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ABSTRACT
Circular RNAs (circRNAs) are highly stable forms of non-coding RNAs with 

diverse biological functions. They are implicated in modulation of gene expression 
thus affecting various cellular and disease processes. Based on existing bioinformatics 
approaches, we developed a comprehensive workflow called Circ-Seq to identify and 
report expressed circRNAs. Circ-Seq also provides informative genomic annotation 
along circRNA fused junctions thus allowing prioritization of circRNA candidates. 
We applied Circ-Seq first to RNA-sequence data from breast cancer cell lines and 
validated one of the large circRNAs identified. Circ-Seq was then applied to a larger 
cohort of breast cancer samples (n = 885) provided by The Cancer Genome Atlas 
(TCGA), including tumors and normal-adjacent tissue samples. Notably, circRNA 
results reveal that normal-adjacent tissues in estrogen receptor positive (ER+) 
subtype have relatively higher numbers of circRNAs than tumor samples in TCGA. 
Similar phenomenon of high circRNA numbers were observed in normal breast-
mammary tissues from the Genotype-Tissue Expression (GTEx) project. Finally, we 
observed that number of circRNAs in normal-adjacent samples of ER+ subtype is 
inversely correlated to the risk-of-relapse proliferation (ROR-P) score for proliferating 
genes, suggesting that circRNA frequency may be a marker for cell proliferation in 
breast cancer. The Circ-Seq workflow will function for both single and multi-threaded 
compute environments. We believe that Circ-Seq will be a valuable tool to identify 
circRNAs useful in the diagnosis and treatment of other cancers and complex diseases.

INTRODUCTION

Circular RNAs (circRNAs) are recently discovered 
members of noncoding RNAs. They range in length 
from a few hundred to thousands of nucleotides [1]. In 
contrast to linear RNA transcripts, which are normally 
spliced tail-to-head, circRNAs are formed by the covalent 
bonding of their 3′ and 5′ (head-to-tail) ends [2]. The 
lack of open sites at the 5′ and 3′ ends exempts circRNAs 
from endonuclease degradation [3], making them stable 
in cells [4]. When circRNAs were initially identified 
in plants, they were considered pathogenic because of 
their structural similarity to viruses [5, 6]. Meanwhile, 
circRNAs observed in mammalian cells around the same 

time were thought to result from splicing errors [7–9]. 
However, more recent studies of circRNAs in drosophila, 
mouse, and other eukaryotes suggest that these RNA 
molecules are evolutionarily conserved and thus are not 
simple artifacts of faulty splicing [10, 11]. In addition, 
advances in sequencing technology and bioinformatics 
analyses have renewed interest in these forms of RNA 
transcripts [2, 12, 13].

After discovering that circRNAs are highly 
abundant in not only C. elegans and zebrafish, but also 
mouse and human, researchers have begun to uncover 
many intriguing facets of these diverse RNAs [3]. 
Many studies have confirmed that circRNAs possess 
significant pre- and post-transcriptional regulatory 
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functions in mammalian cells [1, 13, 14] and changes 
in the abundance of circRNAs can adversely affect gene 
expression [15, 16]. Recent studies indicate that some of 
the most common functions of circRNAs include their 
active participation in pre-mRNA splicing [10] as well 
as promoting transcription of their parent mRNAs [17]. 
Apart from the above, circRNAs can sometimes serve as 
microRNA sponges, such as the human circRNA CDR1as, 
which was shown to contain over 70 binding sites for 
miR-7 [12, 18]. 

Stable, cell-free circRNAs have been found in saliva 
[19] and exosomes [20], making them promising candidates 
for diagnosis and therapeutics. In particular, discovering 
disease-specific circRNAs could help identify diagnostic 
targets in heterogeneous diseases such as cancer. Memczak 
et al. and Salzman et al. have developed bioinformatics 
approaches to detect circRNAs using high-throughput 
transcriptome sequencing, and to date, several hundred 
human circRNAs have been identified and cataloged  
[2, 12, 21].  However, the significance of these RNAs in 
health and disease is still poorly understood. Recently, 
Bachmayr-Heyda et al.  reported that colorectal tumor 
samples have lower number of circRNAs compared to 
matched normal colon mucosa [22]. It is known that 
circRNAs are also associated with single nucleotide 
polymorphisms linked to a wide range of diseases, including 
various types of cancer, Parkinson’s disease, Alzheimer’s 
disease, multiple sclerosis, and schizophrenia [23].

