IN MPM DOWN REGULATED GENES IN MPM
GENES Z-VALUE P-VALUE GENES Z-VALUE P-VALUE
ITGB4 -4.70564 0.000003 LGALS3 4.79643 0.000002
ITGA3 -4.67538 0.000003 PDGFRB 4.61486 0.000004
MCM4 -4.52408 0.000006 ITGAM 4.37277 0.000012
KRT5 -4.46355 0.000008 PECAM1 4.25172 0.000021
NMU -4.31461 0.000016 CAV1 4.16094 0.000032
FANCI -4.22146 0.000024 MMP9 3.97959 0.000069
CCNB1 -4.07016 0.000047 NF2 3.82806 0.000129
DSP -3.70702 0.000210 PAPPA 3.70702 0.000210
RAD21 -3.64650 0.000266 ITGA5 3.67676 0.000236
CENPF -3.58597 0.000336 TACC1 3.67676 0.000236
TOP2A -3.55571 0.000377 MYH11 3.49538 0.000473
MCM2 -3.52545 0.000423 CD44 3.40440 0.000663
PAK4 -3.52545 0.000423 PPARA 3.28336 0.001026
EGFR -3.40440 0.000663 ACSL1 3.13205 0.001736
MSLN -3.40440 0.000663 TGFBR2 3.10179 0.001924
CCNB2 -3.34388 0.000826 BAP1 3.07153 0.002130
CLDN15 -3.28336 0.001026 VWF 3.04143 0.002355
CCNO -3.25551 0.001132 MMP1 3.02832 0.002459
BIRC5 -3.25328 0.001141 FN1 2.70839 0.006761
CDK7 -3.16231 0.001565 ITGA7 2.70839 0.006761
CDH1 -3.13222 0.001735 ADCY4 2.67813 0.007404
NME2 -3.07153 0.002130 MMP7 2.62642 0.008629
LGALS3BP -2.98075 0.002876 COL1A1 2.58735 0.009672
PKM -2.92022 0.003498 NOTCH1 2.52682 0.011510
MKI67 -2.85970 0.004241 TPPP 2.49930 0.012444
BUB1 -2.79918 0.005124 JAG1 2.37552 0.017525
PLK1 -2.58735 0.009672 DNMT1 2.13343 0.032890
CDK1 -2.55709 0.010556 EGR3 2.13343 0.032890
CXADR -2.52682 0.011510 EMX2 2.04893 0.040470
AURKA -2.49656 0.012541 Gli1 2.03705 0.041646
UBE2T -2.43604 0.014850 SOD1 2.01238 0.044181
Gli2 -2.40578 0.016139 PTGS2 1.89134 0.058580
LAMA3 -2.31500 0.020614 ESR2 1.81249 0.069911
CHEK1 -2.13343 0.032890 SELE 1.78203 0.074745
NDC80 -2.13343 0.032890 JUNB 1.52820 0.126464
MICAL2 -1.95186 0.050956 COL16A1 1.37689 0.168546
MMP3 -1.93918 0.052480 PTGIS 1.31637 0.188051
SMARCA4 -1.92160 0.054657 SDHB 1.31637 0.188051
ASS1 -1.89134 0.058580 EEF2 1.28611 0.198406
GALNT7 -1.83081 0.067129 COL4A2 1.16506 0.243994
MAGED1 -1.83081 0.067129 ITGA4 1.16506 0.243994
PCNA -1.83081 0.067129 PIK3CA 1.13480 0.256459
EIF4G1 -1.77029 0.076680 MMP12 1.04605 0.295541

(Continued )
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genes (p-value < 0.005), obtaining a more evident and 
clear difference among the two groups (MH correlation: 
0.56; MPM correlation: 0.29), as observed in Figure 2.

Moreover, to assess the reproducibility of 
nanoString System, a pool of MPM samples and a pool 
of MH samples were analysed in each experiment. Their 
counts were normalized and evaluated by an unsupervised 
cluster analysis using Pearson Correlation showing no 
difference among the same samples analysed in the 
different experiments (Figure 3).

USC results

In the training phase a dataset composed of the 
normalized nanoString counts of all 117 genes was used 
and as training samples the entire cohort of 25 MPM and 
15 MH was considered.

During the training step the system selected, on the 
basis of gene expression data, the best predictive genes 
specific for malignant and benign classes and gave two 
classification models as an output, namely Classifier 1 
(22 genes) and Classifier 2 (40 genes). In the training set 
these classifiers were both able to predict the diagnostic 
category of a tissue with a classification error equal to 0 
(Table 3). The USC parameters of the identified classifiers 
can be seen in Table 3.

