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ABSTRACT
The Epstein–Barr virus (EBV) is associated with a variety of cancers, including 

gastric cancer, which has one of the highest mortality rates of all human cancers. 
Long non-coding RNAs (lncRNAs) have been suggested to have important causal 
roles in gastric cancer. However, the interaction between lncRNAs and EBV has 
not yet been studied. To this end, we sequenced 11,311 lncRNAs and 144,826 
protein-coding transcripts from four types of tissue: one non-EBV-infected gastric 
carcinoma (EBVnGC) and its adjacent normal tissue, and one EBV-associated gastric 
carcinoma (EBVaGC) and its adjacent normal tissue. Five lncRNAs showed  EBVaGC-
specific expression; of those, one (SNHG8) was validated using real-time PCR in an 
independent cohort with 88 paired gastric cancer and adjacent tissue samples. To 
explore the functions of SNHG8, we identified its mRNA targets on the lncRNA–mRNA 
co-expression network of the Illumina Body Map, which contains the RNA sequencing 
data of mRNAs and lncRNAs from 16 normal human tissues. SNHG8 lncRNA was found 
to affect several gastric cancer-specific pathways and target genes of EBV. Our results 
reveal the intertwined tumorigenesis mechanisms of lncRNA and EBV and identify 
SNHG8 as a highly possible candidate biomarker and drug target of gastric cancer. 

INTRODUCTION 

Gastric cancer is the fourth most common cancer 
worldwide and ranks second on the cause list of cancer 
death. [1]. It is a complex and highly heterogeneous 
disease. One type of gastric cancer is Epstein–Barr virus 
(EBV)-associated gastric carcinoma (EBVaGC), which 
constitutes almost a tenth of all gastric carcinomas [2]. 
EBV is absent in noncancerous mucosa but present in all 
cancer cells, and has a clonal nature in neoplastic cells; 
therefore, it is considered to have a causal role in gastric 
carcinoma [2, 3]. EBVaGC has been well-characterized 
molecularly and genomically [4].  However, the pathogenic 
mechanism of EBVaGC remains poorly understood. 

Long non-coding RNAs (lncRNAs) are with  
≥ 200 nt but without open reading frames (ORFs). Many 
studies have demonstrated that lncRNAs have diverse 
biological functions, such as regulating epigenetic 
modulation, transcription, and translation [5, 6], and 
that they are dysregulated in various cancers [7–10]. 
Furthermore, lncRNAs are being increasingly recognized 
as master regulators of cancer [6, 8, 11].

In gastric cancer, lncRNA dysregulation is 
associated with larger tumors, greater tumor invasion, 
more widespread metastasis, and lower survival rates 
[12, 13]. For example, expression of the lncRNA PANDAR 
(promoter of CDKN1A antisense DNA damage activated 
RNA) is greater in cancerous tissue than in adjacent 
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healthy tissue, and ectopic expression of this promoter is 
associated with various measures of cancer severity [14]. 
Another study showed that overexpression of the lncRNA 
H19 promoted proliferation, migration, invasion, and 
metastasis of gastric cancer [15]. However, there have 
been no reports investigating lncRNAs in EBVaGC. 

Deep sequencing is a high-throughput technique that 
enables rapid and comprehensive exploration of a large 
number of lncRNAs and can be used to identify sequence 
variations and discover novel lncRNAs [16, 17]. Here, 
we used deep sequencing to examine the lncRNAs and 
protein-coding transcripts in four samples: EBVaGC and 
its adjacent normal tissue, and non-EBV-infected gastric 
cancer tissue (EBVnGC) and its adjacent normal tissue. 
Five lncRNAs were specifically expressed in EBVaGC. 
Analysis of lncRNA and mRNA co-expression and 
virus–host interactions revealed that the lncRNA SNHG8 
interacts with EBV proteins and regulates several important 
target genes that affect downstream cancer pathways.

RESULTS

EBVaGC definition

EBVaGC is a lymphoepithelioma-like, diffuse-
type carcinoma with dense lymphocytic infiltration. It 
is identified by the expression of EBV-encoded small 
ribonucleic acid 1 (EBER1) in cancer cell nuclei, using 
in situ hybridization. Lymphoid stroma surrounds the 
EBER1-positive nuclei (Figure 1).

