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ABSTRACT
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Trastuzumab, the first antibody widely used in anti-HER2 targeted therapy,
dramatically improved the overall outcome of HER2 positive breast cancer patients.
However, trastuzumab resistance emerged as a major problem in its clinical
application. In order to explore mechanisms underlying trastuzumab resistance,
we performed RNA-Seq to analyze the gene expression variation in trastuzumab
resistant breast cancer cell line. The sequencing result was then combined with the
relevant data in TCGA database to conduct a co-expression analysis. We found a
series of differentially expressed genes with potential contributions to trastuzumab
resistance. Among them, KLK10 was verified to be a potential therapeutic target for
reversing trastuzumab resistance. In summary, this study provides a new clue to
screen molecular targets and predictive biomarkers for trastuzumab resistance.

INTRODUCTION

Breast cancer accounts for the highest morbidity
and mortality among all cancers in female globally [1].
Nearly 30% breast cancer patients have HER2 gene
amplification [2]. Trastuzumab, the first antibody widely
used in anti-HER?2 targeted therapy, dramatically improved
the overall survival of HER2 positive breast cancer
patients. Recently, it has been approved to treat HER2
positive gastric cancer [3]. With its extensive application,
trastuzumab resistance emerged as a major problem. Novel
targets are expected to reverse trastuzumab resistance.
Unfortunately, no effective targets or biomarkers have
been approved for trastuzumab resistance. Most of such
efforts to identify biomarkers or targets for trastuzumab
resistance were based on the molecular mechanism of
trastuzumab [4, 5]. More practical alternative approaches
would be necessary to identify biomarkers to predict and
targets to reverse trastuzumab resistance.

RNA-Seq(RNA sequencing) technology has been
commonly used in high throughput analysis of genome-

wide gene expression [6]. In addition, the Cancer Genome
Atlas (TCGA) project collects high throughput analyses
such as gene expression profiling, exon sequencing,
SNP genotyping, genomic DNA methylation profiling
and microRNA profiling along with clinical data of
each patient [7]. In this study, we are trying to combine
our RNA-Seq analysis of trastuzumab resistant breast
cancer cells with TCGA database to discover potential
biomarkers and therapeutic targets for trastuzumab
resistance in breast cancer.

RESULTS

Establishment of trastuzumab resistant breast
cancer cell line

BT474 HR (Herceptin Resistant) cells were
established by culturing BT474 cells with 1pg/ml
Trastuzumab for 6 months and 4 pg/ml Trastuzumab
for 3 months. No obvious cellular morphology changes
were observed in BT474 and BT474 HR. As expected,
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trastuzumab could remarkably inhibit the growth
of BT474 but not BT474 HR cells (Figure 1A). To
determine why trastuzumab can inhibit cell growth, cell
apoptosis and cell cycle distribution were determined
after trastuzumab treatment. Significant changes were
observed in the distribution of cell cycle phases in BT474
after trastuzumab treatment (Figure 1B). Trastuzumab
could induce G1 phase arrest strikingly in BT474 cells in
a dose-dependent manner, but not in BT474 HR. However,
Trastuzumab failed to induce apoptosis in neither BT474
nor BT474 HR (Figure 1C and 1D).

RNA expression profiling of BT474 and
BT474HR cells

We wused RNA-Seq to reveal changes of
transcriptome in BT474 and BT474 HR cells. 65,677
differentially expressed transcripts from 16,170 genes
were received through RNA-Seq analysis. Genes had
a mean transcript variant number of about 3 (1-41)
(Figure 2A). The volcano plot was used to observe for
abnormal signals (Figure 2B). After filtering out these
outliers, 246 genes were found to be statistical significance
(p < 0.05). Next, quantitative real-time PCR was used
to validate differentially expressed genes including
MAPY, MET, SPNS2, TCEA3 and UGCG using highly
and equally expressed GAPDH, ERBB2 and SQSTM1
as the control. For all these tested genes, the expression
determined by quantitative real-time PCR was consistent
with RNA-Seq results (Figure 2C). The representative

transcripts for each protein coding gene, which had a
higher level of expression, were selected for further
analysis. The data was plotted with expression ratio vs.
average expression (Figure 2D), and there was neither
obvious skewed distribution nor abnormal signal after
filtering. Finally, differential expression data of 12,228
transcripts was extracted as representatives of effective
protein coding genes.