Here, we have enhanced existing methodologies 
of circRNA detection [12] and developed a parallelized 
and configurable workflow, Circ-Seq, that annotates 
and reports expressed and exclusive circRNAs as final 
candidates from the analysis. We applied Circ-Seq to one 
of the largest transcriptome sequencing data available for 
breast cancer samples, provided by The Cancer Genome 
Atlas (TCGA) consortium. We identified unique and 
novel circRNAs present in breast tumor samples and 
normal-adjacent breast tissue. We identified circRNAs 
specific to breast tumor samples and catalogued circRNAs 
unique to each of the three breast cancer subtypes: triple 
negative (TN), estrogen receptor positive (ER+), and 
ErbB2 overexpressed–HER2 positive (HER2+). Notably, 
a lower number of circRNAs were observed in breast 
tumors compared to both normal-adjacent breast tissue 
from TCGA as well as normal mammary tissue samples 
from GTEx. Finally, using a panel of 11 cell proliferation 
gene markers  (ROR-P score), we show that the number 
of circRNAs detected in ER+ tumor is associated with 
gene proliferation markers [24]. We also demonstrate 
that Luminal B tumors have a distinct trend compared to 
Luminal A tumors based on their circRNA numbers. On 
the basis of its ability to detect circRNAs in breast cancer 
samples, we believe that Circ-Seq will be a valuable tool 
for researchers to identify circRNAs for diagnosis and 
treatment of complex diseases. 

RESULTS

Circ-Seq: an automated workflow for circRNA 
identification

Using existing bioinformatics approaches for 
circRNA identification by Memczak et al. [12], we 
developed an integrated analytical workflow called 
Circ-Seq, for identifying and characterizing circRNAs 
using high-throughput transcriptome sequencing 
data. Briefly, it improves the existing methodology by 
applying filters namely, expression, genomic size and 
validation filters, to report a more confident final catalog 
of expressed candidate circRNAs. The expression 
filter retains circRNAs based on the desired number of 
junction-spanning reads, which is configurable based on 
sequencing throughput of the sample being analyzed. Next 
the genomic size filter is applied to discard any circRNA 
candidate with tail-to-head genomic distance less than 6 
bases. Finally,  the  validation filter uses BLAT [25] to 
query circRNAs to ensure they do not represent repetitive 
regions of the genome. Towards the end of the workflow, 
circRNA fused junctions of the final candidates are 
annotated with valuable genomic information. Annotation 
of whether the circRNA is a spliced product of a single 
gene (‘intra-gene’) or formed across 2 or more genes 
(‘inter-gene’), and  exon location of its 3′ and 5′ ends 
(‘exon-exon boundary’ or ‘within_exon’) are provided for 
users discretion to prioritize circRNA candidates in the 
final report. The workflow is fully automated and designed 
to run in a multi-threaded cluster environment and can also 
be used to analyze single-end or paired-end transcriptome 
samples. Circ-Seq workflow can be downloaded from 
(http://bioinformaticstools.mayo.edu/research/circ-seq/).

Identification of circRNAs in breast cancer cell 
lines

To demonstrate the utility of Circ-Seq, we first 
tested the workflow on the transcriptomes of eight cell 
lines, seven from breast tumors (BT20, BT474, MCF7, 
MDAMB231, MDAMB468, T47D, and ZR751) and one 
from non-tumor breast cell line (MCF10A) [26], and 
validated one of the largest circRNA candidates reported 
by the workflow. 

CircRNAs were expressed in both the tumor and 
normal breast cell lines. As shown in Table 1, we identified 
an average of 10 circRNAs in the triple negative (TN) 
cancer cell lines, 22 in the estrogen receptor positive 
(ER+) cancer cell lines, and 9 in the non-tumor MCF10A 
cell line. On average, circRNAs detected in the cancer 
cell lines had 12 junction supporting reads in both TN and 
ER+ subtypes. Assuming that the exon-intron structures 
of circRNAs remain intact [17], we observed variable 
genomic sizes for circRNAs in the tumor and non-tumor 
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cell lines.  While the smallest circRNA was of size 51 
bases in tumor (ZR751 and BT474) and 70 bases in the 
non-tumor MCF10A,  large circRNAs with genomic sizes 
exceeding 5kb were found in MCF7, BT474, ZR751 and 
MDAMB231 tumor lines. After annotating the head-to-
tail fused junctions of these circRNAs with gene models, 
we found that 31% of circRNAs are spliced products of a 
single gene (intra-gene) and 12% are inter-gene circRNAs. 
Additionally, 25% of the circRNAs have their head-to-tail 
fused junctions along legitimate exon-exon boundaries 
whereas 18% were found with circRNA junctions inside 
exons and not on the exon boundaries. All circRNAs 
identified in eight cell lines including the annotations 
(genomic location, number of supporting reads, inter and 
intra-gene, and exon boundary annotations) are provided 
in Supplementary File S1.