In the test phase the molecular profiles of the 14 
pleural mesothelial lesions analysed in a blind way were 
given to the USC algorithm as an input, which classified 
samples as epithelioid MPM or MH using Classifier 1 and 
separately Classifier 2.

Both the classifiers gave the same results: 5 samples 
resulted MH and 9 MPM. At the end of the test phase we 
compared USC results with histological diagnoses and all 
samples had been correctly classified as MH or MPM by 
our molecular models (Table 4).

DISCUSSION

The differential diagnosis of epithelioid MPM and 
MH has always been a discussed topic. Nowadays the 
diagnosis of MPM is mainly based on the histological 
analysis of pleural lesions and the most robust criterion 
for malignancy is the presence of stromal invasion [11]. 
The morphological examination of a lesion does not 
always lead to a conclusive diagnosis, particularly in cases 
of biopsies of mesothelial proliferations confined to the 
pleural surface and in case of cytological specimens [9].

In this study we identified a new molecular tool 
which combines molecular data and computational 
analysis to classify a mesothelial proliferation as benign 
(reactive hyperplasia) or as malignant (epithelioid MPM).

The approach that we have proposed includes the 
expression analysis of 117 genes deregulated in MPM, 
using the high sensitive and innovative nanoString system, 
and a computational elaboration of data by the USC 
classification algorithm.

We used nanoString System rather than the other 
available techniques because it allows direct counting of 
mRNA molecules, without any retro-transcription steps, 
so the potential errors associated with multiple qPCR 
assays are avoided. Moreover, this method requires a total 

UP REGULATED GENES IN MPM DOWN REGULATED GENES IN MPM
CDH11 -1.67951 0.093054 SDC1 1.01376 0.310700
MAD2L1 -1.37689 0.168546 BMP1 0.98349 0.325365
HEG1 -1.01376 0.310700 TUBB2B 0.89276 0.371987
ADAMTS8 -0.91104 0.362276 TERT 0.82029 0.412050
PLK2 -0.83219 0.405304 CD274 0.77167 0.440313
VEGFA -0.71114 0.476997 CDK4 0.77167 0.440313
CTNNA1 -0.62036 0.535022 MMP14 0.77167 0.440313
CFB -0.59010 0.555126 GNAQ 0.74140 0.458449
TIMP3 -0.52957 0.596408 THBS2 0.71114 0.476997
TNPO2 -0.43879 0.660814 PDCD1 0.68092 0.495924
IFITM1 -0.40853 0.682886 CDKN2B 0.65062 0.515293
MMP10 -0.28336 0.776901 SERPINE1 0.46905 0.639033
DNMT3A -0.25722 0.797008 SFRP1 0.37827 0.705232
XPOT -0.25722 0.797008 FGF2 0.28748 0.773743
SULF1 -0.13618 0.891682 LAMC1 0.25722 0.797008
   CDKN2A 0.09096 0.927526

Up and downregulated genes in MPM, reported according to the results of Mann-Whitney U-test.
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amount of RNA as low as 150 ng, which can be easily 
obtained from formalin-fixed and paraffin-embedded 
(FFPE) samples. Indeed, a sufficient yield of RNA was 
obtained from all the samples analysed in this study. 
Furthermore, the 13 cases having a poor quality RNA 
were obtained from archive materials older than 2 years 
and none of the more recent samples failed the analysis, so 
this system is adequate for the analysis of FFPE specimens 
from pleural biopsies.

Firstly, the results of the unsupervised cluster 
analysis of all genes and samples revealed the ability of 
the whole panel to correctly group malignant and benign 
pleural tissues.

Then, in order to make our approach directly reliable 
for the clinical application we used the USC classification 
algorithm to objectively predict, on the basis of gene 
expression data, the diagnostic category of a sample. The 
decision to use the USC algorithm was due to the fact that 
it removes highly correlated genes and it does not require 
a priori assumptions, so normalized nanoString data from 

all of the genes could be directly used for computational 
classification, without any further manipulation.

The USC identified two classifiers, one which had 
22 genes and the other 40 genes out of the initial 117, and 
both of these were able to classify samples as benign or as 
malignant without any errors. Some of the USC predictive 
genes, included in the classifiers, resulted also statistically 
deregulated in MPM in comparison to MH. The fact 
that not all the statistically deregulated genes have been 
included in the classifiers is probably due to the removal 
of highly correlated genes by the algorithm.

