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ABSTRACT
Notwithstanding the peculiar sensitivity to cisplatin-based treatment, resulting 

in a very high percentage of cures even in advanced stages of the disease, still we do 
not know the biological mechanisms that make Testicular Germ Cell Tumor (TGCT) 
“unique” in the oncology scene. p53 and MDM2 seem to play a pivotal role, according 
to several in vitro observations, but no correlation has been found between their 
mutational or expression status in tissue samples and patients clinical outcome. 
Furthermore, other players seem to be on stage: DNA Damage Repair Machinery (DDR), 
especially Homologous Recombination (HR) proteins, above all Ataxia Telangiectasia 
Mutated (ATM), cooperates with p53 in response to DNA damage, activating apoptotic 
cascade and contributing to cell “fate”. Homologous Recombination deficiency has 
been assumed to be a Germ Cell Tumor characteristic underlying platinum-sensitivity, 
whereby Poly(ADP-ribose) polymerase (PARP), an enzyme involved in HR DNA repair, 
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INTRODUCTION

Testicular Germ Cell Tumor (TGCT) is a relatively 
rare neoplasm, affecting mostly young men between 15 
and 40 years (incidence rate ≈ 1%): it is the most common 
type of cancer in this age range, with a peak incidence 
in the third and fourth decade of life. By considering 
histological features, TGCTs are usually categorized 
into two subgroups: seminoma and nonseminoma, the 
latter with an earlier peak incidence than the former 
(young adults aged between 25 and 29 years with a non-
seminoma tumor diagnosis versus patients in the fourth 
decade of life affected by seminoma) . Although these 
two histological variants share the same risk factors, such 
as cryptorchidism and infertility, a statistical significant 
correlation between in utero environmental pollutants 
exposure and non-seminoma was highlighted [1, 2]. 
Probably due to differences in their progenitor cells, 
seminoma and non-seminoma disclose distinct clinical 
features and treatment strategies [3, 4], with a more 
aggressive biological behavior of non-seminoma.

In fact, seminoma has undoubtedly a better 
prognosis than the non-seminomatous counterpart, 
disclosing only intermediate and good risk subgroups, 
with no high risk sub-group unlike the non-seminoma[5].

Nevertheless, both subtypes of TGCTs are highly 
curable and their distinctive sensitivity to cisplatin-based 
therapy (and for seminomas to radiotherapy) has been 
studied for many years[6]. 

This sensitivity translates into an outstanding cure 
rate of nearly 80% for patients with advanced disease, 
but to date we do not have a clear knowledge about 
biological features underlying this exceptional sensitivity 
[7]. By answering the question about what are the reasons 
of TGCTs chemosensitivity, we could not only get 
information on the biological characteristics underlying 
intrinsic or acquired treatment-resistance ( even in view of 
the different histotypes - seminoma versus non-seminoma) 
but also collect evidence in order to develop new 
therapeutic strategies that can enhance chemosensitivity 
in other solid malignancies. 

p53 AND MDM2 : TWO SIDES OF THE 
SAME COIN

About half of human solid tumors carries p53 
mutations, which are usually associated with cancer 
aggressiveness and poor outcome, but rarely occurring 
in TGCTs (1-5%) [8, 9] ; a distinctive element in TGCT, 

unlike other malignancies, is the lack of correlation 
between immunohistochemical p53 overexpression and 
mutation [10, 11], with high levels of wild-type p53 
protein [12, 13] .

The role that this feature assumes in response to 
cisplatin-based therapies has not yet been clarified and 
remains still controversial. Gutekunst assigned a key 
role to p53 in the cisplatin-induced apoptosis of TGCT-
derived cell lines, with a significant decrease in cisplatin-
hypersensitivity by silencing p53, and a direct correlation 
between the absolute level of p53 protein upon cisplatin 
treatment and the extent of apoptosis[14]. The correlation 
between p53 and cyclins (especially cyclin B1) expression 
in TGCT was also investigated [15].