Validation of circRNA in MCF7 breast cancer 
cells

To establish the reliability of circRNA candidates 
reported by Circ-Seq, we validated one of the largest 
circRNAs identified in MCF7, the most widely accessible 
tumor breast cell line that was available in-house. Circ-
Seq results for MCF7 indicated that 2 out of 9 circRNAs 
were found to span legitimate exon-exon boundaries, of 
which one had a genomic size of 64 bases and the other 
7 kb (see Supplementary File S1 for details). Since some 
circRNAs were previously reported to act as microRNA 
sponges and thus had to be long enough to harbor multiple 
microRNA binding sites [18], we decided to select the 
largest out of the 2 circRNAs in MCF7 for validation.  
This circRNA was found at chr14:102,466,325–
102,500,789 and had 12 supporting junction-spanning 
reads. The validation consisted of using two independent 
sets of qRT-PCR experiments. In order to validate the 
existence of circRNAs, two different primers were 
prepared – convergent and divergent [12]. Convergent 
primers are traditional primers that confirm existence of 
linear or tail-to-head (5′ to 3′) RNA transcripts, however 

divergent primers are designed in a circular or head-to-tail 
fashion (3′ to 5′) to enable binding to circRNA fragments 
for validation. As shown in Figure 1A, the divergent 
primer amplified circRNA from MCF7 total RNA but not 
from genomic DNA (gDNA)  whereas GAPDH, which 
was used as control, had no results from divergent primers 
but confirmed its linear RNA using convergent primers.  
Additionally, Sanger sequencing of the qRT-PCR product 
validated the head-to-tail splicing. In Figure 1B, the 
underlined genomic sequence CAATAGGGCAACCTT 
represents the circRNA spliced junction with the 3′ tail 
fusing to 5′ head at the highlighted ‘G’ nucleotide.

Presence of circRNAs in TCGA breast cancer 
transcriptomes

We applied Circ-Seq workflow to 885 whole-
transcriptome sequences from breast tumor and normal-
adjacent samples provided by the TCGA consortium. 
Our goal was to use this unique repository to identify 
circRNAs that differ between normal and tumor tissue. 
CircRNA results from the workflow for 885 RNA-Seq 
breast TCGA samples are available for download at 
https://noncodingrnaexplorer.wordpress.com.

Breast cancer subtype analysis

circRNAs in tumors and normal-adjacent tissue 

Using the Circ-Seq workflow, we processed  
128 tumor and 13 normal-adjacent TN samples, 503 tumor 
and 56 normal-adjacent ER+ samples, and 162 tumor 
and 20 normal-adjacent HER2+ samples. As shown in  
Table 2, we observed a total number of 4,542 and 
342 circRNAs in tumor and normal-adjacent samples 
respectively for the TN subtype. Next, we found the 
number of unique circRNAs that represented exclusive 
genomic coordinates in tumor and normal-adjacent 
samples. Note that a unique circRNA is counted once 
although it may occur in 2 or more samples with the 

Table 1: Number of circRNAs identified in breast cell lines using the Circ-Seq workflow

Cell line Tissue Breast Cancer 
Subtype

Total number 
of circRNAs 
identified

Final number of circRNAs 
(after three filters)

Average number of 
circRNA junction 
supporting reads

MDAMB231 Tumor TN 1,111 10 11.2
MDAMB468 Tumor TN 2,540 15 9.8
BT20 Tumor TN 1,592 6 15
BT474 Tumor ER+ 4,662 43 14.5
ZR751 Tumor ER+ 3,148 31 11.1
T47D Tumor ER+ 1,306 5 13.2
MCF7 Tumor ER+ 1,838 9 10
MCF10A Non-Tumor – 1,363 9 10.4



Oncotarget80970www.impactjournals.com/oncotarget

same genomic coordinate. We observed 1,395 unique 
circRNAs in TN tumor samples and 208 circRNAs in 
normal-adjacent tissue samples. Similarly, we identified 
14,113 (total) and 3,012 (unique) circRNAs in ER+ tumor 
samples and 2,317 (total) and 1,409 (unique) circRNAs in 
normal-adjacent tissue samples. Finally, 6,340 (total) and 
2,660 (unique) circRNAs were identified in HER2+ tumors 
and 532 (total) and 284 (unique) in normal-adjacent tissue 
samples. A summary of the unique circRNAs for the three 
breast cancer subtypes are shown in Table 2. Detailed 

information on the genomic coordinates, number of 
supporting reads and gene and exon annotations for these 
circRNAs are provided in Supplementary Files S2, S3 and 
S4 for ER+, TN and HER2+ subtypes respectively. 