Co-expression analysis

To explore functions of differential genes
systematically, gene co-expression network was utilized.
In this method, we selected genes both meaningful
in our RNA-Seq data and in expression profile from
TCGA. A total of 9,913 genes were obtained in two
data sets. In TCGA, 444 cases were in accordance with
the co-expression analysis criteria. This data set was
analyzed by WGCNA clustering and 36 gene sets were
finally clustered. The clusters were then correlated with
expression features in tumor tissues, ER, PR and HER2
states (Figure 3A). For summarizing such clusters, the
principal component of each cluster or module eigengene
(ME) was used. For instance, MEO had no significant
correlations with all features, while HER2 status had no
significant correlation to any clusters but ME32. Different
cluster had various degrees of relevance to tissue types,
ER and PR. Highly similar correlation patterns of ER and
PR implied the clustering of co-expression was a good
indicator for biological functions.
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Figure 1: Establishment of Trastuzumab resistant breast cancer cell line. (A) Cell viability in the presence of various
concentration of trastuzumab were determined by MTS assay. The cell cycle distribution (B) and cell apoptosis (C) were determined by

flow cytometry analysis.
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If drug resistance-related genes were irrelevant
to co-expression cluster genes, selected genes that
changed most remarkably in the expression should be
uniformly distributed in the co-expression cluster gene
sets. In contrast, the relationship between this gene set
and drug resistance was significant when a particularly
large number of differentially expressed genes were
presented in some co-expression gene sets. Therefore,
the top 10% differentially expressed genes were selected,
and the distributions of their frequency of occurrence in
the co-expression gene cluster sets were compared and
statistically tested to show whether they consisted more
than 10% of a gene set. As shown in Figure 3B, ME3
and ME6 gene sets had more top 10% differentially
expressed genes. It implied that these gene sets were
more significantly related with drug resistance. Also, they
were more related to tumor, representing good sources for
targets and biomarkers identification.

Target validation

Therefore, KLK 10 from ME3 and KLK11 from ME6
were selected as potential targets for further validations.
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Receptor tyrosine kinase encoding EPHA3 from ME4,
which had a low score, was chosen as a control.

Quantitative real-time PCR validated the differential
expression of these genes (Figure 4A). To further explore
the biological relevance of these genes to drug resistance,
trastuzumab induced growth inhibition before and after
knock-down of these potential targets were determined by
MTS assay. While depletion of EPHA3 or KLK11 had no
significant effects on trastuzumab sensitivity (p > 0.05),
KLK10 knock-down significantly reversed resistance to
trastuzumab (p < 0.05) (Figure 4B and 4C).

To further confirm the relevance of KLKI10 to
trastuzumab resistance, cell cycle distribution was measured
in the presence of trastuzumab and KLK 10 depletion. After
KLK10 depletion, trastuzumab successfully induced G1
arrest (Figure 5A). As dephosphorylated Retinoblastoma
(RB) protein is a well-known marker for G1 phase [8],
we detected phosphorylation level of RB in BT474 HR
cells treated with trastuzumab and KLK10 siRNA. pRB
in BT474 but not BT474 HR cells were indeed decreased
after trastuzumab treatment (Figure 5B). Once KLK10
was depleted, trastuzumab successfully decreased pRB
in BT474 HR cells (Figure 5B and 5C). Trastuzumab
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Figure 2: RNA expression profiling of BT474 HR cells. The distribution of transcripts counts per gene from RNA-Seq analysis was
shown in (A). The X axis represented the number of transcripts per gene and the Y axis represented transcripts count number. Statistical
significance versus fold-change distribution of differential expression of BT 474/ BT474 HR was shown in (B). (C), RNA-Seq results
was verified by quantitative real-time PCR (upper panel). The result of RNA-Seq were shown in the lower panel. GAPDH, ERBB2 and
SQSTMI1 were used as the control. Relative expression levels and the average expression levels were shown in (D). The X axis represented
the average expression and the Y axis represented the fold-change of expression of BT474 HR/ BT474. Statistically significant (»p < 0.05)

transcripts are highlighted.
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treatment led to almost 60% inhibition of pRB in BT474
cells, but only 17% in BT474 HR cells (Figure 5D).
However, KLKI10 siRNA significantly increased
trastuzumab-induced inhibition of pRB. Furthermore,
SFIT method [9] was used to distinguish the cell cycle
phases. After knock-down of KLK 10, trastuzumab-treated
cells were accumulated in G1 phase with low pRB levels
(Figure SE). Together, KLK 10 siRNA succeeded to reverse
trastuzumab resistance.

