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ABSTRACT
Purpose was to assess predictive power for overall survival (OS) and diagnostic 

performance of combination of susceptibility-weighted MRI sequences (SWMRI) 
and dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) for 
differentiation of recurrence and radionecrosis in high-grade glioma (HGG). We 
enrolled 51 patients who underwent radiation therapy or gamma knife surgery 
followed by resection for HGG and who developed new measurable enhancement more 
than six months after complete response. The lesions were confirmed as recurrence (n 
= 32) or radionecrosis (n = 19). The mean and each percentile value from cumulative 
histograms of normalized CBV (nCBV) and proportion of dark signal intensity on 
SWMRI (proSWMRI, %) within enhancement were compared. Multivariate regression 
was performed for the best differentiator. The cutoff value of best predictor from ROC 
analysis was evaluated. OS was determined with Kaplan-Meier method and log-rank 
test. Recurrence showed significantly lower proSWMRI and higher mean nCBV and 
90th percentile nCBV (nCBV90) than radionecrosis. Regression analysis revealed both 
nCBV90 and proSWMRI were independent differentiators. Combination of nCBV90 and 
proSWMRI achieved 71.9% sensitivity (23/32), 100% specificity (19/19) and 82.3% 
accuracy (42/51) using best cut-off values (nCBV90 > 2.07 and proSWMRI≤15.76%) 
from ROC analysis. In subgroup analysis, radionecrosis with nCBV > 2.07 (n = 5) 
showed obvious hemorrhage (proSWMRI > 32.9%). Patients with nCBV90 > 2.07 and 
proSWMRI≤15.76% had significantly shorter OS. In conclusion, compared with DSC 
PWI alone , combination of SWMRI and DSC PWI have potential to be prognosticator 
for OS and lower false positive rate in differentiation of recurrence and radionecrosis 
in HGG who develop new measurable enhancement more than six months after 
complete response.
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INTRODUCTION

High-grade glioma accounts for approximately 50 
% of primary malignant cerebral tumors and includes 
glioblastoma [World Health Organization (WHO) 
grade IV], anaplastic astrocytoma, mixed anaplastic 
oligoastrocytoma and anaplastic oligodendroglioma 
(WHO grade III) [1, 2]. Tumor resection followed by 
postoperative chemotherapy and radiation therapy (RT) 
is recommended as the standard of care for high-grade 
glioma [3]. RT has been recognized as a potent local 
treatment of brain tumors, but RT also damages normal 
brain tissue and results in radiation-related changes seen 
on follow-up magnetic resonance imaging (MRI) after the 
completion of radiation treatment [4, 5].

Several characteristic imaging features of radiation-
related changes on MRI have been identified, including 
diffuse white matter edema-like changes, cysts and 
contrast-enhancing lesions [6-8]. Among these changes, 
newly appearing contrast-enhancing lesions, usually 
termed as pseudoprogression or radionecrosis, receive 
the attention of both clinicians and neuroradiologists 
because these MRI lesions can mimic the recurrence of 
tumors. Pseudoprogression refers to acute to subacute 
radiation-related changes; it typically occurs within 12 
weeks and may occur up to 6 months after post-irradiation 
. Radionecrosis, on the other hand, encompasses late 
radiation-related changes occurring months to years’ 
post-irradiation [9]. Radionecrosis is clinically different 
from pseudoprogression in their late onset and possible 
progression with requirement for additional intervention 
to mitigate the effect [10]. The incidence of radionecrosis 
is reported between 3 % - 24 % [11]. 

Several studies have attempted to differentiate 
recurrence from radionecrosis by using dynamic 
susceptibility contrast (DSC) perfusion-weighted 
imaging (PWI). DSC PWI has been used to characterize 
tumor vascular physiology and hemodynamics. Tumor 
recurrence accompany with the formation of complex 
networks of abnormal blood vessels with increased 
permeability that appear as regions of hyper perfusion with 
higher blood volume. On the other hand, radionecrosis 
is associated with hypo perfusion because of treatment-
induced vascular endothelial damage and coagulation 
necrosis [11]. Relative cerebral blood volume (rCBV) 
measurements of enhancing lesions reflect an assessment 
of perfusion; these measurements have been correlated 
with vascularity, which tends to be higher in recurrence 
than in radionecrosis [12, 13]. Furthermore, DSC PWI 
derived parameters even can be used as significant 
prognosticators of response in glioblastoma [14].

