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ABSTRACT
Deregulation of the imprinted DLK1-DIO3 locus at chromosome 14q32.1-

14q32.31 has been associated with developmental and respiratory disorders, 
including cancer. In lung cancer, deregulation of imprinting at DLK1-DIO3 was 
recently described in smokers.  Deregulated expression of a microRNA (miRNA) 
cluster mapping to this locus was also associated with patient outcome, suggesting 
the importance of this locus to lung cancer disease phenotypes. The DLK1-DIO3 locus 
is complex, and encodes several protein-coding genes, in addition to long and short 
non-coding RNAs. While the role of miRNAs is established, the biological importance 
of another relevant class of small RNAs, PIWI-interacting RNAs (piRNAs), has not 
been investigated. When somatically expressed, piRNAs regulate gene transcription 
through DNA methylation. Interestingly, their expression patterns have been observed 
to be altered in cancer and correlated with patient outcome. Here, we characterize 
the somatic expression of piRNAs encoded at DLK1-DIO3 in two independent cohorts 
of lung adenocarcinoma and lung squamous cell carcinoma and investigate their 
associations with patient outcome.  We find that the expression of piRNAs encoded 
at DLK1-DIO3 enhances the prognostic potential of small non-coding RNAs specific 
to this locus in predicting patient outcome, further emphasizing the importance of 
regulation at this locus in lung cancer.

INTRODUCTION

Genomic imprinting is the process by which 
the expression of an allele is silenced by methylation 
dependant on parental origin [1].  Aberrant methylation 
patterns at imprinted loci resulting in expression changes 
of encoded transcripts are common in the pathogenesis 
of many diseases, including cancer [2, 3]. In humans, 
anomalous imprinting at the DLK1-DIO3 locus at 
14q32.1-14q32.31 has been associated with respiratory 
insufficiency and reduced thorax development, amongst 
many other developmentally-related disorders [4]. 

The complexity of this locus is derived from the 
many protein-coding and non-coding RNAs it encodes. 
This locus encodes long non-coding RNAs (lncRNAs), and 
small non-coding RNAs (ncRNAs), including one of the 
largest microRNA (miRNA) clusters in the human genome 
(Figure 1A). Deregulation of small ncRNAs, mainly 
miRNAs, expressed from this locus has been associated 
with development and progression of different tumors, 

including lung, in both humans and mice [5–7]. While 
individual genes expressed from this locus have been 
associated with lung cancer patient outcome, a signature 
of three miRNAs has been shown to better predict overall 
survival and recurrence-free survival [8]. This combined 
prediction signature suggests that the analysis of multiple 
genes encoded at DLK1-DIO3 may be more biologically 
informative than the analysis of any single gene.

The role of other classes of small ncRNAs at this 
locus, such as PIWI-interacting RNAs (piRNAs), which 
act primarily as transcriptional regulators, has not yet been 
investigated in lung cancer (Figure 2). piRNAs have highly-
conserved functions across species, including epigenetic 
silencing of transposable elements and regulation of 
imprinting in mice [9]. Although originally discovered in 
germ cells, recent evidence of their somatic expression 
in non-malignant human tissues and tumours suggests 
alternative functions and clinical importance [10–16].

In this study, we identify piRNAs expressed from 
DLK1-DIO3 and determine whether their expression 
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patterns enhance the prognostic value of small ncRNAs 
encoded at this clinically important locus. We have 
analyzed piRNA and miRNA expression profiles from 
two independent cohorts of non-small cell lung cancer 
(NSCLC) and investigated their relationship with patient 
outcome.

RESULTS

The DLK1-DIO3 locus encodes somatically 
expressed piRNAs

Deregulation of the DLK1-DIO3 locus has been 
reported to be important to lung cancer biology, but 
the role of piRNAs derived from this locus has not yet 
been described. We analyzed expression data from two 
independent cohorts of lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), and non-malignant 
lung samples to identify somatically-expressed piRNAs 
encoded at this locus (Table 1). Of the 138 piRNAs 
encoded at the DLK1-DIO3 locus, seven were expressed 
in LUAD, LUSC, and non-malignant lung samples in the 
discovery cohort (DQ596225, DQ596306, DQ596309, 

DQ596311, DQ596354, DQ596390, DQ596863) (Figure 
1B, Figure 3). Expression of all seven piRNAs was 
validated in the external cohort (Supplementary Figure 
S1). Interestingly, these somatically expressed piRNAs 
are encoded exclusively in the imprinted locus. In the 
discovery cohort of paired tumour and non-malignant 
lung tissues, four of seven somatically expressed piRNAs 
(DQ596225, DQ596306, DQ596309, DQ596354) were 
significantly overexpressed in LUAD and one piRNA 
(DQ596309) was overexpressed in LUSC (Figure 3). In 
the external dataset, two piRNAs (DQ596225, DQ596390) 
were validated to be significantly differentially expressed. 
Furthermore, six of seven piRNAs were significantly 
differentially expressed between LUAD and LUSC, with 
higher expression observed in LUSC (Supplementary 
Figure S1).