We could not calculate positive and negative 
predictive values of the identified classification models 
because of the small number of analysed samples. 
However, we achieved a 100% predictive accuracy 
from 40 FFPE samples, whose histological diagnosis 
was known before the test, and from 14 FFPE samples 
analysed in a blind test, whose histological classification 
was revealed only at the end of the computational analysis.

Figure 2: Unsupervised cluster analysis of statistically deregulated genes and all samples. Each column represents a single 
sample and each row a single gene. IP: reactive mesothelial hyperplasia (MH); ME: Epithelioid mesothelioma (MPM); .RCC: file extension. 
Red indicates a high level of expression relative to the mean expression, and green indicates a low level of expression relative to the mean 
expression.
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Figure 3: Unsupervised cluster analysis of all the analysed genes and the control pools. Each column represents a single 
sample and each row a single gene. PIP: pool of reactive mesothelial hyperplasia samples; PME: pool of epithelioid mesothelioma samples; 
.RCC: file extension. Red indicates a high level of expression relative to the mean expression, and green indicates a low level of expression 
relative to the mean expression.
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These results lead us to believe that the analysis of 
a larger series of samples may confirm the high specificity 
and sensitivity of these classifiers and might determine 
which one is better.

The USC algorithm applied to gene expression data 
could really improve the current diagnostic methods. Our 
analysis system has been shown to be highly reproducible, 
reliable and potentially appropriate for clinical purpose. 

Table 3: USC training results

 MOLECULAR CLASSIFIERS

 MODEL 1 MODEL 2

#Mistakes 0 0

Delta 1 0.5

Rho 0.7 0.7

Average Genes 18 34

Predictive Genes

ASS1, BAP1, CAV1, CCNB1, 
CD44, CDH1, EGR3, FN1, ITGA3, 
KRT5, LAMA3, LGALS3, MICAL2, 

MMP9, MYH11, NME2, NMU, 
PAPPA, PECAM1, PKM, RAD21, 

TGFBR2

ASS1, BAP1, CAV1, CCNB1, CD44, CDH1, CDH11, 
COL4A2, CTNNA1, CXADR, EEF2, EGR3, EIF4G1, FANCI, 

FN1, GALNT7, GLI2, HEG1, IFITM1, ITGA3, KRT5, 
LAMA3, LGALS3, MAGED1, MICAL2, MMP9, MYH11, 

NME2, NMU, PAK4, PAPPA, PECAM1, PKM, PTGS2, 
RAD21, SDC1, SMARCA4, TGFBR2, TOP2A, VEGFA

USC classifiers and parameters: #Mistakes: number of classification mistakes in the training phase; Delta: shrunken threshold; 
Rho: correlation threshold; Average genes: average number of genes, which are selected among the predictive ones, used for 
classification; Predictive genes: genes included in each classifier, selected among the 117 gave as input

Table 4: USC test results

 CLASSIFIER 1 CLASSIFIER 2

SAMPLE MOLECULAR 
CLASS

DISCRIMINANT 
SCORE

MOLECULAR 
CLASS

DISCRIMINANT 
SCORE

HISTOLOGICAL CLASS

1 MPM 28.07 MPM 41.57 MPM

2 MPM 93.44 MPM 115.4 MPM

3 MH 62.97 MH 160.5 MH

4 MPM 7.54 MPM 11.83 MPM

5 MH 8.6 MH 12.47 MH

6 MPM 12 MPM 16.75 MPM

7 MPM 29.05 MPM 37.11 MPM

8 MH 30.97 MH 34.39 MH

9 MH 52.15 MH 51.91 MH

10 MPM 8.37 MPM 15.91 MPM

11 MPM 11.42 MPM 14.06 MPM

12 MPM 10.12 MPM 16.3 MPM

13 MPM 10.46 MPM 15.82 MPM

14 MH 10.99 MH 13.84 MH

Molecular classification of the 14 unknown samples performed by USC classifiers 1 and 2, and their respective histological 
diagnoses.
The discriminant score indicates the similarity between the expression profile of unknown samples and the class they were 
assigned to by the algorithm. The lower is the discriminant score the more accurate is the classification.
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Indeed, from a technical point of view we assessed the 
reproducibility of nanoString by repeating the analysis of 
a pool of benign and a pool of malignant samples in each 
experiment, and we reported an extremely low inter assays 
variability.