Susceptibility-weighted magnetic resonance 
imaging sequences (SWMRI) are an advanced MRI 
sequences which encompass susceptibility-weighted 

angiography (SWAN, General Electric), susceptibility 
weighted imaging (SWI, Siemens) and venous blood 
oxygen level dependent (VenoBOLD, Philips) that exploit 
the susceptibility differences between tissues to provide 
contrast in different regions of the brain, allowing for 
much better visualization of blood and microvessels 
[15]. According to preliminary reports, post-radiation 
changes in the brain have been related to histopathologic 
vascular injury or cavernous hemangioma formation [16-
19]. These radiation-induced vascular alterations may 
result in hemorrhages, which has been reported as a fatal 
event in association with radiation induced temporal lobe 
necrosis with adjacent multiple micro hemorrhages [20].
We therefore assumed that SWMRI could thus provide 
additional information to differentiate recurrence from 
radionecrosis. 

In the present study, we assessed the predictive 
power for overall survival (OS) and the diagnostic 
performance of the combined use of SWMRI and DSC 
PWI for the differential diagnosis of recurrence from 
radionecrosis in high-grade glioma patients who were 
treated with near-total tumor removal followed by RT and 
who developed new enhancing lesions six months or more 
after a complete response. 

RESULTS

Among 51 patients enrolled in the study, 32 with 
recurrence (histologic confirmation: 12, radiologic 
conclusion: 20), and 19 patients with radionecrosis 
(histologic confirmation: 7, radiologic conclusion: 
12) were verified (Figure 1). Between the two groups, 
the distribution of glioblastoma (WHO grade IV) and 
other high-grade gliomas (WHO grade III) showed a 
significantly different distribution, and a higher incidence 
of glioblastoma was observed in the recurrence. None of 
the clinical parameters including age, radiation dose, time 
after the completion of RT, MGMT promoter methylation 
status, and Karnofsky performance score when follow-
up MRI was taken differed between the two groups. The 
summarized data are shown in Table 1.

Among the calculated 70th, 90th, 95th and 99th 
values of the cumulative nCBV histogram, the nCBV90 
(the 90th percentile) exhibited the highest AUC (0.863, P 
= 0.001) for differentiating recurrence from radionecrosis. 
Recurrence showed a significantly higher mean nCBV and 
nCBV90 than radionecrosis (3.42 vs. 1.18, mean nCBV, P 
= 0.002; 5.98 vs. 1.97, nCBV90, P = 0.001, respectively). 
Regarding proSWMRI, radionecrosis had a significantly 
higher mean proSWMRI (%) (42.67 vs. 9.3, P < 0.001) 
(Table 2). 

The interclass correlation coefficients for mean 
nCBV, and nCBV90 and proSWMRI were 0.775 (95 
% confidence interval [CI]: 0.56, 0.88), 0.857 (95 % 
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confidence interval [CI]: 0.72, 0.92) and 0.943 (95 
% confidence interval [CI]: 0.89, 0.97), respectively. 
The coefficients of variation of quantitative agreement 
for these parameters were 16.9 %, 16.6 % and 33.3 %, 
respectively. 

ROC curve analysis of the mean nCBV, nCBV90 
and proSWMRI was performed for the differentiation, 
respectively. The mean nCBV cutoff value of 1.07 
exhibited sensitivity, specificity and accuracy values of 
90.6 % (29 of 32 patients with recurrence), 68.4 % (13 
of 19 patients with radionecrosis), and 82.3 % (42 of all 
51 patients), respectively. The nCBV90 cutoff value of 
2.07 showed the same accuracy (82.3 %) but different 
sensitivity (87.5 %, 28 of 32 patients with recurrence) and 
specificity (73.7 %, 14 of 19 patients with radionecrosis). 
The proSWMRI cutoff value of 15.76 % showed the 
sensitivity, specificity and accuracy values of 75.0 % (24 
of 32 patients with recurrence), 89.5 % (17 of 19 patients 
with radionecrosis), and 80.3 % (41 of all 51 patients), 
respectively (Table 2).

The multivariate  logistic regression analysis using 
tumor grade (III vs. IV), mean nCBV, nCBV90 and 
proSWMRI revealed that nCBV90 and proSWMRI were 

two independent variables for the differentiation between 
recurrence and radionecrosis.

To evaluate the diagnostic performance of the 
combination of nCBV90 and proSWMRI, ROC curve 
comparison between nCBV90 alone and the combination 
of nCBV90 and proSWMRI was performed. AUC was 
larger when nCBV90 and proSWMRI were combined 
than for nCBV90 alone but without statistical significance 
(0.939 vs. 0.863, P = 0.175). The combination of nCBV90 
and proSWMRI achieved 71.9 % sensitivity (23/32), 
100.0 % specificity (19/19) and 82.3 % accuracy (42/51) 
using the best cut-off values (nCBV90 of 2.07 and 
proSWMRI of 15.76 %) from the ROC analysis (Table 
2). The specificity of the combination of nCBV90 and 
proSWMRI was significantly higher than that of nCBV90 
alone (100 % (19/19) vs. 73.7 % (14/19)) (P = 0.046). 
With the LOOCV test, the accuracy of the combination 
of nCBV90 and proSWMRI in predicting recurrences and 
radionecrosis was 80.3 % (41/51).