We further investigated the unique circRNAs 
between tumor and normal-adjacent to find circRNAs 
distinct to tumor. We observed that normal circRNAs 
spanned larger genomic regions (from 3′ head to 5′ tail). 
Interestingly, within the same genomic region of the 
normal circRNAs, we found one or more smaller 

Table 2: Summary of breast tumor, adjacent tissue, and tumor-specific circRNAs in sequence data 
made available by the cancer genome atlas

Triple Negative (TN) Estrogen Receptor (ER+) ERBB2 overexpressed (HER2+)

Categories Tumor Adjacent Tumor Adjacent Tumor Adjacent

Total number of samples 128 13 503 56 162 20

Total number of circRNAs 4,542 342 14,113 2,317 6,340 532

Total number of unique circRNAs 1,395 208 3,012 1,409 2,660 284

Ratio of total circRNAs to samples 35 26 28 41 39 27

Ratio of unique circRNAs to 
samples

12 16 7 25 17 14

Number of unique circRNAs seen in 
10% or more samples

729 162 1,086 455 896 193

Number of tumor-specific circRNAs 256  – 288  – 411 –

Figure 1: Validation of a circRNA at locus chr14:102,466,325–102,500,789. (A) circRNA was amplified by divergent primers 
using total RNA but not genomic DNA (gDNA). GAPDH was used as a control. (B) Head-to-tail splicing was confirmed by Sanger 
Sequencing.
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circRNAs that belonged to the tumor samples. Assuming 
that circRNAs coming from the same region have similar 
functional implications during transcriptional regulation, 
we considered such circRNAs as common candidates 
between tumor and normal-adjacent tissues. Therefore, 
if a circRNA was identified in tumor and not in the 
normal-adjacent tissue, we termed such candidates as  
tumor-specific circRNAs and found 256, 288 and  
411 tumor-specific circRNAs in TN, ER+ and HER2+ 
breast cancer subtypes respectively. 

Because the number of normal-adjacent samples was 
much smaller than the number of breast tumor samples 
(most tumor samples did not have a paired normal-
adjacent tissue sample), we also calculated the ratio of 
unique circRNAs to the number of samples. Interestingly, 
after normalization, we see that circRNAs have a higher 
count in normal-adjacent samples, as shown in Table 2. We 
tested the significance of this observation using ANOVA 
and found that normal-adjacent samples of ER+ subtype 
had p-value < 8.96e–06 compared to tumor. However, for 
TN and HER2+ subtypes the probability measure was 
insignificant (p-value > 0.05), and combining all subtypes 
together also did not show a significant increase in number 
of normal-adjacent tissue circRNAs (p-value 0.11).

Tumor-specific circRNAs in breast cancer cell 
lines also present in breast cancer tissues 

circRNAs from the TN and ER+ cancer cell lines 
were compared to those from the non-tumor MCF10A 
breast cell line (see Table 1 for subtype classification 
of cell lines; no HER2+ cell lines were available). This 
comparison yielded 10 TN-specific and 53 ER+ –specific 
circRNAs (Figure 2A). We checked for common tumor-
specific circRNAs between breast cancer cell lines and 

breast cancer TCGA samples. We also compared these 
circRNAs to the 256 circRNAs identified earlier in TCGA 
TN breast cancer samples and the 288 circRNAs obtained 
from TCGA ER+ breast cancer samples. As shown in 
Figure 2B, we found that 3 circRNAs were shared between 
TN breast cancer cell lines and TCGA TN breast cancer 
samples, and 15 circRNAs were shared between ER+ breast 
cancer cell lines and TCGA ER+ breast cancer samples.

Tumor-specific circRNAs are associated with 
cancer-related canonical pathways

The TN, ER+, and HER2+ breast cancer subtypes 
have unique prognostic and therapeutic characteristics. 
Although the gene expression profiles of these subtypes 
are markedly different [27, 28], a shared population 
of genes behaves similarly across them. We observed a 
comparable trend for circRNAs. We found that 42 tumor-
specific circRNAs were common across TN, ER+ and 
HER2+ subtypes. At the same time, we also observed 142 
TN, 164 ER+ and 245 HER2+ tumor-specific circRNAs 
that are exclusive to each subtype. 