In addition, we validated the statistical deregulation 
of 66 genes out of the selected 117, among which there 
were several well-known mesothelioma genes, such 
as MSLN, BAP1, and NF2 [13, 33, 34]. Most of the 
deregulated genes belong to signalling pathways that 
could drive the development of new targeted therapies, 
such as Gli2, which belong to the Hedgehog pathway, 
whose inhibition has been reported to suppress cell 
growth dramatically both in vitro and in vivo, so 
targeting this pathway could constitute a new effective 
treatment approach [30]. Furthermore, we confirmed 
the downregulation of ITGA7, which was reported to 
be epigenetically deregulated in MPM and suggested 
as therapeutic and prognostic marker [35], and the 
downregulation of NF2, altered in almost half of MPM 
tumours with an important prognostic impact [34].

Interestingly, according to Melaiu and collaborators 
in their meta-analysis [24], CDKN2A did not result 
statistically deregulated in MPM in comparison with MH. 
We also found a slight up regulation of ASS1, which was 
described to influence the sensitivity to chemotherapy. 
The up or down regulation of ASS1 in MPM is quite 
controversial, many scientists considered MPM an ASS1 
lacking tumour, however, others reported an upregulation 
in this tumour [36, 37].

The reported gene expression data are certainly 
useful from a biological point of view, suggesting and 
confirming new interesting biomarkers. Likewise, 
the deregulated genes might be evaluated as 
immunohistochemical markers, thus potentially allowing 
the development of immunohistochemical panels for 
mesothelioma.

However, the strength of this study consisted in 
the use of a group of genes rather than single ones for 
the differential diagnosis of MPM. The individuation of 
specific gene expression patterns of MPM could overcome 
the diagnostic issues related to its heterogeneity.

In conclusion, we defined two classifiers from a 
panel of genes, whose expression profile together with 
the USC classification algorithm constitutes an innovative 
diagnostic instrument which could be applied in the 
clinical routine of MPM. Obviously, further retrospective 
and prospective validation on a larger series of samples is 
needed, paying particular attention to selection of samples, 
since the older is the sample the lower is the RNA quality. 
Furthermore, the effectiveness of this diagnostic tool 
should be evaluated also on cytological specimens from 
pleural effusions, where the differential diagnosis of MPM 
may be difficult or even impossible [10].

In spite of the fact that this is a preliminary 
study, this research could allow a better pathological 
discrimination of epithelioid MPM and MH.

MATERIALS AND METHODS

Samples

This work was conducted retrospectively and it 
conforms to the principles of the Helsinki Declaration 
of 1975. In the first part of this study 36 patients with 
epithelioid MPM (26 males, 10 females, age ranged from 
43 to 85 years, average age of 67,05 years;) and 17 with 
MH (13 males, 4 females, age ranged from 18 to 85 years, 
average age of 48,5 years) were included, in the second 
part 14 pleural mesothelial samples, comprising 9 MPM (6 
males, 3 females, age ranged from 41 to 80 years, average 
age of 63,8 years) and 5 MH (3 males, 2 females, age 
ranged from 27 to 79 years, average age of 42,5 years) 
were analysed in a blind way. Informed consents were 
obtained from patients.

All the MPM enrolled patients consecutively 
underwent pleurectomy/decortication (P/D) at the Unit of 
Thoracic Surgery of the University of Pisa, from 2012 to 
2015. Concerning the other patients, MH was an incidental 
finding associated with pleural inflammatory effusions and 
bullous emphysemas.

All tissues were formalin-fixed and paraffin-
embedded and hematoxylin and eosin stained sections 
were prepared for microscopic examination (Leica 
DMD108, Leica Microsystems, Wetzlar, Germany) 
(Figure 4). The diagnoses of MPM and MH were 
independently reviewed by two pathologists (G. Alì and 
G. Fontanini) according to the WHO 2015 histologic and 
immunohistochemical criteria [7, 11].

Moreover, the most representative paraffin blocks 
for each sample were selected for gene expression 
analysis, and only the samples with sufficient tumour 
material (>60% tumour cells) and minimal contamination 
by benign cells (< 20 %) were included in this study. 
Clinical information, including patient gender and age, 
was collected for each patient.

In addition, a pool of MH samples and a pool of 
MPM samples were analysed in each experiment as 
technical controls.

RNA purification

For each sample four FFPE tissue sections, with a 
thickness of 5 μm, underwent standard deparaffinization 
and enrichment by manual microdissection. Total 
RNA was isolated using Qiagen RNeasy FFPE kit 
(Qiagen, Hilden, Germany) according to manufacturer’s 
instructions.