Whole genome lncRNA and mRNA expression 
profiles

Ultra-high-depth RNA sequencing data sets were 
generated from two tumor samples (EBVaGC sample with 
70.6 million pair-end reads; EBVnGC sample with 65.2 
million pair-end reads) and two matched normal samples 
(EBVaGC adjacent sample with75.5 million pair-end reads; 
EBVnGC adjacent sample with 53.5 million pair-end reads).

A Trim Galore! Cutadapt wrapper (v1.9.dev6) was 
used to trim raw sequencing reads, and low quality bases 
(< Q20) were removed using Trimmomatic v0.32 [18]. 
FastQC v0.11.3 was used to evaluate the qualities of the 
raw sequencing data and the trimmed data by analyzing 
base quality, GC content and sequence length distribution. 
TopHat2 v2.1.1 [19] was used to align the trimmed reads 
to the human genome (GRCh37) with reference annotation 
from Gencode v19. More than 90% of reads were mapped 
and over 85% of reads were uniquely mapped. rRNA 
genes were masked, and Cufflinks v.2.2.1 [20] was 
used to generate transcriptome assemblies. Transcript-
level expression was measured as FPKM (fragments 
per kilobase of exon per million fragments mapped). 
The average numbers of expressed genes and transcripts 
(FPKM > 1) were 14,360 and 24,505, respectively.

EBV-specific lncRNAs

The lncRNAs specifically expressed in EBVaGC 
tissue were identified using criteria of ≥ 5-fold change 
between FPKM values of the EBVaGC sample and the 
other three tissues (EBVnGC sample, EBVaGC adjacent 
sample, EBVnGC adjacent sample). Five EBVaGC-
specific lncRNAs were identified: RNU12, H19, SNHG8, 
RP11-359D14.3, and MIR143HG (Table 1). 

Polymerase chain reaction validation of the 
EBV-specific lncRNA SNHG8

Real-time reverse transcription polymerase chain 
reaction (RT-PCR) analysis was used to further validate 
the expression levels of the five EBV-specific lncRNAs in 
a cohort of 88 patients with gastric cancer, with primers 
designed in Primer Premier 5.0 software (Supplementary 
Table S1). The RP11-359D14.3 primer was difficult to design 
and was removed after unsatisfactory quality control results. 
There were no pathological differences between the gastric 
carcinoma samples used for RNA sequencing and those used 
for RT-PCR validation (Supplementary Table S2). SNHG8 
expression was concordant with the lncRNA sequencing 
assay. The RT-PCR results of non-significant lncRNAs, 
RNU12, H19 and MIR143HG are shown in Supplementary 
Figures S1–S3. Notably, SNHG8 expression in EBVaGC 
was significantly higher than in EBVnGC (Figure 2) and in 
EBVaGC adjacent tissue (Figure 3). 

Biological functions of SNHG8 target genes

Next, we identified the target mRNAs of SNHG8 by 
analyzing its coexpression with mRNAs according to the 
Illumina Body Map dataset. Using the online gene function 
annotation tool DAVID [21], which includes numerous 
annotation categories such as Gene Ontology (GO) and 
KEGG Pathways, we explored the functions of the target 
genes of SNHG8 (Table 2). These results indicated that 
SNHG8 targets pathways such as hsa03010 (ribosome), 
GO:0006412 (translation), GO:0045449 (regulation of 
transcription), GO:0006350 (transcription), GO:0008380 
(RNA splicing), GO:0016071 (mRNA metabolic process), 
GO:0008134 (transcription factor binding), GO:0003677 
(DNA binding), and GO:0030528 (transcription regulator 
activity). Notably, many of these functions, such as 
“transcription” and “mRNA metabolic process”, were well-
known pathways or processes targeted by EBV [22–24].