Because circRNAs have post-transcriptional 
regulatory functions and tend to influence overlapping 
or neighboring genes [7, 12], we annotated the tumor-
specific circRNAs with protein-coding genes using 
the Ensembl reference system (version GRCh37.75). 
Pathway analysis demonstrated that most tumor-specific 
circRNAs were associated with cancer-related canonical 
pathways. The 42 circRNAs common to all three breast 
cancer subtypes were annotated with 45 genes, of which 
33 genes (p-value = 8.43E-05–4.09E-03) were associated 
with cancer-related pathways.  As shown in Figure 3, 
these circRNAs are likely involved in various hormone 
signaling, immune cell communication, and OX40 

Figure 2: TCGA tumor-specific circRNAs also found in breast cell lines. (A) overlap of circRNAs between different subtypes 
for breast cell lines, (B) overlap of TN and ER+ tumor-specific circRNAs between TCGA and cell lines. 
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signaling pathways. The circRNAs (n = 142) unique to 
TN tumor samples were linked to a total of 370 genes of 
which 220 genes (p-value = 7.79E-06–1.26E-02) were 
associated with cancer pathways such as tight junction, 
antigen presentation, and mTOR signaling pathways. 
Likewise, HER2+-specific circRNAs (n = 245), annotated 
with over 1,500 protein-coding genes, had 855 cancer-
related genes (p-value = 1.65E-14–2.24E-03) involved in 
Wnt signaling, Cdc42, and ILK signaling pathways. The 
ER+-specific circRNAs (n = 164) were found to overlap 
and/or neighbor 170 genes of which 129 cancer related 
genes (p-value = 2.28E-12–6.82E-03) were associated 
with estrogen receptor signaling, epigenetic signaling, 
and oxidative stress response pathways. Pathway analysis 
results from open source toolkit WebGestalt [29] is also 
provided in Supplementary File S7.

Paired normal-adjacent tissue analysis

Normal-adjacent samples have more unique circRNAs 
than tumor samples in ER+ subtype

We obtained paired breast tumor and normal-
adjacent data from TCGA for 13 TN, 56 ER+, and 20 
HER2+ samples. The circRNA results showed that the 
normal-adjacent samples had a higher number of unique 
circRNAs than the matched tumors in 5/13 TN patients, 
23/56 ER+ and 6/20 HER2+ samples. Using standard 
paired-t-test, again we found that in ER+ cancer, number 
of circRNAs was higher in normal-adjacent that tumor 
with p-value < 0.027. No correlation was observed 
between number of unmapped reads and circRNA number 
(R2 = 0.099) and after normalizing for unmapped reads, 
we still observed significant difference (p-value < 0.041) 

between ER+ normal-adjacent tissue and tumor 
samples The TN and HER2+ patients did not show 
significance, p-value > 0.05 (Supplementary Figure S1) 
and combining all subtypes (89 pairs) yielded p-value 
< 0.1. Supplementary File S5 lists all breast cancer TCGA 
paired samples with the number of unique circRNAs 
observed in their normal-adjacent and tumor tissues. 

Large number of circRNAs observed in normal 
breast samples from Gtex

To confirm that number of circRNAs observed in 
normal samples is higher than breast tumors, we analyzed 
an independent cohort of 218 normal breast mammary 
tissues from the GTEx project (http://www.gtexportal.org/
home/). After normalizing for library size, we observed 
higher number of circRNAs compared all three TCGA 
breast subtypes (Figure 4). Circ-Seq results for Gtex 
samples are provided in Supplementary File S6.

circRNAs are negatively correlated with tumor 
proliferation markers in ER+ breast cancers

Recently, Bachmayr-Heyda et al. [22] reported that 
total number of circRNAs is negatively correlated with 
tumor proliferation marker MKI67 in colorectal cancer. 
Here we used a collection of 11 genes: BIRC5, CCNB1, 
CDC20, CEP55, MKI67, NDC80, NUF2, PTTG1, RRM2, 
TYMS, and UBE2C that are signatures for proliferation 
and are also part of the PAM50 classification gene panel 
[30]. We calculated the risk-of-relapse proliferation score 
(ROR-P) [24] for these genes to see if they have similar 
negative correlations with breast cancer subtypes. 

Figure 3: Tumor-specific circRNAs common and unique to TN, ER+ and HER2+ subtypes and the top canonical 
pathways associated with each subtype.
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We observed that ER+ normal-adjacent tissue 
samples had a higher number of circRNAs and displayed 
lower levels of proliferation marker gene expression 
than ER+ tumor samples. Figure 5 is plotted between the 
ROR-P score and circRNA numbers for the tumor samples 
and indicates that the number of circRNAs in the ER+ 
tumors tends to decrease with average increase in gene 
proliferation. This trend is explained by a slightly negative 
correlation of −0.22. However, a corresponding analysis 
of paired HER2+ and TN samples revealed positive 
correlations −0.15 in HER2+ and 0.24 in TN tumors 
(Supplementary Figure S1A and S1B).