A combined miRNA+piRNA signature better 
predicts overall survival of lung adenocarcinoma 
patients

Previous work has shown that a multi-miRNA 
classifier (miR-370, miR-376a, and miR-411) was able 

Figure 1: Schematic of the DLK1-DIO3 imprinted locus. Genomic coordinates are derived from the UCSC Genome Browser 
(hg19 build). (A) illustrates protein-coding genes (black), long non-coding RNAs (purple), and snoRNAs (yellow). (B) is a zoomed view 
of chr14:101,350,000-101,650,000 to highlight the genomic position of miRNAs previously associated with lung cancer patient outcome 
(miR-370, miR-411, and miR-376a), as well as the seven piRNAs identified as expressed in this study. miRNAs, including two large miRNA 
clusters containing 41 miRNAs in total, are coloured in blue; piRNAs are coloured in red.
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Table 1: Clinical features of lung cancer patient cohorts

Clinical Feature Discovery Cohort
n (%)

External Cohort
n (%)

Histological Subtype LUAD LUSC LUAD LUSC
Tumour 84 34 163 220
Non-malignant 84 34 46 45
Smoking History

Current 35 (42) 11 (32) 44 (27) 57 (26)
Never 25 (30) 1 (3) 17 (10) 7 (3)
Former 20 (24) 22 (65) 98 (60) 147 (67)

Gender
Male 24 (33) 10 (29) 86 (53) 165 (75)
Female 56 (67) 24 (71) 77 (47) 47 (21)

Age
Range 45–90 58–88 40–86 39–84
Median 71 70 64 68

Stage
IA 29 (35) 3 (9) 37 (23) 36 (16)
IB 19 (23) 11 (32) 51 (31) 61 (28)
IIA 13 (15) 4 (12) 13 (8) 30 (14)
IIB 5 (6) 7 (21) 23 (14) 40 (18)
IIIA 10 (12) 2 (6) 21 (13) 31 (14)
IIIB 0 (0) 1 (3) 6 (4) 10 (5)
IV 2 (2) 1 (3) 12 (7) 3 (1)

Figure 2: Small ncRNA-mediated mechanisms of gene expression regulation at the DNA and RNA levels. At the DNA 
level, piRNAs form a complex with PIWI (P-element-induced wimpy testis) proteins. piRNAs first target DNA sequences through base 
complementarity. Then, the piRNA/PIWI complex recruits the silencing machinery required to induce new DNA methylation events  
(red lollipop) nearby the targeted region, repressing transcript expression. At the RNA level, miRNAs, together with a RNA-induced 
silencing complex (RISC), bind to a 3ʹ untranslated region (UTR) target sequence through base complementarity, which results in 
translational repression or mRNA degradation.
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to predict LUAD patient outcome (Figure 1B) [8]. We 
applied this signature to our discovery dataset of LUAD 
and assessed the ability to predict patient overall survival 
(OS). Patient risk scores, indicating risk of death, were 
derived from a Cox proportional hazard model composed 
of these miRNAs. LUAD patients were divided into low, 
intermediate, and high risk groups and subjected to log-

rank survival analysis. While this miRNA signature is able 
to classify low risk patients in the discovery dataset, the 
intermediate and high risk groups are not well segregated 
(Figure 4A). In the external dataset, the miRNA signature 
is better able to stratify LUAD patient risk groups and 
achieves marginal significance (low risk vs. high risk 
p = 0.051) (Supplementary Figure S2).