On the other hand, Burger et al. found no significant 
difference in sensitivity to cisplatin of p53 wild-type 
NTERA-2D1 cells compared to NCCIT cells (mutated 
p53), suggesting a lack of correlation between cisplatin-
induced apoptosis and p53 status, which led to the 
conclusion that DNA-damage induced apoptosis might be 
p53-independent [16].

In accordance with this preclinical evidence, 
another study compared p53 expression in tissue samples 
of 17 cisplatin-responsive and 18 cisplatin- unresponsive 
TGCT patients, with a detection rate of 59% in platinum-
responsive samples, compared with 83% of the non-
responsive tumors; furthermore, although p53 mutation 
was detected in only 1 of 17 TGCT patients who benefited 
from chemotherapy, no p53 mutation was found in the 18 
resistant TGCTs[17].

A combined gene sequencing and 
immunohistochemical analysis, performed on both 
seminomas and non seminomas [18], revealed low 
p53 protein expression in most samples, with low p53 
expression occurring in seminomas and high expression 
mostly in non-seminomas. No p53 mutation was detected 
in these tumor samples. Interestingly, metastatic TGCTs 
also exhibited low p53 expression, even with a significant 
decrement of p53 protein detection in distant metastases 
compared to primary tumors. Authors concluded that 
there was no significant difference in p53 mutation or 
expression status between chemotherapy-responders and 
those who relapsed or died of TGCT.

Therefore, despite some preclinical evidence, 
neither hypothesis for which wild type p53 overexpression 
underlies the hypersensitivity of TGCT to cisplatin-based 
therapies, nor that for which p53 mutation is the main 
cause of chemoresistance, seem to be supported by a 
strong clinical validation.

is an intriguing target: PARP inhibitors have already entered in clinical practice of 
other malignancies and trials are recruiting TGCT patients in order to validate their 
role in this disease. This paper aims to summarize evidence, trying to outline an 
overview of DDR implications not only in TGCT curability, but also in resistance to 
chemotherapy.
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MDM2 is the other side of the p53 “coin”: 
the principal function of MDM2 consists in down-
regulating p53 activity, increasing its degradation in an 
ubiquitin-dependent manner[19]. High levels of MDM2 
seem to be an intrinsic characteristic of embryonal 
carcinoma, and, regardless of therapeutical response, 
all embryonal carcinomas show a pronounced MDM2 
protein expression, without gene amplification [20]: 
other MDM2 up-regulation mechanisms, as enhanced 
gene translation and translocation, have been suggested 
[21, 22]. An analysis of 81 TGCTs showed a strong 
MDM2 nuclear immunoreactivity in 34 (41.97%), with a 
statistical significantly higher staining in non-seminomas 
than in seminomas . MDM2 positive tumors were more 
frequent in patients who developed distant metastases 
than in disease-free patients, and MDM2 expression was 
significantly associated with tumors exhibiting a greater 
node involvement than early stages tumors (I and II/A) 
[23] . The inhibition of MDM2-p53 interaction appeared 
effective, in vitro, to activate the apoptotic cascade, also 
in platinum-resistant cells [24, 25] but there is no clinical 
evidence about its role in vivo.

Recently, it has been shown that p53/Mdm2 
alterations are found only in platinum-extreme resistant 
TGCT patients [26], but, as noted above, most non 
platinum-responders TGCT are p53 wild-type, pointing 
out the concept that other pathways are involved in 
cisplatin-resistance. The study of these p53/MDM2 
alterations could have a relevant clinical impact in the field 
of high-dose chemotherapy with hematopoietic progenitor 
cell support which is based on high-dose carboplatin 
and is used in cisplatin-resistant tumors [27-29]. These 
genetic alterations could contribute not only to better 
define criteria to use cisplatin-based regimens, but also to 
define criteria of sensitivity to high-dose carboplatin-based 
chemotherapy and then to select patients eligible for this 
kind of therapy [30, 31].