Relationship between SNHG8 and EBV in 
EBVaGC

We further investigated the relationship between 
SNHG8 and EBV by analyzing the co-expression between 
host human mRNAs and EBV mRNAs. We used an EBV 
genomics dataset to identify target mRNAs of EBV genes. 
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Using the hypergeometric statistical test, we evaluated 
the overlap between EBV target genes and SNHG8 target 
genes. The enrichment results (Table 3) show that SNHG8 
interacts significantly with EBV genes such as BHLF1, LF3, 
BHRF1, and BNLF2a.

The EBV genes BHLF1 (BamHI H leftward reading 
frame 1) and LF3 (leftward reading frame 3) consist of 
repetitive sequences of 125 and 102 bp, respectively. 
They are both found in the polyribosomal fraction of cells 
infected with EBV and expressed transcriptionally in virus-
associated tumors [25]. There is evidence that BHLF1 and 
LF3 are associated with the lytic replication cycle, which 
seems to take place mainly in epithelial cells. This type of 
replication is essential for the spread of the virus, and its 
suppression maintains the tumor phenotype [26]. 

BHRF1 has 38% primary sequence homology with 
the antiapoptotic protein Bcl-2, and shares three of its 
four conserved regions (Bcl-2 homology (BH) domains, 
BH1–BH3) [27]. The functions of BHRF1 are also similar 
to those of Bcl-2, and it imparts anti-apoptotic protection 

to EBV-infected cells [28], allowing the development of 
virus persistence and facilitating oncogenesis.

BNLF2a is another early lytic gene, and encodes 
a tail-anchored protein situated in the membrane of the 
endoplasmic reticulum [29]. The BNLF2a protein has two 
domains: a hydrophilic, cytosolic N-terminal domain and 
a hydrophobic, membrane-spanning C-terminal domain 
[30]. Both domains are required for immune escape, which 
involves the disruption of viral peptide transport into the 
endoplasmic reticulum and of peptide loading onto human 
leukocyte antigen class I molecules; this disruption leads 
to lower levels of endogenous antigen presentation, thus 
preventing recognition by CD8+ T-cells [30, 31].

EBV target genes with the same expression 
pattern as SNHG8

The target genes of EBV that are also targeted by 
SNHG8 are listed in Table 3. As described above, SNHG8 
expression in EBVaGC was significantly higher than in 

Table 1: The FPKM expression levels of EBV-specific lncRNAs

Transcript ID Transcript Name
EBV-negative 
tumor sample

(EBVnGC)

EBV-negative 
adjacent sample

EBV-positive 
tumor sample

(EBVaGC)

EBV-positive 
adjacent sample

ENST00000362512 RNU12 321.19 138.32 1648.37 264.21
ENST00000414790 H19 0.49 1.99 30.63 0.98
ENST00000412788 H19 0.00 0.00 6.73 0.52
ENST00000449007 RP11-359D14.3 0.00 0.00 5.19 0.00
ENST00000384096 SNHG8 0.00 0.00 4.21 0.01
ENST00000522358 MIR143HG 0.24 0.37 3.03 0.00

Figure 1: In situ hybridization of EBER1 in gastric cancer tissue. (A) EBVaGC, EBER(+) tissue. (B) EBVnGC, EBER(−) tissue. 
Magnification, ×400. EBER, EBV-encoded small RNA; EBVaGC, EBV-associated gastric carcinoma; EBVnGC, non-EBV-infected gastric 
cancer.
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EBVnGC and adjacent tissues. Next, we explored the 
target genes for EBV and SNHG8, and identified those 
that showed the same expression pattern: EBVaGC 
FPKM expression level ≥ 5 and greater expression than in 
EBVnGC and in EBVaGC adjacent tissue (Table 4).

TRIM28, also known as KAP1 and TIF1b, is a 
universal co-repressor that mediates transcriptional 
control by interacting with Krüppel-associated box zinc 
finger proteins [32, 33]. TRIM28 is an essential partner 
in several multiple-protein complexes and has a variety 
of functions including the regulation of pluripotency 
and proliferation [34, 35]. It participates in epithelial–
mesenchymal transition via the regulation of histone 
acetylation and methylation on E- and N-cadherin 
promoters in lung cancer cell lines. TRIM28 is involved 
in cancer progression; it is overexpressed in colorectal and 
gastric cancer and is an independent prognostic factor for 
poor overall and relapse-free survival [36]. 