ER+ luminal A and luminal B tumor tissues have 
distinct proliferation patterns based on number 
of circRNAs 

Because circRNAs appear to be promising markers 
for proliferation in ER+ tumors, and since number of 
circRNAs were significantly different between normal-
adjacent and tumors, (p-value < 0.027), we further 
investigated if they could distinguish between the luminal 
A and luminal B types, as luminal B tumors proliferate 
more rapidly. First, we used PAM50 centroid modeling 
to identify tumor and normal-adjacent Luminal A and B 
subtypes for TCGA ER+ samples. Next, using all matched 
tumor and normal-adjacent ER+ samples (56 pairs), we 
plotted the number of circRNAs with respect to tumor 
proliferation. A clear distinction between the two ER+ 

types was evident for the tumor samples (Figure 6A). 
Luminal B tumors had fewer circRNAs (18 on average) 
than Luminal A tumors (25 on average) and this difference 
in circRNAs number was significant with p-value < 0.011 
using Welch t-test. Luminal B normal–adjacent samples 
had similar number of circRNAs to luminal A normal–
adjacent samples –24 and 30 on average, respectively, 
which was not statistically significant (p value = 0.31) 
(Supplementary Figure S2). An unsupervised hierarchical 
clustering analysis, shown in Figure 6B, also indicated 
that tumor and normal-adjacent samples cluster separately 
based on their circRNA numbers. In addition, Luminal 
B tumors separated out into their own sub-cluster within 
the tumor arm. These results suggest that Luminal A 
and B tumor samples show distinct differences in terms 
of proliferation marker gene expression based on their 
circRNA numbers. We hypothesize that this measure may 
be of use for other cancers with heterogeneous subtypes. 

DISCUSSION

In this study, using existing bioinformatics 
approaches defined by Memczak et al. [12] we developed 
a comprehensive analytical workflow called Circ-Seq. We 
also introduced three essential filters for identification and 
characterization of stable and expressed circRNAs in Circ-
Seq. The workflow was designed with flexibility to allow 
users to configure these filters based upon their choice to 
report results that are either stringent or lenient. Circ-Seq 

Figure 4: Increased number of circRNAs in normal breast samples compared to breast tumor subtypes in TCGA. 
Legend from left to right – Gtex_female and Gtex_male represent female and male mammary tissues from the Gtex project; ER+, HER2+ 
and TN normal-adjacent and matched tumors from TCGA are represented by ER_norm_adj, ER_tumor, HER2_norm_adj, HER2_tumor, 
TN_norm_adj and TN_tumor respectively.
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is also designed with speed in mind. It is built to work 
on a multi-threaded cluster environment and can analyze 
numerous samples in parallel at any given time. 

Circ-Seq was applied to the transcriptome of 885 
TCGA breast cancer samples and we identified numerous 

circRNAs unique to breast tumors and normal-adjacent 
tissues. To our knowledge this is the first report to 
catalogue circRNAs unique to the TN, HER2+, and 
ER+ molecular subtypes of breast cancer, as well as 
circRNAs common to all of the subtypes but absent from 

Figure 5: Lower number of circRNAs as gene proliferation increases in ER+ tumor samples.

Figure 6: (A) Luminal A and Luminal b tumor samples show distinct separation based on their circRNA numbers when plotted against 
tumor proliferation, (B) Unsupervised hierarchical clustering analysis shows separation of Luminal A and Luminal B tumor and adjacent 
samples based on their circRNA numbers.
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normal-adjacent tissue. Finally, using a panel of 11 tumor 
proliferation marker genes in combination with circRNA 
abundance, we show that circRNA number is associated 
with tumor proliferation and that luminal A and luminal B 
tumors have distinct representations of circRNA numbers 
within the ER+ breast molecular subtype.

We also identified circRNAs in the breast cell 
lines and were able to successfully validate the largest 
circRNA identified in MCF7 found at genomic location 
chr14:102,466,325–102,500,789 with 12 supporting 
junction reads. This circRNA was a spliced product of 
gene DYNC1H1 and spanned from exons 17 to 56 of the 
gene. Considering that the exon-intron structure remains 
intact, the size of this circRNA is about 7 kb and may 
play a role in post-transcriptional regulation. Notably, 
the circRNA contained microRNA response elements 
(MRE) for miR-150 and miR-661 with 29 and 23 unique 
binding sites respectively. These two microRNAs have 
been previously reported to have associations with cancer  
[31, 32]. In searching for other microRNAs that have over 
20 binding sites, we found non-conserved microRNAs 
such as miR-3613, miR-4731 and miR-5095, each 
contain 25 MRE sites along the circRNA. It is possible 
that since the circRNA contains several binding sites for 
microRNAs, this could be a candidate player in breast 
cancer competing endogenous RNA (ceRNA) networks. 

Recent studies suggest that circRNAs have other 
functions that are more common than the microRNA 
sponge effect. Notably, circRNAs are shown to participate 
actively with pre-mRNA splicing [10] and also as active 
promoters of transcription of parent mRNAs [17]. We 
believe that the circRNAs reported in this study can also 
have implications similar to the above functions in breast 
cancer.