 In the subgroup analysis, all the cases of 
radionecrosis (n = 5) with nCBV90 > 2.07 showed obvious 
hemorrhage (proSWMRI > 32.9 %). 

The results of the Kaplan-Meier survival analysis 

Note: Unless otherwise indicated, data in parentheses are 95 % confidence intervals; Abbreviations: RT = radiation therapy, 
MGMT = methylguanine methyltransferase
* The difference between the two groups was evaluated by using Student’s unpaired t-test.
† The difference between the two groups was evaluated by using the Fisher’s exact test. 
§ Glioblastoma (WHO grade IV) and other high-grade gliomas (WHO grade III) were compared.

Table 1: Clinical characteristics of patients
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Figure 2: Kaplan-Meier curves between two groups of patients classified according to cutoff value of 2.07 for nCBV90 
and of 15.76% for proSWMRI.

Figure 1: Flow diagram of patient selection with inclusion and exclusion criteria. Note: DSC PWI = dynamic susceptibility 
contrast perfusion-weighted imaging, SWMRI = susceptibility-weighted magnetic resonance imaging sequences
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Figure 3: Recurrence in a 58-year-old woman with anaplastic astrocytoma in the left parietal lobe who underwent 
gross total resection and concomitant chemoradiotherapy (CCRT) with temozolomide. a. Contrast-enhanced T1-weighted 
(CET1) magnetic resonance (MR) image obtained 14 months after CCRT completion shows a newly appearing enhancing lesion in the 
left parietal lobe (arrow). b. Susceptibility-weighted imaging demonstrates nearly no dark area in the corresponding lesion (arrow); the 
proportion of dark signal intensity was 0.30 %. c. The normalized relative cerebral blood volume map (nCBV) from dynamic susceptibility 
contrast perfusion-weighted imaging shows increased blood flow in the corresponding enhancing area (arrow) (calculated 90th percentile 
points in the cumulative nCBV histogram (nCBV90) = 5.13). d. Hematoxylin-eosin-stained histopathology (original magnification, X 10) 
shows multiple hemorrhages of ≤ 5 mm (arrows) within the recurrent anaplastic astrocytoma. 

Note: Unless otherwise indicated, data in parentheses are 95 % confidence intervals; Abbreviations: nCBV = normalized 
relative cerebral blood volume, nCBV90 = the 90th percentile values of the cumulative nCBV histogram, proSWMRI = 
proportion of dark signal intensity on susceptibility-weighted magnetic resonance imaging sequences, ROC = receiver 
operating curve, AUC = area under ROC.
*The P value for the mean comparison of each parameter between two groups. The difference between the two groups was 
evaluated using Student’s unpaired t-test.
† Sensitivity, specificity and accuracy for identification of recurrence. Numbers in parentheses are raw data.
ʘThe AUC comparison did not reach statistical significance (p = 0.175).
¥The specificity between nCBV90 and nCBV90+proSWMRI showed significant difference by the Fisher’s exact test (p = 
0.046).

Table 2: Quantitative Parameters and ROC analysis in Recurrence and Radionecrosis
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with the log-rank test are shown in Figure 2. Significant 
differences were observed in the OS of the patient group 
that was dichotomized by the nCBV90 (cutoff value = 
2.07) and proSWMRI (cutoff value = 15.76%). Median 
OS for patients with nCBV90 > 2.07 and proSWMRI 
≤ 15.76% was 365 days (190, 539). OS at 6, 12 and 
24 months for the subjects was 82.8, 62.1, 30.7 %, 
respectively. Median OS for patients with nCBV90 ≤ 2.07 
or proSWMRI > 15.76% was 940 days (593, 1286). OS at 
6, 12 and 24 months for the subjects was 90.9, 81.8, 63.8 
%, respectively. 

Table 3 summarizes the results of the 
histopathological quantitative assessment of the 
hemorrhagic foci within the contrast-enhancing portions 
of the MRI. More than 40 % of the hemorrhage foci were 
> 5 mm in diameter in the radionecrosis group, while 94 
% of the hemorrhage foci were ≤ 5 mm in diameter in the 
recurrence group, which represents a significant difference 
(P < 0.001). 

Representative images of recurrence and 
radionecrosis are shown in Figures 3, 4 and 5. 