DNA REPAIR MACHINERY IN THE 
TESTIS CANCER

Reduced DNA repair capacity was found to 
contribute to the hypersensitivity of testis tumor cells 
to cisplatin, compared to cisplatin-resistant repair-
proficient bladder cell lines [32]. Cavallo et al. assessed 
proficiency of embryonal carcinoma (EC) cell lines in 
repairing cisplatin-induced DNA damage, showing a 
reduced repair ability: this reduced capacity correlated 
with reduced Homologous Recombination (HR). Because 
PARP inhibition proved to be a successful strategy in HR-
defective tumors cells, they validated effectiveness of 
these drugs as monotherapy in EC cell lines; furthermore, 
they observed a synergistic interaction between PARP 
inhibitors and cisplatin, as the former reduce the cell 
proficiency to repair DNA damage caused by latter [33] 
. According to this feature, Gutekunst et al. observed an 

increased cisplatin-induced apoptosis by triple knockdown 
of ATM, ATR, and DNA-PK, although they considered 
that such silencing would have resulted in a reduced 
activation of p53 and consequently a lesser cell death 
extent than DDR proficient counterpart [14] .

In partial contrast with preclinical evidences 
highlighted by Cavallo, Bartkova et al [34] assessed 
HR proteins, such ATM, in EC tissue samples, detecting 
high levels of phosphorylated ATM, usually in 2-10% 
up to about 40% of tumor cells in the most positive 
case. Conversely, in seminomas was found a very low 
rate of positive stain cells, (11 of the 19 seminomas 
showed less than 1% of cells with a positive staining for 
phosphoATM). Similarly, phosphoATM was commonly 
undetectable in teratomas. They therefore proposed the 
idea, although speculative, that the unique biological 
features of TGCTs, such as platinum-based chemotherapy 
exceptional sensitivity, might be related to a less marked 
activation of the DNA Damage Repair (DDR) Machinery. 
Even in the most positive type of TGCT, the EC, there was 
a lower detection of phosphorylated DDR proteins, such 
as ATM, Chk2, and H2AX, than carcinomas [35-38].

The idea that emerges from these observations is 
that TGCTs, especially seminomas, “retain” characteristics 
inherited from their progenitor cells: spermatogones could 
be “programmed” to trigger the apoptotic process in 
response to minimum DNA damage, in order to prevent 
hazardous genetic mutations in the germ-line, and, 
therefore, in the progeny [39] . This feature of germ cells 
and TGCTs may underlie the exceptional curability of 
these tumors by DNA damaging agents, such as platinum-
based chemotherapies or ionizing radiations, unlike other 
solid tumours.

A model of cisplatin-induced DNA damage 
resistance among TGCT is non-seminoma, especially 
embryonal carcinoma: their high constitutive DDR 
activation among all types of TGCTs [34] might explain 
resistance to DNA damage therapies. ECs, and other 
non-seminoma TGCTs, may experience a “cellular 
reprogramming”, with the expression of proteins, normally 
downregulated in germ cells, but often upregulated in 
carcinomas, that may contribute to the platinum-resistant 
phenotype .

ATM single nucleotide variants (SNV) were detected 
in 42% of TGCT samples, as well as the highest number 
of variants for a single gene - 21 (48% of all variants)[18]. 
The meaning of these SNV is still obscure: it might be 
interesting to study the activity of the proteins encoded by 
these genes to understand their role in the “economy” of 
the cancer cell, discriminating between “passengers” and 
“drivers” mutations.

Spermatocytic seminoma is a very rare variant of 
classic seminoma, accounting for 0, 61% of all germ cell 
tumors: intriguing features are the inability to metastasize, 
unless there are sarcomatous changes, and a favorable 
outcome with orchiectomy only [40]. Such characteristics 
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Figure 1: The machinery is composed of multiple “devices”, which cooperate from the detection of DNA damage to the 
cellular response. ATM acts as protagonist, together with PARP, in the so-called “error-free” DNA repair Homologous Recombination 
- HR -, whereas DNA-PKc is the pivot in the “error-prone” Non Homologous End Joining - NHEJ. ATM ( Ataxia Telangiectasia Mutated) 
is present in form of inactive dimers or polymers within the cell: DNA Double Strands Breaks - DNA DSB - trigger ATM phosphorylation, 
with dimers dissociation: activated ATM monomers phosphorilate p53, which arrests cell cycle in expectation of DNA repair. With a 
successful repair, the cell remains viable, whereas , if the DNA Repair fails, p53 trigger the apoptotic cascade. p53 is down regulated by 
Mdm2, which lead to its degradation in an Ubiquitin-dependent process.
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make this tumor even more curable than classic seminoma, 
and comparison studies could be very attractive, to 
elucidate the molecular basis underlying these differences.