Although validation results suggests that the 
workflow reports legitimate circRNAs, the reliability 
of the workflow and the measure of the false positive 
rate can only be determined based on its application to 
more transcriptome datasets and validation of results in 
future. The number of unmapped reads is a key player in 
identifying circRNAs within a sample. We observed that 
unmapped reads for the breast tumor and non-tumor cell 
lines range was 5–22 million and the range for TCGA 
samples was 5–78 million. Samples with unmapped 
reads at the low end of the spectrum can likely have 
correspondingly low number of circRNAs reported. We 
hypothesize that the number of circRNAs identified for 
BT20, T47D, MCF7, and MCF10A were artificially low 
due to the small number of unmapped reads available for 
these samples.

One of the limitations of this study is that the RNA-
Seq libraries from TCGA are prepared using Illumina 
TruSeq, that enriches for poly-A tail transcripts [33], 
thus greatly limiting the number of circRNAs detected. 
Despite this limitation we identified large numbers of 
circRNAs in the TCGA breast cancer data. Stranded total 

RNA and RiboMinus libraries may improve the detection 
of circRNAs [2, 3, 12, 13, 15, 18]. We acknowledge that 
the circRNAs identified here are only a small subset of 
the actual population of circRNAs present in breast cancer 
samples. Because the number of circRNAs detected 
increases with the number of samples investigated, as 
shown in Table 2, the number of circRNAs detected for 
the TN and HER2+ subtypes is probably underestimated 
due to their smaller sample size. This could also be 
indicative of why we observed poor correlations and non-
significant probability measures for these subtypes when 
the corresponding associations always held true for ER+ 
samples. Likewise, it is uncertain at this point whether the 
tumor proliferation analysis for TN and HER2+ patients 
with matched tumor and normal-adjacent tissues would 
indeed have negative correlation with circRNA numbers 
or not, if adequate number of samples were available for 
these subtypes.

Taking together the biological complexities in 
cancer, individual RNA classes cannot be considered in 
isolation. Cooperative communication between different 
types of noncoding RNAs and protein-coding genes 
or messenger RNAs exists [34–37] which eventually 
tune the expression of target genes. In cancer, regulated 
expression of tumor suppressors and oncogenes is critical 
to tumorigenesis. Competing endogenous RNA networks 
comprising of complex interactions between messenger 
RNA, microRNA and circRNA molecules can greatly 
influence the post-transcriptional activity of such genes. 
Messenger RNA stability, or lack of stability—depending 
on how the circRNAs and microRNAs interact via 
microRNA binding sites—can significantly impact gene 
expression, with serious repercussions for tumorigenesis. 
Innovative and ingenious bioinformatics techniques 
need to be developed that can unravel ceRNA crosstalk 
between such RNA types and eventually lead to novel 
findings which can be used as potential diagnostic targets 
to improve treatment of cancer. It is possible that the 
findings that emerge from the study of circRNAs will 
lead to improvements in the diagnosis and treatment of 
complex, heterogeneous diseases such as cancer. 

MATERIALS AND METHODS

Circ-Seq workflow 

The Circ-Seq workflow flowchart is represented 
in Figure 7. Circ-Seq is an extension of the circRNA 
detection methodology by Memczak et al. [12] and 
incorporates essential filters as well as comprehensive 
annotation to the final list of circRNA candidates. Circ-
Seq starts by fragmenting unmapped reads from the 
aligned transcriptome BAM file into short 20-mer anchors 
from their 5′ and 3′ ends and are then realigned against the 
reference genome. For every unmapped read, if the anchor 
pair maps in a 3′ to 5′ fashion, the alignment is shortlisted 
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as possible evidence for a circRNA. Next, acceptor and 
donor splice sites, i.e., AG and GT, are checked for the 
selected 3′ and 5′ anchors. The presence of anchors within 
the splice sites is treated as initial confirmation of the 
fusion of exons in a circRNA fashion. At this point, the 
workflow quantifies the number of anchors supporting 
each circRNA candidate.

Next, three unique filters are applied to eliminate 
unexpressed and false-positive circRNAs: an expression 

filter, a genomic size filter, and a validation filter. The 
expression filter retains circRNA candidates supported 
by a sufficient number of junction-spanning reads and 
is set to 5 reads by default, which is considerably more 
stringent that existing approaches [12].The genomic 
size filter discards any candidates shorter than 6 bases. 
Finally, to ensure that circRNAs reported by the workflow 
are not identified from repetitive regions of the genome, 
the validation filter uses BLAT [25] to confirm that the  

Figure 7: Circ-Seq bioinformatics workflow flowchart.
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3′ (head) and 5′ (tail) coordinates of the circRNA represent 
unique locations of the genome. After completing the 
analysis, the workflow provides a circRNA quantification 
report and a FASTA file that contains 50-base nucleotide 
sequences containing the 3′–5′ fused junction of all 
circRNAs identified.