DISCUSSION

In this study, we hypothesized that the combined 
use of SWMRI and DSC PWI could have the potential 
as prognostic factor for OS and improve the accuracy 
of the differential diagnosis of recurrence from 
radionecrosis in high-grade glioma patients. We found 
that the mean nCBV and nCBV90 were higher, and the 
proSWMRI was lower in the contrast-enhanced regions 

of recurrence compared with those of radionecrosis. 
Multivariate logistic regression analysis showed that only 
nCBV90 and proSWMRI were independent variables 
for this differentiation. The combination of nCBV90 
and proSWMRI seems to have the potential to improve 
the accuracy of the differentiation of recurrence from 
radionecrosis compared with a single application of DSC 
PWI. Survival analysis showed that the combination of 
nCBV90 and proSWMRI can also be a prognostic factor 
for OS for high grade glioma patients 

DSC PWI estimates tissue microvascular density 
by measuring rCBV [21]. In tumor recurrence, the blood 
volume increases because of neocapillary formation and 
dilatation of the existing vasculature [22]. Additionally, 
recent studies have supported this phenomenon that has 
been described as useful for distinguishing recurrence 
from RT-related changes. Hu et al. [12] proposed 
a threshold rCBV value of 0.71 for the optimized 
differentiation of tumor progression from RT-related 
changes with a sensitivity of 91.7 % and a specificity 
of 100 %. Young et al. reported similar results with a 
threshold rCBV value of 1.8 with a sensitivity of 100 % 
and a specificity of 75 % [23]; Prager et al. reported an 
optimized rCBV value of 1.74 with 91.9 % sensitivity 
and 66.7 % specificity [24]. Our results are consistent 
with the previous studies. The mean nCBV and nCBV90 
values were significantly higher in recurrence than in 
radionecrosis (3.42 vs. 1.18, mean nCBV, P = 0.002; 
5.98 vs. 1.97, nCBV90, P = 0.001, respectively). In the 
multivariate logistic regression analysis including the 
mean nCBV and nCBV90, only nCBV90 was considered 
as an independent variable for differentiation. This finding 

Note: Data are the percentage and numbers in parentheses are the numbers of hemorrhage foci. Abbreviations: proSWMRI = 
proportion of dark signal intensity on susceptibility-weighted magnetic resonance imaging sequences
* The difference in the averages between the two groups was evaluated using the Mann-Whitney U test.

Table 3: Proportion of Hemorrhagic Foci Based on Size
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Figure 5: Radionecrosis in a 41-year-old man with glioblastoma in the left mid corpus callosum who underwent gross 
total resection and concomitant chemoradiotherapy (CCRT). a. Contrast-enhanced T1-weighted (CET1) magnetic resonance 
(MR) image obtained 18 months after CCRT completion shows newly appearing enhancing lesions in the left mid corpus callosum (arrow). 
b. Susceptibility-weighted imaging demonstrates significant dark areas in the corresponding enhancing lesions (arrow); the proportion of 
dark signal intensity (proSWMRI) was 40.5 %. c. The normalized relative cerebral blood volume map (nCBV) from dynamic susceptibility 
contrast perfusion-weighted imaging shows increased blood flow in the corresponding enhancing area (arrow) (calculated 90th percentile 
points in the cumulative nCBV histogram (nCBV90) = 2.84). d. Follow-up CET1 MR image obtained 36 months after the first appearance 
of the enhancing lesion shows an interval decrease in the extent of the enhancing lesion (arrow), suggesting radionecrosis.

Figure 4: Radionecrosis in a 45-year-old woman with anaplastic astrocytoma in the right parietooccipital lobe who 
underwent gross total resection and concomitant chemoradiotherapy (CCRT). a. Contrast-enhanced T1-weighted (CET1) 
magnetic resonance (MR) image obtained 18 months after CCRT completion shows newly appearing multifocal enhancing lesions in the 
right occipital lobe (arrow). b. Susceptibility-weighted imaging demonstrates significant dark areas in the corresponding enhancing lesions 
(arrow); the proportion of dark signal intensity (proSWMRI) was 62.95 %. c. The normalized relative cerebral blood volume map (nCBV) 
from dynamic susceptibility contrast perfusion-weighted imaging shows increased blood flow in the corresponding enhancing area (arrow) 
(calculated 90th percentile points in the cumulative nCBV histogram (nCBV90) = 2.88). d. Hematoxylin-eosin-stained histopathology 
(original magnification, X 10) shows multiple hemorrhages of > 5 mm (arrows) within the radionecrosis. 
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Figure 6: Flow chart of quantitative image analysis. Region of interest (ROI) was manually selected in each section of the enhancing 
lesions and was semi-automatically co-registered with the normalized relative cerebral blood volume map (nCBV) and susceptibility-
weighted magnetic resonance imaging sequences (SWMRI) map. The volume of interest was determined by the summation of each slice; 
nCBV values and SWMRI values for the entire enhancing lesion were obtained. Cumulative histogram analysis was performed for whole 
nCBV values. In the cumulative nCBV histograms, mean nCBV, and the 70th, 90th, 95th and 99th percentile points (nCBV70, nCBV90, 
nCBV95 and nCBV99, respectively) were derived. For SWMRI values, by setting the median SWMRI SI of the ventricular system as the 
reference, the proportion of SWMRI (proSWMRI) was calculated by dividing the number of pixels below the reference SWMRI SI by the 
total number of pixels. Note: ROI = region of interest, SWMRI = susceptibility-weighted magnetic resonance imaging sequences, SI = 
signal intensity, CBV = cerebral blood volume, the Xth percentile point = point at which X% of the voxel values that form the histogram 
are found to the left of the histogram.
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may suggest the potential advantage of the cumulative 
histogram method in analyzing high-grade glioma, which 
is intrinsically heterogeneous with various tumor grades 
in a single tumor [25]. Obtaining the total voxel values of 
a tumor would yield data that are objective in identifying 
the most aggressive portion of the tumor, providing better 
diagnostic accuracy than a comprehensive statistical value 
such as the mean value [26].