Given the significant effect of drug resistance on
clinical outcome, we explored the relevance of KLK10
expression to the overall survival of breast cancer
patients. According to the median expression of KLK10,
434 patients from TCGA database were divided into high
expression group and low expression group (Figure 5F).
High expression of KLLK10 was related to poor prognosis
in HER2 positive breast cancer patients (n = 434, log-
rank p = 0.0165418). Cox proportional hazards regression
analysis showed that high expression of KLK10 led to
an elevation of 18.1% hazard risk (95% CI:1.015-1.375,
p =0.031).

DISCUSSION

Despite the successful application of trastuzumab
for the treatment of HER2 positive breast cancer, its
acquired or intrinsic resistance hurdled improvement
of breast cancer patients. In this study, we profiled gene
expression in a newly established trastuzumab resistant
breast cancer model and combined it with publically
available database to identify potential targets to reverse
trastuzumab resistance. Indeed, KLK 10 was increased in
trastuzumab-resistant cells and its depletion succeeded to
reverse trastuzumab resistance. Importantly, high KLK10
expression was associated with poor prognosis of breast
cancer, indicating that KLK10 is a potential target and
prognosis predictor for trastuzumab resistance.

Although there are 246 genes detected to be
statistically significant differentially expressed between
BT474 and BT474 HR cells, some may have no
relevance to trastuzumab resistance per se. Therefore,
other approaches are needed to screen potential targets
for further functional analyses. Co-expression is models
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Figure 3: Co-expression analysis of RNA-Seq and TCGA database. (A) The correlation between co-expression cluster’s
eigengene and whether the tissue type (normal tissue or tumor), ER, PR and HER2 states. In each module, there were two rows, the first row
was correlation. —1 represented negative correlation and 1 represented positive correlation. The second row was p value, “not sig” meant
no significant. (B) The top 10% differentially expressed genes enriched in each clusters. The X axis represented the correlation to tumor or
normal tissue, and the Y axis was —In(p) from bionmial test, represented the likelihood to trastuzumab resistance.
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of multiple gene expression pattern associated with
certain potential biological functions. Co-expression can
determine the functional expression pattern of breast
tissue while differential expression analysis can reflect the
single gene expression patterns in two cell straits, with
both random patterns and meaningful patterns related
to trastuzumab resistance. By constructing a reasonable
score, a combination of both methods can be achieved
to get a list of genes with important functions. By
enrichment analysis of clustering gene sets and differential
expression data, we obtained ME3, ME6 and other gene
sets potentially related with trastuzumab resistance. The
persistent differentially expressed genes in such gene
sets would have much higher chance to be prediction
biomarkers and intervention targets for trastuzumab
resistance. Indeed, we have successfully identified KLK10
from ME3 as a relevant target to reverse trastuzumab
resistance.

The members of KLK family are exocrine protein
readily to be detected in the serum. Interestingly, KLK3
is a tumor-associated biomarker well known as prostate
specific antigen (PSA). KLK4, KLKS5, KLK6 and KLK7
have been found related to the prognosis of ovarian cancer
[10-13]. Therefore, it would be interesting to explore
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whether plasma level of KLK10 are associated with drug
resistance and overall survival in breast cancer. In fact,
KLKI10 also has been found related to the prognosis
of breast cancer due to its association with tamoxifen
resistance [14]. In summary, by co-expression analysis of
TCGA data with gene expression profile of trastuzumab
resistant breast cancer, we identified KLK10 as a potential
biomarker and intervention target for trastuzumab
resistance. We found a series of differentially expressed
genes with potential contributions to trastuzumab
resistance. Among them, KLK10 was verified to be a
potential therapeutic target for reversing trastuzumab
resistance.