DNA REPAIR MACHINERY : A FEASIBLE 
THERAPEUTICAL TARGET ?

Oncogene activation induces DNA replication 
stress, formation of DNA single (SSBs) and double strand 
breaks (DSBs) and subsequent response of the DNA 
Damage Repair (DDR) machinery [41, 42], as well as 
DNA damaging agents, such as platinum-compounds, 
capable of inducing both SSBs and DSBs [43].

Homologous recombination is the “error-free” 
arm of DNA repair machinery by using sister cromatids 
as template strand [44], despite having the defect 
of invariably leading to loss of heterozygosity and 
translocations or other gene rearrangements [45].

To date we have not yet realized molecular basis 
of resistance or sensitivity of various cancers to different 
therapeutical agents: Helleday supposed that this 
difference is due to specific DNA repair defects, which 
may be overwhelming in a cancer subtype rather than 
another [46].

In this regard, ovarian cancers are mostly responsive 
to carboplatin-based therapy and such sensitivity can be 
explained by decreased expression of proteins involved in 
Homologous Recombination, like BRCA or FANCF [47, 
48], or by their mutations [49, 50]. Conversely, acquired 
platinum-resistance may occur with re-expression of 
FANCF 47 or genetic reversion of BRCA1 or BRCA2 
mutations [49-51], highlighting the central role of this 
pathway in resistance mechanisms, as well as in therapy 
response . Similarly, the HR protein RAD51 correlated 
with increased DNA damage repair induced by etoposide 
(a drug used in combination with cisplatin also in the 
treatment of TGCT) and resistance in small cell lung 
cancer cells [52, 53].

However, loss of one or few HR proteins doesn’t 
affect tumor cell viability: if there is a mutation in a HR 
gene, other HR pathways may overcome this deficiency; 
this concept is known as synthetic lethality.

In 1922, Calvin Bridges described the phenomenon 
in Drosophila Melanogaster specimens, but the term 
synthetic lethality was coined by Theodore Dobzhansky. 

The concept is resumable in the capacity of a 
cell to make less of a gene (or protein) through another 
alternative pathway: if the “subrogor” pathway is lost, for 
a mutation or a pharmacological inhibition, the cell dies. 
This phenomenon is due to the inclination of organisms to 
maintain multiple pathways, able to counterbalance each 
other despite environmental changes or random events, 
such as mutations, in order to mitigate their effect on the 
cellular economy.

In this perspective, an interesting combination 
assessment has been proposed by Westphal and colleagues: 

both in vitro and in a murine model, contemporary loss of 
ATM and p53 lead to an enhanced radiosensitization [54].

Other groups found similar evidence: ATM 
knockdown in p53-deficient mouse embryonic fibroblasts 
resulted in an increased susceptibility to topoisomerase I 
and II inhibitors and to antimetabolites drugs, but not to 
agents like platinum compounds, or mitotic fuse poisons, 
like taxanes. Interestingly, loss of ATM function resulted 
in an increased non apoptotic cell death, as evidenced by 
Trypan Blue staining, suggesting that cytotoxicity may be 
mediated by non-apoptotic pathways [55].

Nevertheless, Toulany et al. [56] investigated the 
radiosensitizing effect of cisplatin in Non-small cell 
lung cancer (NSCLC) cell lines and in human fibroblasts 
(ATM-deficient and ATM-proficient) . 

They observed an overexpression of phosphorilated 
ATM in radio-resistant A549 NSCLC cells upon cisplatin 
treatment, with a significant radiosensitization when ATM 
was inhibited by KU-55933: furthermore, radiosensitivity 
of A549 cells was synergistically enhanced by KU-55933 
and cisplatin combined treatment.