The highly conserved gene EIF4A2 is a member of 
the eukaryotic initiation factor 4A family, and encodes a 
protein synthesis initiation factor for binding mRNA to 
the ribosome. EIF4A2 is involved in the progression of 
breast cancer and melanoma [37] and in the development 
of non-small-cell lung cancer, and has been suggested as a 
potential prognostic marker [38].

Nucleosome assembly protein-1 (Nap1) plays a role 
in cell proliferation and cell cycle progression, as well as 
nucleosome assembly [39, 40]. Nap1-like 1 (Nap1L1) is 
highly homologous to Nap1 and shares some functions 
with it, such as nucleosome assembly, although it also 
has a more active role in nucleosome disassembly [40]. 
Nap1L1 is overexpressed in certain tumors such as 
hepatoblastoma [41] and carcinoid of the small intestine 
[42]. It epigenetically promotes tumor cell proliferation 
in pancreatic neuroendocrine neoplasms by inhibiting the 
tumor suppressor p57Kip2 and the mTOR pathway [43].

Figure 2: Distribution of SNHG8 lncRNA levels in EBVnGC and EBVaGC. Bold lines represent the mean 
value for each patient cohort; RQ = 2−ΔΔCt

Figure 3: Distribution of SNHG8 lncRNA levels in EBVaGC and adjacent tissue. Bold lines represent the 
mean value for each patient cohort; RQ = 2−ΔΔCt
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PLD3 encodes a lipase family protein associated 
with the endoplasmic reticulum, which is widely 
expressed in the brain, including in the hippocampus and 
most of the cortex [44, 45]. PDL3 has been implicated 
in late-onset Alzheimer’s disease and might contribute 
to a range of cellular functions including differentiation, 
epigenetic modification, neurotransmission, and signal 
transduction [44, 45].

Ribosomal protein L18a (RPL18A) is a component 
of the eukaryotic large ribosomal subunit (60S). RPL18A 
interacts with the hepatitis C virus internal ribosome entry 
site (IRES) and might be involved in IRES-mediated 
translation and viral replication [46, 47].

The channel kinase TRPM7 transduces physical 
and chemical stress. It has intrinsic kinase activity and 
is involved in cell growth, proliferation, migration, 
differentiation, and survival [48, 49]. Aberrant TRPM7 

expression is associated with a number of cancers [49–51] 
including breast carcinoma and head/neck cancer [52–54]. 
Furthermore, TRPM7 might regulate exocrine pancreatic 
development, and aberrant TRPM7-mediated signaling 
contributes to the development of pancreatic cancer [54].

DISCUSSION

In the present study, we have evaluated the profiles 
of lncRNAs that are aberrantly expressed in EBVaGC, and 
confirmed expression levels of the lncRNA SNHG8 by 
RT-PCR. The putative functions of SNHG8 were explored 
by examining co-expression of lncRNA and mRNAs.

Mounting evidence suggests that lncRNAs, initially 
considered transcriptional noise, play pivotal roles in 
carcinogenesis [11, 55]. In gastric cancer, the dysregulation 
of several lncRNAs is associated with tumorigenesis, 

Table 2: Significantly enriched KEGG and GO terms of SNHG8 target genes using DAVID
Category Term FDR (< 0.05)

KEGG PATHWAY hsa03010:Ribosome 3.77E-13

Gene Ontology (GO) Biological 
Processes (BP)

GO:0006412~translation 1.54E-14
GO:0006414~translational elongation 1.25E-11
GO:0006396~RNA processing 2.91E-05
GO:0045449~regulation of transcription 0.001145
GO:0006350~transcription 0.002024
GO:0008380~RNA splicing 0.040761
GO:0016071~mRNA metabolic process 0.041671

Gene Ontology (GO) Molecular 
Function (MF)

GO:0003735~structural constituent of ribosome 6.18E-09
GO:0003723~RNA binding 2.84E-06
GO:0008134~transcription factor binding 0.002199
GO:0003677~DNA binding 0.004828
GO:0030528~transcription regulator activity 0.012988