Figure 3: Histograms of piRNAs expressed in the discovery dataset (BCCA). Histograms display mean RPKM expression 
plus SEM in 84 paired non-malignant lung (NM-LUAD) and lung adenocarcinoma samples (LUAD), and 34 paired non-malignant lung 
(NM-LUSC) and lung squamous cell carcinoma (LUSC) samples. Significant p-values resulting from paired sign-rank analyses of gene 
expression are indicated as follows: *p < 0.05 **p < 0.01.
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Next, we investigated if piRNAs expressed from the 
DLK1-DIO3 locus could predict LUAD patient outcome. 
Just as the consideration of multiple miRNAs produced 
a predictive signature, we hypothesize the consideration 
of multiple piRNAs expressed from this locus could 
result in a similar signature. Interestingly, while piRNA 
expression alone was unable to significantly predict OS 
in univariate or multivariate analysis, the incorporation of 
piRNA expression into the miRNA signature improved the 
stratification of patients into risk groups. The final survival 
model was selected by adding different combinations 
of the seven expressed piRNAs to the miRNA Cox 
proportional hazard model, and the model with the lowest 
p-value was used to calculate patient risk scores. The 
final survival model included the three-miRNA signature 
and four piRNAs encoded at this locus (DQ596306, 
DQ596309, DQ596390, and DQ596863), and will be 
referred to as the miRNA+piRNA signature. 

Approximately one-third of patients from each risk 
group are reclassified by the miRNA+piRNA signature 
(Figure 4C). Low risk LUAD patients had significantly 
improved outcome compared to both high (p = 0.002) and 
intermediate (p = 0.015) risk groups (Figure 4B). In the 
external cohort, high-risk LUAD patients had significantly 
worse outcome compared to both low (p = 0.037) and 
intermediate (p = 0.011) risk groups (Supplementary 
Figure S2). In the external dataset the Kaplan-Meier curves 
of the low and medium risk groups were overlapping; 
suggesting the miRNA+piRNA signature is better able 
to categorize intermediate risk patients into either high 

or low risk groups. When the new low and intermediate 
risk groups are combined in this dataset, the OS prediction 
improves (p = 0.004) (Figure 7, Supplementary Figure S2).  
A family-wise error rate (FWER) adjustment was applied 
to the p-values using the stringent Bonferroni method in 
order to test the robustness of the signature. Even after 
adjustment, the majority of the miRNA+piRNA signature 
p-values passed the new significance threshold (Figure 7).

The miRNA+piRNA signature is able to predict 
overall survival of lung squamous cell carcinoma 
patients

The previously-described miRNA signature has 
not been assessed in the other major subtype of NSCLC, 
LUSC.  In both our discovery and external datasets, 
LUSC patient risk groups as defined by the miRNA 
signature did not have significantly different OS outcomes  
(Figure 5A). Similarly, the LUSC patient risk groups 
stratified by piRNA expression did not have significantly 
different OS. However, as was shown in LUAD, the 
miRNA+piRNA signature was also able to classify LUSC 
patients into risk groups with distinct OS outcomes in 
both the discovery (Figure 5B) and external datasets 
(Figure 7, Supplementary Figure S3). P-values remained 
significant after Bonferroni adjustment in the external 
dataset. All but one of the intermediate risk LUSC patients 
were reclassified into either high or low risk groups by 
the miRNA-piRNA signature in the discovery dataset 
(Figure 5C). Furthermore, the intermediate and high risk 

Figure 4: Overall survival of risk groups as defined in the lung adenocarcinoma discovery dataset (BCCA) (n = 75). 
Kaplan-Meier curves of high (red), intermediate (green), and low (blue) risk groups as defined by (A) the miRNA signature and (B) the 
miRNA+piRNA signature are shown. Log-rank p-values of select survival comparisons are shown. (C) Patients are ordered by their 
miRNA signature-based risk classification (top) in order to illustrate the re-classification that occurs when the miRNA+piRNA signature 
(bottom) is applied to the dataset.
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Kaplan-Meier curves overlap, again suggesting that the 
miRNA+piRNA signature may identify two risk groups 
rather than three in some cases.

The miRNA+piRNA signature identifies patients 
at risk of recurrence-free survival

In the external dataset, we compared RFS data of 
risk groups defined by the miRNA signature, the piRNA 
signature, and the miRNA+piRNA signature. Only the 
miRNA+piRNA signature was able to stratify two patient 
risk groups with statistically different outcomes. Similarly 
to OS, RFS classifications by the miRNA+piRNA 
signature were statistically significant in both LUAD 
(p = 0.018) and LUSC histological subtypes (p = 0.037) 
(Figure 6), but did not pass Bonferroni adjustment 
(Supplementary Figure S4).