According to these results, ATM-deficient cells were 
more sensitive to ionizing radiation upon cisplatin than the 
ATM proficient counterpart. Interestingly, A549 NSCLC 
are p53 wild-type and MDM2-overexpressed cells: various 
evidence suggest that MDM2 inhibition could enhance 
radiosensitivity [57] or act as a chemosensitizing agent to 
etoposide [58] .

Combined assessment of ATM and p53 is useful 
to predict clinical response to DNA Damaging Agents 
[59], which display an outstanding effectiveness in p53-
deficient settings when ATM is suppressed.

On the other hand, ATM-deficient cancer cells are 
strongly nononcogene addicted to DNA-PKcs for survival 
after DNA damage, to such an extent that DNA-PKcs 
inhibition sensitizes ATM-deficient tumors to genotoxic 
chemotherapy. 

Genetic alterations developed by tumor cells during 
neoplastic progression play a dominant role in response to 
chemotherapy and in susceptibilities to therapies in human 
malignancies: authors conclude that this observation 
is consistent with a cell death mechanism other than 
apoptosis ( see above ), a so-called mitotic catastrophe, 
in which cells, progressing through the cell cycle despite 
the presence of damaged DNA, trigger a mitosis-specific 
death program, being unable to preserve genome integrity.

THERAPEUTICAL PERSPECTIVES

As mutated p53 appears mostly an “undruggable” 
target, probably also due to gain of function mutations 
(GOF) [60, 61], whose biological meaning goes beyond 
the simple loss of DNA binding ability, many efforts have 
been made to target Mdm2 and several clinical trial are 
ongoing to validate safety and efficacy of drug inhibiting 
its activity (ClinicalTrials.gov ID :NCT01877382 - 
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NCT02098967 - NCT01677780)
As seen above, PARP inhibition may be an 

intriguing issue: PARP1 was evaluated in 124 TGCT 
patients tumor specimens and overexpression was 
observed in Intratubular Germ Cell Carcinoma (100% 
of samples exhibited PARP1 overexpression), seminona 
(52.6%), EC (47.0%), yolk sac tumor (33.3%), teratoma 
(26.7%), and choriocarcinoma (25.0%), compared to 
1.9% of normal testis specimens, showing no association 
between PARP1 expression and clinical variables [62]. 
This topic confirms the idea whereby DDR, and so 
PARP, is early activated in the development of TGCTs: 
subsequently, mutations in tumor genome can occur, with 
the loss of the PARP function, but, probably, with the 
hyperactivation of new “vicariant” pathways. A phase II 
trial of olaparib alone in patients with relapsed/refractory 
metastatic germ cell cancer is in progress (ClinicalTrials.
gov ID: NCT02533765)

Furthermore, a combination study of veliparib, 
another PARP inhibitor, plus gemcitabine and 
carboplatin is recruiting patients with refractory TGCTs   
(ClinicalTrials.gov ID: NCT02860819). 

In this regard, a phase I/II study of AZD0156, 
an ATM inhibitor, alone or in combination with 
olaparib, is recruiting patients suffering from various 
solid malignancies (ClinicalTrials.gov Identifier : 
NCT02588105), also in order to assess the efficacy of a 
multiple HR protein inhibition therapy. 

In conclusion, we may assert that, exploring the 
wide landscape of DNA repair in human malignancies, we 
realized that broad tumor heterogeneity, even within the 
same tumor histotype, is now leading us towards an even 
more personalized medicine, and that only from the study 
of the molecular characteristics of each disease we can get 
the right information to give optimal therapeutic response.

“At a glance”

• Testis Germ Cell Tumor (TGCT) is a neoplasia 
with “unique” biological and clinical behavior

• p53 and MDM2 are two sides of the same 
“coin” : their implications in TGCT sensitivity 
to DNA damaging therapies, as chemotherapy 
and radiotherapy, are still unclear

• DNA Repair Machinery (DDR) is an intriguing 
topic : Homologous Recombination (HR) 
Deficiency appears to be a feature underlying 
cisplatin-sensitivity

• In view of HR alterations, there is a biological 
rationale for the use of PARP inhibitors in 
TGCT
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