Gene Ontology (GO) Cellular 
Component (CC)

GO:0030529~ribonucleoprotein complex 1.55E-13
GO:0022626~cytosolic ribosome 5.93E-09
GO:0005840~ribosome 4.48E-08
GO:0043232~intracellular non-membrane-bounded organelle 4.91E-07
GO:0043228~non-membrane-bounded organelle 4.91E-07
GO:0005829~cytosol 2.56E-05
GO:0033279~ribosomal subunit 9.32E-05
GO:0031981~nuclear lumen 3.65E-04
GO:0022625~cytosolic large ribosomal subunit 8.32E-04
GO:0044445~cytosolic part 0.001145
GO:0005730~nucleolus 0.003792
GO:0031974~membrane-enclosed lumen 0.010549
GO:0070013~intracellular organelle lumen 0.013856
GO:0043233~organelle lumen 0.017307
GO:0005681~spliceosome 0.019806
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metastasis, and prognosis [12, 56]. For example, the Hox 
transcript antisense intergenic RNA (HOT-AIR), one of the 
most widely known lncRNAs, was shown to be associated 
with TNM stage and lymph node metastasis in patients 
with gastric cancer. HOT-AIR also promotes invasion and 
epithelial–mesenchymal transition by directing polycomb 
repressive complex 2 (PRC2) to silence HOXD9 [57, 
58]. Homeobox A transcript at the distal tip (HOTTIP) 
is markedly overexpressed in gastric cancer tissues and 
associated with several measures of severity including TNM 

stage and overall survival. Furthermore, overexpression of 
HOTTIP was identified as an independent poor prognostic 
factor for patients with gastric cancer. Together, this 
indicates that lncRNAs are an excellent prospect as a new 
type of biomarker [56]. Our study also shows that SNHG8 
expression was markedly elevated in EBVaGC tissues 
compared with normal control samples.

It has long been accepted that small nucleolar 
RNAs (snoRNAs) guide RNA in post-translational 
ribosomal RNA modification processes [59, 60]. However, 

Table 3: EBV proteins whose target genes significantly overlapped with SNHG8 targets

EBV 
protein

FDR
(< 0.05)

Number of 
EBV target 

genes

Number of EBV 
target genes that 

were also targeted by 
SNHG8

EBV target genes that were also targeted by 
SNHG8

LF3 6.93E-05 300 28

AHDC1, AMBRA1, BAHD1, C19orf26, CENPB, 
CIC, EEF2, EIF4A2, ELK1, GLTPD1, HNRNPA0, 
IRF2BP1, KHSRP, KLHL26, MEF2D, MGRN1, 
MLLT1, NCOR2, NFIC, PLD3, PLIN3, PTPN23, 
SAMD4B, SART1, SF1, SURF6, ZBTB4, ZBTB7A

BHLF1 0.000252 568 40

AHDC1, AMBRA1, BAD, BAHD1, BTBD2, BTF3, 
C19orf26, CD58, CENPB, CIC, CLIP2, EEF2, EIF4A2, 
ELK1, GLTPD1, GTF2F1, GTPBP1, HDGFRP2, 
HNRNPA0, IRF2BP1, KHSRP, KLHL26, LARP7, 
MEF2D, MLLT1, MLLT6, MTERFD3, N6AMT1, 
NFIC, NUDT16L1, PLD3, PLIN3, SAMD1, SAMD4B, 
SART1, SURF6, TAF7, TRIM28, ZBTB4, ZNF324B

BHRF1 0.008401 793 45

AHDC1, BTBD2, BTF3L4, CD58, CENPB, CIC, 
COMMD10, CPSF1, EEF2, EIF3G, EIF4A2, ERCC8, 
GCNT2, GEN1, GLTPD1, GTF2F1, GTF2H2, GTPBP1, 
HDGFRP2, IRF2BP1, KHSRP, KLHL26, MEF2D, 
MGRN1, MLLT1, MTERFD3, NAP1L1, NCOR2, 
NFIC, PLD3, PTPN23, RBM10, RNF14, SAMD1, 
SAMD4B, SART1, TAF7, TMEM168, TRIM28, 
TRPM7, ZBTB4, ZBTB7A, ZNF337, ZNF345, ZNF720