Radiation-induced hemorrhages are believed 
to be associated with radiation-induced vasculopathy 
[27, 28]. Nonoguchi et al [29] specifically reported 
that of 18 surgically resected radionecrosis specimens, 
telangiectasia was the most characteristic vasculature 
feature; microscopic bleeding was frequently observed. 
The histological examination in our study is consistent 
with the previous study, showing abundant hemorrhages in 
the radionecrosis lesions. In our study, most hemorrhages 
in recurrence were ≤ 5 mm in size, while more than 40 % 
of the hemorrhages in radionecrosis were > 5 mm in size. 
Our histological results suggest that a higher proportion of 
hemorrhages of > 5 mm in diameter may be responsible 
for the higher percentage of dark SI on SWMRI in 
radionecrosis. 

SWMRI is a 3D gradient echo MR imaging 
technique that has proven to be more sensitive than 
conventional MRI in detecting hemorrhage [30]. 
Recent reports discussed the detection of radiation-
induced hemorrhage with SWMRI as radiation-related 
changes [16, 17, 31, 32]. Zeng et al. [31] also described 
hypointense foci on SWI within the previously irradiated 
brain regions in glioma patients. To the best of our 
knowledge, the application of SWMRI for differentiating 
tumor recurrence from radionecrosis has not been reported 
in previous studies. We found that proSWMRI from the 
calculation of SWMRI was higher in radionecrosis than 
in recurrence (42.67 % vs. 9.3 %), suggesting a higher 
degree of hemorrhage in radionecrosis. In the ROC curve 
comparison, the combination of nCBV90 and proSWMRI 
achieved significantly higher specificity than that of 
nCBV90 alone (100.0 % (19/19) vs. 73.7 % (14/19), 
P = 0.046) while maintaining same accuracy (82.3% 
(42/51). This implicates adding proSWMRI would lower 
false positive rate ( = 1 - specificity) in differentiation 
recurrence from radionecrosis. In the subgroup analysis, 
among patients with nCBV90 > 2.07 (n = 33) who would 
have been regarded as recurrence with DSC PWI alone, 
the all radionecrosis group (n = 5) showed obvious 
hemorrhage (proSWMRI of > 32.9 %). The results of the 
ROC curve analysis and the subgroup analysis suggest that 
radionecrosis should be considered when new enhancing 
lesions combined with obvious hemorrhage appear 
on SWMRI after a long-term ( > six months) complete 
response in high-grade glioma patients, even with a high 
nCBV value.

Several studies previously reported that MRI 
parameters such as the ratio of T2/FLAIR to enhancing 

area [33] or PWI parameters can correlate with patients’ 
survival or response to the treatment [14, 34, 35]. The 
results of our study is in well line with previous studies 
and suggests that histogram analysis of nCBV maps 
and proportion of hemorrhage shown in SWMRI may 
be feasible for predicting overall survival in high grade 
gliomas patients. 

We observed a higher incidence of glioblastoma 
(WHO grade IV) in the recurrence group than in the 
radionecrosis group, which likely reflects a more 
aggressive tendency of glioblastoma compared to other 
high-grade gliomas [1]. However, the multivariate logistic 
regression test results showed that MRI parameters such 
as nCBV and proSWMRI are more useful in determining 
whether a new enhancing lesion is tumor recurrence or 
radionecrosis, irrespective of the tumor grade.

Apart from the intrinsic limits of any retrospective 
study, our study had several other limitations. First, due to 
the small number of patients, the study’s generalizability 
and statistical power are limited. However, we detected 
significant differences in DSC PWI and SWMRI 
between the two groups. Second, the evaluation of 
the non-enhancing infiltrative portion was limited. 
However, this study concentrated on a particular clinical 
setting—that is, a newly developed enhancing lesion 
mimicking recurrence. Therefore, only the nature of the 
enhancing lesion was considered. Third, quantitative 
susceptibility mapping (QSM) was not utilized in our 
study. QSM produces quantitative maps of tissue magnetic 
susceptibility using gradient recalled echo (GRE) phase 
data that can distinguish between blood products and 
calcium and quantify the extent of hemorrhage [36]. We 
believe that a future study using QSM would provide 
helpful information for the differentiation between 
recurrence and radionecrosis. Fourth, not all patients were 
histologically verified as recurrence or radionecrosis. 
However, due to the rapid growth of the high grade 
gliomas, progressive enlargement of the initial enhancing 
lesion within a 6-month follow-up period was considered 
sufficient to reach a safe estimation on the diagnosis of 
recurrence . Lastly, two different susceptibility-weighted 
MR sequences were included in our study (SWI, Siemens,; 
SWAN, General Electric;). Each of two sequences 
presents a different technical background and differences 
in terms of contrast within the image which may result in 
heterogeneous sensitivity in detecting micro hemorrhages 
[37].