The concentration of total RNA was assessed 
using a Xpose spectrophotometer (Trinean, Gentbrugge, 
Belgium). The RNA resulted adequate for gene expression 
analysis whenever its concentration was ≥ 30 ng/μL and 
its quality was acceptable if the ratio between the value of 
absorbance (A) at 260 nm and the one at 280 nm was ≥1.9, 
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and the ratio between the value of absorbance (A) at 260 
nm and the one at 230 nm was ≥ 2.

nanoString ncounter analysis

The nCounter custom codeset consisted of 123 
reporter and capture probe pairs directed against 117 
target genes and 6 housekeeping genes for reference 
(Table 1). Moreover, the codeset included probes for 6 
spike-in positive controls (POSi) (in vitro transcribed 
RNA molecules, pre-mixed with the reporter codeset 
during manufacturing) and for 8 spike-in negative controls 
(NEGi), which were not included in the reaction mix.

The nCounter custom codeset was synthesized 
by nanoString Technologies (nanoString Technologies, 
Seattle, Washington).

The RNA was hybridized using 150 ng of total 
RNA in addition to the capture and reporter probes in 
each reaction. Hybridization was performed for 18 hours 
at 65°C in a SensoQuest thermal cycler (SensoQuest, 
Gottingen, Germany). The clean-up of samples and 
counts of digital reports were performed as described by 
the manufacturers, respectively on the prep station and 
on the digital counter nanoString systems (nanoString 
Technologies, Seattle, Washington).

nanoString data normalization

Initially, the background noise was estimated for 
each sample on the basis of the 8 negative control probes, 
and it was subtracted from the investigated gene counts in 
order to determine true counts.

Then, raw nanoString counts of each gene were 
subjected to a technical and a biological normalization, 
using the nSolver Software version 2.5 (nanoString 
Technologies, Seattle, Washington). The technical 
normalization allows a good control of the variability 
unrelated to samples, it was performed using the 6 

POSi. For each sample a positive control scaling factor 
was calculated. If the calculated positive control scaling 
factor was outside a range of 0.3-3, it indicated technical 
problems, implicating the exclusion of the sample from 
further analysis. The biological normalization, on the 
other hand, corrects for differences in RNA input among 
the assays, allowing the adjustment of gene counts on the 
basis of reference genes. For each sample a biological 
normalization factor was determined and whenever it was 
outside the range of 0.1-10.0, the sample was excluded 
from the analysis. All the normalization steps were 
performed according to the manufacturers’ instructions 
(nanoString Technologies, Seattle, Washington).

Statistical analysis

Gene expression data from the first series of 
samples (25 MPM and 15 MH) were subjected to a 2-way 
unsupervised HCA, applied independently to the samples 
and to the genes, using the nSolver Software version 2.5 
(nanoString Technologies, Seattle, Washington). The 
clustering analysis was based on the Pearson correlation 
coefficient.

The differential gene expression between benign 
and malignant conditions was determined by applying 
the non-parametric Mann–Whitney U-test with a linearity 
correction, and a Spearman’s correlation test was executed 
between age and gene expression levels, using the 
STATISTICA software version 10 (Stat Soft Inc, Tulsa, 
Oklahoma).

In order to predict the diagnostic categories of 
samples from their gene expression profiles we used the 
Uncorrelated Shrunken Centroid (USC) algorithm [38, 
39]. The USC uses a shrunken centroid algorithm, based 
on the nearest centroid approach. This algorithm is then 
improved by the analysis of the interdependence of genes 
and by the removal of the highly correlated ones. A gene 
is considered to be predictive of a class if at least one of 

Figure 4: Histological imagines of representative epithelioid malignant pleural mesothelioma (MPM) and mesothelial 
hyperplasia (MH). A. epithelioid MPM; B. MH (Hematoxilin eosin stain, magnification 10X, scale bar 100 μm).
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its class centroids significantly differs from the overall 
centroid by more than one standard deviation, and samples 
are assigned to a class considering the nearest average 
centroid pattern. The USC has two analytical phases: a 
training phase, using samples for which the diagnostic 
classes are known, and a test phase, using samples for 
which the classes are unknown, which have to be classified 
by the algorithm on the basis of gene expression levels. 
Our training set consisted of a series of known samples 
(25 MPM and 15 MH) which were perfectly representative 
of their own categories, and as test set we used all the 14 
pleural mesothelial lesions, analysed in a blind way.
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