BNLF2a 0.039096 40 6 BRD4, DLGAP4, NFKBIL1, RPL18A, TRIP10, WBP2

Table 4: The FPKM expression levels of EBV target genes with the same expression pattern as 
SNHG8

Transcript ID Transcript Name
EBV-negative 
tumor sample

(EBVnGC)

EBV-negative 
adjacent sample

EBV-positive 
tumor sample 

(EBVaGC)

EBV-positive 
adjacent sample

ENST00000600840 TRIM28 3.38 5.18 5.18 3.55
ENST00000323963 EIF4A2 0.67 16.67 21.20 18.62
ENST00000496382 EIF4A2 0.00 0.00 5.61 0.00
ENST00000393263 NAP1L1 1.48 2.70 5.53 3.65
ENST00000547773 NAP1L1 1.81 1.47 5.29 2.06
ENST00000409281 PLD3 5.57 0.00 11.27 0.00
ENST00000222247 RPL18A 74.79 150.44 101.37 81.57
ENST00000313478 TRPM7 3.11 2.14 4.20 3.42
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accumulating evidence suggests that these non-coding 
RNAs might play a much more important role in cell fate 
determination and oncogenesis than previously thought 
[61, 62]. In patients with gastric cancer, SNHG5 was 
significantly downregulated and associated with TNM 
stage [63]. Furthermore, SNHG20 was upregulated in 
hepatocellular carcinoma and, in an in vitro study, its 
suppression distinctly inhibited hepatocellular carcinoma 
cell proliferation, migration, and invasion [64]. SNHG8, 
located on 4q26, is thought to encode the smaller 
snoRNAs. Our study showed that SNHG8 expression 
in EBVaGC tissues is markedly elevated compared with 
normal control samples.

EBV is a lifelong latent infection present in more 
than 90% of the human population and has been linked 
etiologically to a wide range of human malignancies [65]. 
EBV-encoded proteins, such as EBV nuclear antigen 1 
and latent membrane proteins, can alter gene expression, 
accelerate growth, increase survival, and facilitate invasion 
of transformed cells [66, 67]. A number of viral non-coding 
RNAs have also been linked to latent EBV infection; for 
example, EBV BamHI-A rightward transcripts (BARTs), a 
family of alternatively spliced mRNAs expressed in EBV 
latency programs, are closely associated with clinical 
and pathological measures of tumor progression [68]. 
BART1 induces metastasis via PTEN-dependent pathway 
regulation [69]; BART3 promotes cell growth by its action 
on deleted in cancer 1 (DICE1) [70]; and BART5 inhibits 
apoptosis by modulating the pro-apoptotic protein p53 

upregulated modulator of apoptosis (PUMA) [71]. This 
suggests that EBV plays a causal role in the development 
of malignancies, metastasis of tumors, and evasion of the 
host immune system.

EBVaGC has unique clinicopathologic 
characteristics, including better prognosis than EBVnGC. 
Several well-recognized viral genes such as BHRF1, 
BLLF1, BRLF1, BZLF1, EBNA1, and LMP2A are highly 
expressed in EBVaGC [72, 73]. Expression of LMP2A 
is involved in the upregulation of survivin protein and 
causes genome-wide aberrant methylation in host cells 
[74]. Patients with EBVaGC show typical genetic and 
epigenetic alterations, and approximately 205 host cell 
genes are usually mutated including AKT2, CCNA1, 
MAP3K4, and TGFBR1 [74]. 

In our study, the lncRNA SNHG8 was expressed 
in an EBV-specific manner. SNHG8 expression in 
EBVaGC was higher than in EBVnGC and in EBVaGC 
adjacent tissue. Based on our analysis of SNHG8 and 
EBV targets, we propose a theory of how SNHG8 triggers 
gastric cancer (Figure 4). SNHG8 interacts with the 
EBV proteins LF3, BHLF1, BHRF1, and BNLF2a and 
regulates the expression of TRIM28, EIF4A2, NAP1L1, 
PLD3, RPL18A, and TRPM7. Functional analysis of 
TRIM28, EIF4A2, NAP1L1, PLD3, RPL18A, and 
TRPM7 suggested that they play direct roles in gastric 
cancer. This reveals the regulatory roles of lncRNAs and 
viruses in gastric carcinoma, and contributes to a more 
comprehensive understanding of tumorigenesis.