In conclusion, this study revealed that histogram 
analysis based on the nCBV of the entire newly enhancing 
lesion may be a better diagnostic tool than the mean 
nCBV in differentiating recurrence from radionecrosis; 
the combination of DSC PWI and SWMRI seems to have 
the potential to be a prognostic factor for OS and to lower 
false positive rate in differential diagnosis in high-grade 
glioma patients who develop new enhancing lesions after 
a long-term complete response. 
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MATERIALS AND METHODS

This retrospective study was approved by the 
institutional review board of our institution; informed 
consent was waived.

Patient selection

We selected from our radiology report database 233 
patients who previously underwent brain RT for high-
grade glioma and who had undergone serial follow-up 3T 
brain MRI in our institution between January 2008 and 
April 2015. The inclusion criteria were as follows: (a) a 
histopathologic diagnosis of high-grade glioma according 
to the World Health Organization criteria; (b) the patient 
underwent RT or gamma knife surgery followed by near-
total tumor removal of the brain tumor; (c) follow-up MR 
imaging at 3T was performed with contrast enhancement 
and included DSC PWI and SWMRI; (d) follow-up MRI 
showed newly developed enhancing lesions inside the 
radiation field after intravenous injection of gadolinium-
based contrast media; and (e) the post-irradiation period 
was longer than six months. 

We excluded 182 patients for the following reasons: 
(a) inadequate MR image quality (n = 44); (b) no newly 
appearing lesions on the follow-up MR images (n = 67); 
(c) newly visible enhancing lesions did not meet the 
criteria for measurable disease as defined according to 
the RANO criteria (dimensionally contrast-enhancing 
lesions with clearly defined margins by MRI scans, with 
two perpendicular diameters of at least 10 mm) (16) (n = 
27); (d) newly developed lesions occurring less than six 
months after the completion of RT (n = 11); and (e) loss to 
follow-up (n = 33). 

Ultimately, 51 patients (30 men and 21 women; 
mean age, 52.9 years; age range, 25-72 years) who 
were diagnosed with glioblastoma (n = 29; isocitrate 
dehydrogenase (IDH) -wildtype (n = 7), IDH-mutant (n 
= 7), Not otherwise specified (NOS) (n = 15)), anaplastic 
astrocytoma (n = 15; IDH-wildtype (n = 1), IDH-mutant 
(n = 2), NOS (n = 12)), anaplastic oligodendrogliomas 
(n = 3, NOS), and anaplastic oligoastrocytoma (n = 4, 
NOS) were included . Thirty-two patients were identified 
as having a recurrence, while 19 patients were diagnosed 
with radionecrosis by either radiologic determination or 
histologic confirmation. Four patients underwent gamma 
knife surgery (recurrence (n = 1), radionecrosis (n = 3)) . 
In addition, clinical outcomes including patients’ current 
status (dead, alive, or follow-up loss) and survival days 
after the initial appearance of measurable enhancement 
on follow up MRI were collected. Overall follow-up 
survival data was completed by reviewing electronic 
medical record of our hospital as well as by contacting 
the Resident Service Division of the Ministry of Public 
Administration and Security. The endpoints of this study 

were either the patient’s death or May 31, 2016. For 
methylguanine methyltransferase (MGMT), a DNA repair 
enzyme that removes alkyl groups from guanine residues, 
the promoter methylation status was investigated by 
using the methylation-specific polymerase chain reaction 
technique.