MATERIALS AND METHODS

Cell lines

Human breast cancer cell line BT474 was obtained
from American Type Culture Collection (ATCC,
Manassas, VA, USA) and maintained in RPIM 1640
supplemented with 10% FBS at 37°C in a humidified, 5%
CO, incubator. BT474 HR (Herceptin Resistant) cells were
maintained in the presence of 10 pg/ml trastuzumab.
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Figure 4: Functional validation of potential targets. (A) Quantitative real-time PCR was performed to compare KLK10, KLK11
and EPHA3 mRNA expression in BT474 HR and BT474. (B) The mRNA expression was determined by quantitative real-time PCR
after transiently transfected with NC siRNA or KLK10, KLK11 and EPHA3 targeting siRNA in BT474 HR. (C) The cells viability was
determined by MTS assay after trastuzumab treatment for 48 hours in BT474 HR.
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Cell viability assay

MTS assay was performed with the CellTiter 96®
Aqueous No-Radioactive Cell Proliferation Assay Kit
(Promega). The cells were transferred into a 96-well
plate and cultured overnight before adding trastuzumab
or phosphate buffer saline (PBS). 48 h or 72 h later, the
cell viability was measured following the manufacturer’s
instruction. Samples were prepared in triplicates at least.

RNA extraction and quantitative real-time
RT-PCR

Total RNA was extracted by TRIzol reagent
(Invitrogen) according to the manufacturer’s. RNA
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concentrations were quantified by NanoDrop™ 2000
(Thermo Scientific). Reverse transcription reaction was
performed using 2 pg of total RNA with Quantscript RT
Kit (Tiangen biotechnology, Beijing, China). The mRNA
expression level was determined by quantitative real-time
PCR using Bestar® SybrGreen qPCR mastermix (DBI)
and LightCycler 480® II Real-Time PCR System (Roche).
Primers used are listed in Table 1.

RNA-seq

RNA-Seq was performed with Ion Total RNA-Seq kit
v2 of Ton Proton™ (Ton Torrent, Life Technologies). GRCh37
reference genome from the phase 3 of the 1000 Genomes
Project was used for RNA-Seq alignment. Gene annotation
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Figure 5: KLLK10 is a potential target to reverse trastuzumab resistance. (A) Cell cycle distribution of trastuzumab and
KLK10 siRNA treated cells were determined by flow cytometry. (B) pRB signal density in various cells as indicated were analyzed by
flow cytometry. (C) Numbers of cells with RB or pRB signal were counted by flow cytometry. (D) Ratios of pRB dephosphorylation were
calculated based on the detection of pRB by flow cytometry. (E) The distribution of pRB signal in different cell cycle phases in cells treated
as indicated were analyzed by flow cytometry. (F) Effect of KLK 10 expression on overall survival of HER2 positive breast cancer patients
were determined by Kaplan-Meier plot. Log-rank test was used for statistical analysis.
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Table 1: Primers used in the study

Gene Forward (5'-3") Reverse (5'-3')
GAPDH GGAGTCAACGGATTTGGT GTGATGGGATTTCCATTGAT
ERBB2 AGGAGTGCGTGGAGGAAT CCAGATGGGCATGTAGGAG
MAP9 CAATTACAGCTCGCTCAG CTTTGGTTATGTTACCGTTT
MET ATTGATTGCTGGTGTTGT TTTCTGTAGTTGGGCTTAC
SPNS2 TGGACAGGTACACCGTGGCA GGGAATGAAGGAGCTGGAGA
SQSTM1 AGAACGTTGGGGAGAGTGTG GCGATCTTCCTCATCTGCTC
TCEA3 CAAGTCTTCTGCCTCCTCC AATCATCGTCCGCCTTCA
UGCG TGATCCAGCCATTGATGT CCGTGAACCAAGCCTACT
KLK10 CTTGGACCCCGAAGCCTATG CACAGTGGCTTGTTTCCGC
KLK11 TCTCACAGCAGCCAAGGAAC CAGAGTAGCCGCGTCTTCTC
EPHA3 GAGGTCAAATACTATGAAAAGCAGG TGTTCGTCCCATATCCAGCG

of GRCh37.p13 GENCODE Release 19 was utilized to
determine the splicing site annotation files. STAR v2.4.1d
was used [15] and 2-pass strategy preliminary comparison
was adopted, annotations splicing site information was
utilized, and the parameters were same in ENCODE Projec
[16]. To align the unsuccessful sequence of STAR, Bowtie2
v2.2.4 was used with a more sensitive parameter ‘“—Ilocal —
very-sensitive-local” [17]. Finally, Samtools v1.1 was utilized
to combine the results of the two methods.

Obtain the differential expression by annotation
database

The numbers of transcript fragments per kilobase
of per million mapped reads (FPKM) were calculated to
determine the relative amount of mRNA in the cells. Data
was normalized with the default FPKM method of cuffdiff
v2.2.1 from Cufflink [18]. GRCh37.p13 GENCODE
Release 19 was selected for annotation and cummeRbund
on the platform R v3.2.4 was used to determine the
differential expression according to the comparison of
BT474 and BT474 HR data.