Figure 4: SNHG8, EBV, and their targets in EBV-associated gastric cancer. Co-expression and enrichment analysis showed that 
SNHG8 interacted with the EBV proteins LF3, BHLF1, BHRF1, and BNLF2a. These proteins in turn regulated the expression of TRIM28, 
EIF4A2, NAP1L1, PLD3, RPL18A, and TRPM7, which play important roles in gastric cancer pathways, contributing to processes such as 
DNA repair, epithelial–mesenchymal transition, and ribosomal function.
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MATERIALS AND METHODS 

Patient and tissue samples

RNA deep sequencing samples

Two gastric cancer tissues (one EBVnGC and one 
EBVaGC) and their pair-matched adjacent gastric tissues 
were obtained from two patients at Fujian Provincial 
Cancer Hospital. The patients were male with poorly 
differentiated stage IIIB adenocarcinoma and lymph node 
metastasis.

Validated samples

Eighty-eight patients, including 39 with EBVaGC, 
were included in this study. They took gastric carcinoma 
resection from July 2012 to April 2015. The patients (69 
males and 19 females) had a median age of 58.2 years 
(ranging from 22.0 to 79.0 years) and had a median tumor 
size of 5.5 cm (1.0–15.0 cm). None of them received 
chemotherapy before surgery. Fresh stomach tumor tissues 
and their adjacent non-tumorous tissues were obtained 
immediately after tumor resection. One portion of the 
tissues was immediately snap-frozen in liquid nitrogen 
and then stored at −80°C; and the other portion was fixed 
in 10% buffered formalin and then embedded in paraffin. 
Lauren’s criteria [75] was used to determine the histologic 
subtypes of the tumors. EBVaGC was identified by in situ 
hybridization for EBER1 (Dako, Denmark) (Figure 1) [76].

The study was approved by the Research Ethics 
Committee of the Fujian Provincial Cancer Hospital, 
China. Informed consent from all patients was obtained 
before participation.

Sequencing and assembly

Total RNA was isolated using Trizol reagent 
(Invitrogen, Carlsbad, CA, USA). RNA was examined by 
gel electrophoresis and only high quality RNA was used 
for subsequent analysis. RNA-Seq libraries were prepared 
using an Illumina HiSeq 3000 sequencing system with a 
50 bp single-end protocol (Illumina, Inc., San Diego, CA, 
USA) [77]. In total, there were 52 and 59 million 2 × 150 
paired-end reads of the paired GC/control mucosa RNA 
samples [77, 78].

The raw sequencing reads were analyzed with 
Trim Galore! Cutadapt wrapper v1.9.dev6 (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/) 
and Trimmomatic v0.32 [18]: the adapters were trimmed 
with the Trim Galore! Cutadapt wrapper using the –paired 
option, and low quality bases (< Q20) were removed 
with Trimmomatic. FastQC v0.11.3 (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) was used 
to manually evaluate the qualities of the raw and trimmed 
sequencing data by checking per base quality, per base 
GC content and sequence length distribution. TopHat2 

v2.1.1 [19] was used to align the trimmed reads to the 
human genome (GRCh37) with reference annotation from 
Gencode v19. More than 90% reads were mapped while 
over 85% reads were uniquely mapped. rRNA genes were 
masked, and transcriptome assemblies were generated 
using Cufflinks (version 2.2.1) [20]. 

Criteria for defining EBV-specific lncRNAs

EBV-specific lncRNAs were defined by fold 
changes (≥ 5) between FPKM values of the EBV-positive 
tumor sample and the other three samples.