Image acquisition

Follow-up MRI studies of all patients were 
performed using one of two 3 T MR imaging scanners 
(n = 25 [recurrence = 18 and radionecrosis = 7]; Signa 
Excite; GE Medical Systems, Milwaukee, WI, USA; and 
n = 26 [recurrence = 14 and radionecrosis = 12]; Verio; 
Siemens Medical Solutions, Erlangen, Germany) with 
an eight-channel head coil. SWMRI included either SWI 
or SWAN in the current study . The imaging protocol 
included spin-echo (SE) T1-weighted images (T1WI), fast 
SE (FSE) T2-weighted images (T2WI), fluid-attenuated 
inversion recovery (FLAIR) images, SWI or SWAN, DSC 
PWI with gadobutrol (Gadovist, Bayer Schering Pharma, 
Berlin, Germany), and subsequent contrast-enhanced (CE) 
SE T1WI. The MRI parameters were as follows: 558-
650/8-20 ms/70-90°/384 × 192-212 (TR/TE/FA/matrix) 
for SE T1WI; 4500-5160/91-106.3 ms/90-130°/448-640 × 
220 for FSE T2WI; 9000-9900/97-162.9 ms/90-130°/199-
220 × 220 for FLAIR images; 28/20 ms/15°/448 × 255 
for SWI; and 78.8/49.8 ms/15°/240 × 240 for SWAN. The 
other parameters were as follows: section thickness, 5 
mm with a 1 mm gap and field of view (FOV), 240 x 240 
mm. DSC PWI was performed with a single-shot gradient-
echo echo-planar imaging sequence during the intravenous 
injection of the contrast agent. The imaging parameters 
of the DSC PWI were as follows: TR/TE, 1500/30-40 
ms; FA, 35-90°; FOV, 240 × 240 mm; 140-20 sections; 
matrix, 128 × 128; section thickness, 5 mm intersection 
gap, 1 mm; and voxel resolution of 1.86 × 1.86 × 5 mm. 
For each section, 60 images were obtained at intervals 
equal to the repetition time. After four to five time points, 
a bolus of gadobutrol, at a dose of 0.1 mmol/kg of body 
weight and a rate of 4 mL/sec, was injected with an MR-
compatible power injector (Spectris; Medrad, Pittsburgh, 
PA, USA). The contrast material bolus was followed by a 
30 mL bolus of saline, which was administered at the same 
injection rate. 

Determination of lesions

Radiologic determination or histologic confirmation 
was performed to determine whether the lesions 
represented recurrence or radionecrosis. The radiologic 
determination was made by two neuroradiologists (J.H.K. 
and T.J.Y., with 13 and 10 years of brain MRI experience, 
respectively) who independently reviewed each patient’s 
MR images. The diagnosis of recurrence was established 
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if a progressive increase in the contrast-enhancing lesions 
was seen on the second and third follow-up MR studies 
(with an interval of 3 months) after the initial progress 
seen on the first follow-up MR study . The diagnosis of 
radionecrosis was made if a decrease or stabilization of 
the contrast-enhancing lesions for a minimum of 6 months 
was observed on the subsequent follow-up MR studies. 
For MRI in which the two radiologists’ findings were 
discrepant, a consensus was reached. In patients who 
underwent reoperation or stereotactic biopsy for the new 
enhancing lesions, histologic confirmation was available. 
The final determination for the diagnosis of recurrent 
GBM or radiation necrosis was decided on the basis of the 
following criteria [38]: (a) Samples containing a mixture 
of both recurrent GBM and radiation necrosis were 
classified as showing recurrent GBM, regardless of the 
degree of admixture; (b) only samples with pure radiation 
change (in the absence of tumor criteria) were categorized 
as showing radiation necrosis; and (c) the presence of a 
few isolated, scattered atypical cells did not qualify for 
tumor categorization if other neoplastic features were 
absent.

Quantitative image analysis

The MR data for the DSC PWI and SWMRI 
were digitally transferred from the picture archiving 
and communication system workstation to a personal 
computer for further analyses. Relative CBVs (rCBVs) 
were determined using a dedicated software package 
(NordicICE; NordicImagingLab, Bergen, Norway) with 
an established tracer kinetic model applied to the first-pass 
data [21, 39]. First, to minimize patient motion during the 
dynamic scans, realignment was performed. Second, the 
gamma-variate function, which is an approximation of the 
first-pass response as it would appear in the absence of 
recirculation, was used to fit the 1/T2* curves to reduce 
the effects of recirculation. To reduce the effect of contrast 
agent leakage, the dynamic curves were mathematically 
corrected [40]. After the correction of recirculation and 
contrast agent leakage, the rCBV was extracted using 
numeric integration of the curve. To minimize variances 
in the rCBV value in each patient, the pixel-based rCBV 
maps were normalized. Every rCBV value in a specific 
section was divided by the rCBV value in the normal 
white matter, contralateral to the enhancing lesion, as 
selected by a neuroradiologist (S.H.C.) [41].