DISCUSSION

Here, we establish that piRNAs are expressed at 
the DLK1-DIO3 locus, and suggest their relevance to 
lung cancer prognostics. We demonstrate the biological 
importance of multiple small ncRNA species through 
associations with NSCLC patient outcome. Incorporating 
both piRNA and miRNA expression in the classification 
of LUAD patients into risk groups improves classification 
compared to either small RNA species alone. In addition, 
stratification considering piRNA expression broadens the 
applicability of the signature to LUSC, which was not 
possible with miRNA expression alone. These findings 

highlight the complexity of the DLK1-DIO3 locus and 
underscore its clinical relevance to both major histological 
subtypes of NSCLC.

The enhanced prediction of patient outcome 
may be linked to the additional level of regulation of 
gene expression provided by piRNAs, as well as the 
specific features of the seven piRNA expressed from 
the DLK1-DIO3 locus. In order to regulate repetitive 
elements, single piRNAs are often encoded at multiple 
loci throughout the genome. However, piRNAs encoded 
at one locus are thought to function by regulating DNA 
methylation in target regions thereby acting as regulators 
of gene expression [17, 18]. We identify seven somatically 
expressed piRNAs solely encoded at this locus, suggesting 
these piRNAs may function to regulate methylation of 
target genes. Malignancy-associated methylation changes 
at this locus were recently described in lung cancer [19]; 
therefore, it is possible these piRNAs are involved in the 
deregulation of methylation patterns of this locus during 
lung tumourigenesis. Further studies will be required 
to determine whether deregulation of methylation at 
the DLK1-DIO3 locus is mediated by piRNAs or by 
alternative mechanisms.

Although the function of somatically-expressed 
piRNAs has not yet been fully established, mounting 
evidence indicates they may serve as prognostic markers 
in a variety of tumor types, including  gastric (RFS), 
colon (RFS), breast (lymph node positivity), kidney 
(OS) and head and neck (OS) cancer [11, 13–16, 20, 21]. 
Moreover, piRNAs, as other small ncRNAs, are stable in 
biofluids and formalin-fixed paraffin-embedded material, 

Figure 5: The miRNA+piRNA signature predicts overall survival in lung squamous cell carcinoma patients. Risk scores 
calculated based on (A) miRNA signatures and (B) miRNA+piRNA signatures. Patients were assigned to high (red), intermediate (green), 
and low (blue) risk groups and Kaplan-Meier survival curves were compared. (C) Risk group classifications were compared based on the 
miRNA-only (top) and miRNA+piRNA (bottom) signatures. Risk group colors are the same as in the above panels.
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highlighting the potential of piRNA-based prognostic 
markers across a variety of tumour types.

In summary, our results provide further evidence of 
the involvement of imprinting-regulated small ncRNAs 

into NSCLC biology. The tissue-specific expression 
patterns of piRNAs and other small ncRNAs warrants 
further studies in order to establish their role across a 
wider spectrum of tissue types. 

Figure 6: Performance of small ncRNA-based signatures predicting recurrence-free survival in non-small cell lung 
cancer. Risk groups as defined in the external dataset of (A) lung adenocarcinoma (LUAD, n = 107) and (B) lung squamous cell carcinoma 
(LUSC, n = 149). Kaplan-Meier curves of high risk groups (red) compared to the combined low and intermediate risk groups (turquoise) 
as defined by the miRNA+piRNA signature are shown. (C) LUAD patients and (D) LUSC patients are ordered by their miRNA signature-
based risk classification (top) in order to illustrate the re-classification that occurs when the miRNA+piRNA signature (bottom) is applied 
to the dataset. Intermediate and low risk patients are represented by green and blue bars, respectively.

Figure 7: Log-rank p-value summary for overall survival predictions. Bar lengths represent the –log10(p-value) of each signature 
for LUAD (top) and LUSC (bottom) patients from (A) the discovery cohort and (B) the external cohort. Comparison across different 
risk groups are as follows: low vs. high risk (grey bars), intermediate vs. low risk (white bars), low vs. intermediate risk (black bars).  
Significance thresholds are established at p-value = 0.05 (red dashed line indicates –log10 0.05), and at p-value = 0.017 (Bonferroni-adjusted 
p-value) (green dashed line indicates –log10 0.017).
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MATERIALS AND METHODS

Clinical cohorts and sample purity estimates

A description of discovery and external datasets and 
their clinical features can be found in Table 1.