Real-time RT-PCR assay

Quantitative RT-PCR was used to validate the 
sequencing results. Total RNA from 88 paired gastric 
cancer and adjacent tissues was treated with DNaseI 
(Sigma, St Louis, MO, USA) to eliminate any genomic 
DNA contamination. Reverse transcription for lncRNAs 
was performed using M-MLV Reverse Transcriptase 
(Takara, Japan). The cDNA template was amplified by 
real-time RT-PCR using the SYBR Green Master Mix 
(Roche, USA). Primers were designed using Primer 
Premier 5.0 software. Real-time RT-PCR reactions were 
performed in triplicate on the ABI7500 system (Applied 
Biosystems, CA, USA).

Using the comparative Ct method 2−ΔΔCt [79, 80] 
and gastric carcinoma sample No. 9 as a calibrator, the 
relative expression levels in all gastric carcinoma samples 
and adjacent non-tumorous tissues were quantified. 
Expression levels of lncRNA were normalized to β-actin 
mRNA expression.

Identification of mRNA targets of lncRNAs

To identify the mRNA targets of lncRNAs, we 
analyzed the RNA sequencing dataset of the Illumina 
Body Map [81], which included 16 normal human tissues. 
Expression levels of 14,886 lncRNAs from the LNCipedia 
database [82] and 21,721 protein-coding genes from 
UCSC hg19 [83] were calculated using TopHat [84] and 
Cufflinks [85] with default parameters. If the expression 
level of a protein-coding gene was correlated with that of 
a lncRNA with an absolute Pearson correlation coefficient 
> 0.5, they were deemed a co-expression pair. The co-
expressed mRNAs were considered to constitute the 
microenvironment around the lncRNA and were used to 
annotate the functions of the lncRNA.

Identification of human target genes of EBV 
proteins

The target genes of EBV proteins were obtained 
from EBV Genomics (https://ebv.wistar.upenn.edu) [86]. 
We downloaded the human gene expression levels and 
EBV expression levels in 201 samples, and then calculated 
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the Pearson correlation coefficient between the human 
and EBV genes. Human genes with an absolute Pearson 
correlation coefficient > 0.5 were considered as the target 
genes of an EBV gene.

Enrichment between lncRNA and EBV

Enrichment between lncRNA and EBV genes can 
be represented by the hypergeometric test P value [87–89] 
of the target gene of lncRNA, L(i), and the target gene of 
EBV, V(j), which can be computed by:

 
p(i,j) p(L(i),V(j))
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where N represents the total number of human genes, 
M and n represent the number of target genes of EBV gene 
j and the number of target genes of lncRNA i, respectively, 
and m represents the number of lncRNA target genes 
that also target genes of EBV gene j. The smaller the  
P value for a lncRNA and an EBV gene, the stronger the 
suggested association between them. The hypergeometric 
test P value was adjusted to the false discovery rate using 
the Benjamini method [90]. A false discovery rate of  
< 0.05 was considered statistically significant.

Statistical analysis

Statistical analyses were conducted using IBM 
SPSS Statistics 19. The two-tailed Student’s t test was 
used to identify differentially expressed lncRNAs between 
EBVaGC and non-EBVaGC. P < 0.05 was considered 
statistically significant.

CONCLUSIONS

Gastric cancer is an important malignancy with 
high morbidity and mortality rates and many risk factors. 
EBV is known to occur often in gastric cancer samples, 
but certain lncRNAs are also emerging as risk factors for 
cancer, although their precise roles in the disease remain 
unclear. To identify the key lncRNAs and investigate 
their functions and interactions with EBV, we sequenced 
one EBVnGC tissue and its adjacent normal tissue, and 
one EBVaGC and its adjacent EBV-associated tissue. 
The lncRNA SNHG8 was expressed in an EBV-specific 
manner. Co-expression network analysis revealed 
significant interactions of SNHG8 and EBV LF3, BHLF1, 
BHRF1, and BNLF2a. Together, these factors regulate 
several functional genes in gastric cancer, such as TRIM28, 
EIF4A2, NAP1L1, PLD3, RPL18A, and TRPM7. This 
regulatory pathway model of lncRNA, virus, and target 
genes provides novel insights into gastric tumorigenesis 
and suggests potential drug targets for intervention. 
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