TCGA breast cancer transcriptome data

We downloaded 1,034 breast cancer RNA-Seq 
binary alignment map (BAM) files from the TCGA 
Research Network (http://cancergenome.nih.gov/) using 
the National Cancer Institute (NCI) Genomic Data 
Commons (GDC) resource (https://gdc.cancer.gov/). 
The un-stranded Illumina TrueSeq protocol was used to 
obtain 50 nucleotide paired-end reads from TCGA breast 
cancer RNA-Seq samples. The paired-end reads were 
then aligned using MapSplice v12_07 [34]; these reads 
contained both reads mapped to the human reference 
genome (hg19 / NCBI 37.1) and unmapped reads. 

TCGA breast tumor and normal-adjacent 
samples and normal breast mammary tissue 
from GTEx 

We obtained clinical metadata for the 1,034 breast 
cancer samples from the NCI GDC Data Portal (https://
gdc-portal.nci.nih.gov/). Because TCGA continues to 
add breast cancer cases to its repository, the most recent 
number of breast cancer samples available from TCGA 
may be higher than the number used in this work. We 
first classified the samples into the three predominant 
molecular subtypes – TN, ER+ and HER2. Out of 1,034 
samples, we were able to classify subtypes for 885 
samples of which 561 were ER+, 141 were TN, and 183 
were HER2+ samples (141 + 183 + 561 = 885). Details on 
clinical classification of the 885 samples are provided in 
Supplementary Materials. 

We downloaded BAM files for 218 normal breast 
samples (126 male and 92 female samples) from the Gtex 
project (http://www.gtexportal.org/home/) using Aspera 
client (http://asperasoft.com/). Samples were sequenced 
using Illumina TrueSeq paired-end RNA sequencing 
with read length 75 bp. The transcriptome BAM files 
downloaded for the 218 samples were aligned to the hg19 
reference genome using Tophat [38]. 

Breast cancer cell lines

We also obtained RNA-Seq paired-end sequence 
files for six breast cancer cell lines (BT20, BT474, MCF7, 
MDAMB468, T47D, and ZR751) and one cell line derived 
from normal breast cells (MCF10A) [26]. Sequences from 
the cell lines were processed using the Mayo Analysis 
Pipeline for RNA Sequencing (MAP-RSeq) to yield BAM 

files for use with the Circ-Seq workflow [39]. The number 
of unmapped reads for the cell lines varied from 5 to  
22 million reads. 

Pathway analysis for tumor-specific circRNAs

Gene names and annotations of those that either 
overlap or neighbor tumor-specific circRNAs were 
obtained using the Ensembl reference system (version 
GRCh37.75). Enriched canonical pathway analysis for 
tumor-specific circRNAs in the breast molecular subtypes 
was performed using the Ingenuity pathway analysis 
software IPA (Ingenuity® Systems, www.ingenuity.com). 
Biological functions and diseases information within 
the IPA software was used for critical investigation of 
cancer-related pathways. Open source analysis toolkit 
WebGestalt [29] was also used to derive pathway results 
(Supplementary File S7).

CircRNA validation 

MCF7 breast cancer cells (American Type Culture 
Collection Manassas, VA) were cultured in EMEM 
medium containing 10% fetal bovine serum (FBS) at 37ºC 
in 5% CO2. Total RNA and genomic DNA were isolated 
using the RNeasy Plus Micro Kit and DNeasy Blood & 
Tissue Kit (QIAGEN, Inc.,Valencia, CA) respectively. 
DNA and RNA quality was analyzed using the NanoDrop 
8000 spectrophotometer. qRT-PCR was performed with 
the Power SYBR® Green RNA-to-CTTM 1-Step Kit (AB, 
Foster, CA) using a Stratagene Mx3005P Real-Time PCR 
detection system. GAPDH DNA and RNA were used 
as controls for the experiment. We designed two sets of 
primers, convergent primers that bound to linear 5′–3′ 
mRNA transcripts and divergent primers that bound to 
the circRNA transcript (chr14:102,466,325–102,500,789) 
formed in a 3′–5′ fashion (Supplementary Table S2), which 
were provided by Integrated DNA Technologies. After 
gel purification using the QIAquick Gel Extraction Kit 
(QIAGEN), the qRT-PCR product was sequenced using 
the Sanger method to confirm the head-to-tail splicing.
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