TCGA database extraction

All data which included both Level 3 microarray
data and clinical data in XML format data set of breast
cancer patients by TCGA DATA Portal were selected.
XML package of R was used to parse clinical data in
XML format. The required information was extracted
and merged into the corresponding microarray data.
Microarray data downloaded from UNC AgilentG4502
platform including 593 cases of specimens. These
specimens were from 529 breast cancer patients’ tumor
and normal tissues. The patients’ clinical profiles including
the age, gender, race, follow-up times (days), end event,
the method of first time confirmed diagnosis, histological

type, ER and PR status, immunohistochemistry and FISH
of HER2, pathological stage and grade were extracted.

Co-expression analysis

WGCNA v1.46 of R was used to cluster the
dataset [19]. Correlation analyses of other clinical
indicators were adopted to identify potential tumor-
associated co-expression patterns. For each gene
co-expression cluster, the differential expression result was
evaluated with enrichment analysis by binomal test and
calculated a score for the association of drug resistance.

siRNA transfection

KLK10, KLK11 and EPHA3 depletion were achieved
by transfection with siRNA (Gene pharma, Shanghai,
China). Cells were seeded overnight in 6-well plates
(4 x 10°/well) and transfected with siRNA duplexes (20 nM)
using Lipofectamine™ RNAiIMAX transfection reagent
(Invitrogen) following the manufacturer’s instruction. The
sequences of various siRNAs are listed in Table 2.

Flow cytometry analysis

4 x 10° cells cultured overnight in 6-well plates
were treated with or without trastuzumab and harvested
after 48 or 72 hours. Cell apoptosis were detected with
apoptosis kit (FITC Annexin V Apoptosis Detection Kit I,
BD Pharmingen™). Briefly, cells were washed twice with
cold PBS and incubated in 100 pl binding buffer with 5 pl
of FITC Annexin V and 5 pl PI for 15 minutes in the dark.
For cell cycle analysis, cells were resuspended in 200 pl
cold PBS, and then added into 1 ml 70% ecthanol. After
an hour, cells were transferred to 450 pl PBS with 40 pl
RNAse (Sigma) and 10 pl PI. For pRB expression analysis
[20], room-temperature 1.5% (vol/vol) paraformaldehyde
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Table 2: siRNAs used in the study

antisense (5'-3")

Gene sense (5'-3")
KLK10-#1 UCUUCAACGGCCUCUCGUUTT
KLK10-#2 CCCGGAGAGUGAAGUACAATT
KLK10-#3 GGUCACCAACAACAUGAUATT
KLK11-#1 GCAGUUAAUCCUGCUUGCUTT
KLKI11-#2 GCAACAUCACAGACACCAUTT
KLKI11-#3 GGAGACGAUGAAGAACAAUTT
EPHA3-#1 GCUCUGUUCUCGACAGCUUTT
EPHA3-#2 CCAGGUUUCUACAAGGCAUTT
EPHA3-#3 GCGGUCAGCAUCACAACUATT

AACGAGAGGCCGUUGAAGATT
UUGUACUUCACUCUCCGGGTT
UAUCAUGUUGUUGGUGACCTT
AGCAAGCAGGAUUAACUGCTT
AUGGUGUCUGUGAUGUUGCTT
AUUGUUCUUCAUCGUCUCCTT
AAGCUGUCGAGAACAGAGCTT
AUGCCUUGUAGAAACCUGGTT
UAGUUGUGAUGCUGACCGCTT

was added for 10 minutes to fix the cells washed twice with
cold PBS. Fixed cells were permeabilized by slowly adding
cold 100% methanol. 100 ul PBS with 1 ug pRB antibody
(Phospho-RB Ser807/811, Cell Signaling Technology)
was then added to mark the cells. After the incubation of
fluorochrome-conjugated secondary antibody, cells were
then stained with PI as previously described.

Survival analysis

434 breast cancer (invasive ductal carcinoma)
patients with follow-up information from TCGA DATA
Portal were chosen. According to the median of KLK10
expression, patients were divided into high and low
expression group, Kaplan-Meier Plot was used to reveal
differences in survival between the two groups. The log-
rank test was used for the statistical analysis of overall
survival. A cox proportional hazards regression analysis
was conducted to quantify the risk.
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