Discovery cohort

Paired tumour and non-malignant samples were 
obtained from the British Columbia Cancer Agency 
(BCCA) under Research Ethics Board approval. Tumour 
sections were microdissected to achieve > 80% cell purity, 
as directed by a pathologist [21, 22]. 

External cohort

In The Cancer Genome Atlas (TCGA) dataset, 
purity estimates for tumour samples were publically 
available (http://cancergenome.nih.gov/). A purity cut-off 
of > 70% was applied according to previously published 
studies [23]. This was to make expression profiles more 
comparable between datasets, and to reduce contaminating 
sequences derived from alternative cell types since piRNA 
and miRNA expression is highly tissue specific.

RNA extraction and small RNA sequencing

For our discovery cohort (BCCA), total RNA 
was extracted using Trizol reagent (Thermofisher, 
Waltham, MA, USA), according to the manufacturer’s 
instructions, and eluted in RNase-free water. RNA 
concentration and quality was determined using a 
NanoDrop™ 2100 spectrophotometer, and samples 
were stored at −80°C. Sequencing analysis protocol was 
performed in the same manner for both the discovery and 
external (TCGA) cohorts [24].  Small RNA sequencing 
libraries were generated at Canada’s Michael Smith 
Genome Sciences Centre and sequenced using Illumina 
HiSeq2000 instruments. For miRNA expression levels 
in our discovery cohort, reads were aligned using the 
Burrows-Wheeler Aligner (Version 0.5.7) and quantified 
against a miRNA annotation reference (miRBase Mature 
microRNAs Version 20). miRNA expression levels for the 
external cohort (TCGA) were accessed and retrieved in 
January 2015 using the TCGA data portal.

piRNA expression was determined as previously 
described [13]. Briefly, reads were first subject to quality 
control to exclude non-biological artifacts. Then, unaligned 
reads (in FASTQ format) were trimmed by size (retained 
reads ≥ 23 bp) and quality score (Phred quality scores ≥ 20)  
in order to enrich for high-quality reads mapping to 
piRNAs. Using the PartekFlow™ platform (Partek Inc., 
MO, USA), high-quality reads were mapped to the human 
genome (GRCh37/hg19) using the Spliced Transcripts 
Alignment to a Reference (STAR) aligner [25]. Reads 
were quantified by an Expectation/Maximization (E/M) 

algorithm [26] using a piRNA-specific annotation file 
generated from the piRNABank database (http://pirnabank.
ibab.ac.in/) [27]. Partek Genome Suite (PGS) was used 
to further process and filter quantified files. Reads per 
kilobase of exon model per million mapped reads (RPKM) 
was used to scale and normalize read count [28].  

Small non-coding RNA differential expression 
analysis

Small ncRNAs were considered expressed if they 
had a scaled/normalized expression value ≥ 1 in at least 
10% of both the discovery and external datasets. In the 
discovery cohort, small ncRNA expression from the paired 
tumour and non-malignant lung samples were compared 
by the sign-rank test, and between histological subtypes 
by the Mann Whitney U-test. In the external cohort, all 
two-group comparisons were performed using the Mann 
Whitney U-test. Significance threshold was established at 
p-value ≤ 0.05.

Survival analysis

Univariate analysis: Cases were grouped based 
on piRNA expression tertiles, and survival analysis was 
conducted by log-rank test. For piRNAs with expression 
of 0 RPKM in > 1/3 of samples, cases were dichotomized 
into those with RPKM = 0 and those with RPKM > 0.

Cox proportional hazard model: Samples that had 
complete miRNA expression (RPKM), piRNA expression 
(RPKM), and survival data (overall survival or recurrence-
free survival) were considered for Cox proportional hazard 
models. In addition to miRNAs previously associated 
with lung cancer patient outcome (miR-370, miR-376a, 
miR-411), Cox proportional hazard models including 
combinations of the seven expressed piRNAs, and 
combinations of the miRNAs and piRNAs were analyzed. 
The model with the lowest p-value was chosen for further 
analysis. Patient risk scores were generated per model by 
multiplying the expression value of a given gene by its 
hazard coefficient, and then summing the transformed 
gene expression values per sample [21]. Risk scores were 
ranked and divided into tertiles of high, intermediate, and 
low risk. Risk group Kaplan-Meier survival curves were 
then compared using the log-rank method. Significance 
threshold was established at p-value ≤ 0.05. Raw p-values 
were then adjusted using the Bonferroni method, resulting 
in an adjusted p-value cut-off of ≤ 0.017.
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