The quantitative image analysis was independently 
performed by two radiologists (S.H.C., T.H.K.). The 
regions of interest (ROIs) were selected by connecting 
dotted lines with the software that contained the entire 
enhancing lesion of the contrast-enhanced T1WI on 
every continuous section of the co-registered images. 
Small or thin-rim enhancing lesions that did not fulfill 
the RANO criteria for measurable disease were excluded 
(16). Any areas of small vessels and necrosis were also 

carefully excluded from the ROIs. Then co-registrations 
of the CE T1W images between the normalized CBV 
(nCBV) maps and between the SWMRI were performed 
based on geometric information stored in the respective 
data sets using the dedicated software (NordicICE). 
The differences in slice thickness between images 
were adjusted automatically with the re-slicing and co-
registration method. The CE T1W images of the nCBV 
maps were displayed as color overlays, and those of the 
SWMRI maps were displayed as gray scale overlays. 
Next, histogram analysis was performed for the nCBV 
values. First, the nCBV histograms were plotted with 
nCBV on the x-axis, with a bin size of 0.1; the y-axis was 
expressed as a percentage of the total lesion volume by 
dividing the frequency in each bin by the total number of 
analyzed voxels. Second, for further quantitative analysis, 
cumulative nCBV histograms were obtained from the 
nCBV histograms, in which the cumulative number of 
observations in all of the bins up to the specified bin was 
mapped on the y-axis as percentages. In the cumulative 
nCBV histograms, the 70th, 90th, 95th and 99th percentile 
points (nCBV70, nCBV90, nCBV95 and nCBV99, 
respectively) were derived (the Xth percentile point is 
the point at which X % of the voxel values that form the 
histogram are found to the left of the histogram) [42]. The 
nCBV70 was arbitrary chosen as one of a cutoff value 
to reflect high grade gliomas with less marked degree of 
hyperperfusion or to exclude disproportionate contribution 
by vessels at the extreme top of the histogram curve [43]. 
Each percentile point was compared using areas under 
the receiver operating characteristic (ROC) curves at the 
points. Using this process, we chose the Xth percentile 
point of the cumulative histogram that showed the highest 
value of the areas under the ROC curve. 

For SWMRI, every pixel value was extracted from 
each ROI drawn around the entire contrast-enhanced 
region for each transaxial section. Among four different 
sets of images generated by Siemens scanner, we utilized 
the processed SWMRI magnitude image created by 
combining the phase and the magnitude map [15]. To 
define the reference signal intensity (SI), the ROI was 
placed in the ventricular system of the SWMRI map where 
the median SI was calculated. The proportion of dark SI of 
the lesions on SW images (proSWMRI) was defined as the 
percentage of the pixels with values below the reference 
SI (100 x the number of the pixel with values below the 
reference SI / the total number of the extracted pixel) [44]. 
A summary flow chart of the quantitative image analysis 
is described in Figure 6.

Histopathologic correlation

All available specimens from the 19 patients 
(12 of 32 recurrences, 7 of 19 radionecrosis) were 
histologically examined by one pathologist (J.K.W.) for 
the quantification of hemorrhage. For this quantification, 
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we included all sections stained with hematoxylin and 
eosin covering the whole contrast-enhancing portions on 
MRI in each patient. Hemorrhagic foci within the sections 
were categorized according to the following size criteria 
in the longest diameter; ≤ 5 mm and > 5 mm. Then, the 
number of hemorrhagic foci as well as proportion of the 
number of hemorrhage in each size was recorded.

Statistical analysis

All statistical analyses were performed using 
MedCalc software (v 15.8.0; MedCalc Software, 
Mariakerke, Belgium) and SPSS software (v 21.0 for 
Windows, SPSS, Chicago, Ill). The results with a P value 
of less than .05 were considered statistically significant. 

The clinical characteristics were compared between 
the recurrence and radionecrosis groups using Fisher’s 
exact test for categorical variables and unpaired Student’s 
t-test for non-categorical data..

Unpaired Student’s t-test was used to compare 
the mean nCBV, histogram parameters of nCBV and 
proSWMRI of the recurrence and radionecrosis. Inter-
observer agreement on the quantitative analysis was 
assessed by the interclass correlation coefficient and the 
coefficient of variation . To assess the most promising Xth 
percentile point of the cumulative histogram, the areas 
under the ROC curves (AUCs) with histogram parameters 
of nCBV were compared using the method of DeLong et 
al (22). ROC analysis was performed to determine the best 
cutoff values for the mean nCBV, histogram parameters 
and proSWMRI that proved to be substantial predictors 
in differentiating recurrence from radionecrosis. Next, 
a stepwise multivaraible logistic regression model was 
applied to determine the best predictors of the differential 
diagnosis between the recurrence and radionecrosis. With 
these data, we determined the diagnostic performance 
of the combination of the best predictors for the 
differentiation. Fisher’s exact test was performed to 
compare sensitivities and specificities of the predictors. 
The leave-one-out cross-validation (LOOCV) test was also 
performed to evaluate the accuracy of the combination of 
the best predictors.

Kaplan-Meier survival analysis and the log-rank 
test for group comparison were performed regarding 
the best cutoff of the histogram parameters that showed 
a difference between two groups in the ROC analysis to 
provide median overall survival (OS) estimates and time 
specific rates .

The proportion of hemorrhage with size of ≤ 5 mm 
or > 5 mm in the longest diameter was compared between 
recurrence and radionecrosis by using Mann-Whitney U 
test.
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