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ABSTRACT
Multiple myeloma (MM) remains incurable despite the introduction of novel 

agents, and a relapsing course is observed in most patients. Although the development 
of genomic technologies has greatly improved our understanding of MM pathogenesis, 
the mechanisms underlying relapse have been less thoroughly investigated. In this 
study, an integrative analysis of DNA copy number, DNA methylation and gene 
expression was conducted in matched diagnosis and relapse samples from MM 
patients. Overall, the acquisition of abnormalities at relapse was much more frequent 
than the loss of lesions present at diagnosis, and DNA losses were significantly 
more frequent in relapse than in diagnosis samples. Interestingly, copy number 
abnormalities involving more than 100 Mb of DNA at relapse significantly affect the 
gene expression of these samples, provoking a particular deregulation of the IL-8 
pathway. On the other hand, no significant modifications of gene expression were 
observed in those samples with less than 100 Mb affected by chromosomal changes. 
Although several statistical approaches were used to identify genes whose abnormal 
expression at relapse was regulated by methylation, only two genes that were 
significantly deregulated in relapse samples (SORL1 and GLT1D1) showed a negative 
correlation between methylation and expression. Further analysis revealed that DNA 
methylation was involved in regulating SORL1 expression in MM. Finally, relevant 
changes in gene expression observed in relapse samples, such us downregulation of 
CD27 and P2RY8, were most likely not preceded by alterations in the corresponding 
DNA. Taken together, these results suggest that the genomic heterogeneity described 
at diagnosis remains at relapse.

INTRODUCTION

The survival of patients suffering from multiple 
myeloma (MM) has improved considerably in the last ten 
years [1]. However, the clinical course of almost all MM 
patients is characterized by a chronic recurrence pattern, 
with periods of remission followed by relapse until the 

disease eventually becomes refractory [2]. Although 
MM initially responds readily to treatment and the 
responses are commonly durable, the time to progression 
is increasingly short in subsequent relapses. Therefore, 
further reductions in MM mortality and morbidity depend 
largely on our ability to prevent, delay or successfully treat 
the recurrences. 
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Many advances in our understanding of the 
pathogenesis of MM have been the result of major 
developments in genomic technologies [3–5]. However, 
not enough attention has been paid to identifying the 
mechanisms that trigger the relapse or progression of MM. 
A complex clonal architecture has recently been described 
at diagnosis and at various stages of myeloma progression. 
Several studies have revealed distinct patterns of subclonal 
evolution in MM including both linear and branching 
evolutionary models [6–8]. The contribution of these 
intraclonal dynamics to disease progression and relapse 
seems to be essential and may have profound therapeutic 
implications. 

Another important pathogenic mechanism that 
could be involved in myeloma relapse is the aberrant DNA 
methylation. A global DNA hypomethylation pattern with 
selective hypermethylated genes in comparison to normal 
plasma cells has been described in myeloma cells, providing 
a possible explanation for the transition from monoclonal 
gammopathy of undetermined significance (MGUS) to MM 
[9]. Genomic imbalances and changes in DNA methylation 
observed at relapse can probably lead to differences in gene 
expression levels, thereby provoking myeloma relapse or 
progression. In addition, global hypomethylation induces 
genomic instability, which may have a greater impact 
during the late stages of the disease [10].

The need to better understand the differences 
between the myeloma cells at the time of relapse and those 
present at diagnosis prompted us to investigate the copy 
number status, changes in DNA methylation and gene 
expression under both circumstances, and to integrate the 
data generated by the three microarray platforms.

RESULTS

Different patterns of genomic imbalances at MM 
relapse 

Genomic imbalances were identified in all tested 
samples obtained at diagnosis and in all the corresponding 
relapse samples. A summary of all chromosomal 
changes is presented in Supplementary Table S1 and 
Figure 1A. Significantly more chromosomal imbalances 
were observed at relapse with a median of 15 per case 
(range 8–33) compared with the moment of diagnosis 
with a median of 10 per case (range 6–16) (p = 0.01) 
(Figure 1B). When gains and losses were considered 
separately we found that losses were significantly more 
frequent at relapse (median of 7 per case; range 0–15) than 
in diagnosis samples (median of 4 per case; range 0–8)  
(p = 0.03) (Figure 1C). 

Visual analysis revealed slight differences between 
diagnosis and relapse in five paired samples. In the 
remaining cases the diagnosis and relapse samples 
showed different copy number abnormalities: six pairs 
only acquired new lesions, while eight pairs acquired new 

lesions and lost aberrations that were present at diagnosis 
(Figure 1D). Overall, the acquisition of abnormalities at 
relapse was much more frequent than the disappearance of 
lesions present at diagnosis (p < 0.002) (Figure 1E and 1F).  
The most frequently acquired aberrations at relapse and 
not present at diagnosis were 8q gains and 10q losses 
(FDR = 0.03 for both abnormalities).

Next, the whole length of DNA affected by copy 
number abnormalities (CNAs) at relapse in each sample 
was quantified using the Galaxy subtraction tool. Thus, a 
set of 11 samples showed a total length of DNA changed 
by more than 100 Mb at relapse, while CNAs affected less 
than 100 Mb of DNA in only eight samples (Figure 1G). 

Impact of chromosomal changes at relapse on 
gene expression of myeloma cells

To evaluate the influence of specific chromosomal 
changes at relapse on the modification of the expression 
levels of the affected genes, a bidirectional correlation 
analysis between CNAs and gene expression was 
performed in the 16 paired samples (32 samples in total) 
with both types of available genomic data. This analysis 
was restricted to those genes with a ≥ 2-fold change in gene 
expression in at least three patients. Pearson correlations 
revealed a positive and significant correlation (r > 0.8, 
FDR < 0.05) for two genes, PRAME and BOP1, located 
at 22q11 and 8q24, respectively (Figure 2A and 2B). 
Gains on 8q24 also contained the MYC gene, although the 
acquisition of this imbalance at relapse was not correlated 
with MYC overexpression. An association between CNAs 
and gene expression was also sought using a pair-by-pair 
analysis, but no significant genes were identified by this 
approach. 

When the impact of chromosomal changes on 
gene expression at relapse was assessed with respect to 
the length of DNA affected by CNAs, 273 differentially 
expressed genes between diagnosis and relapse status 
were detected in the group of samples with more than 
100 Mb of DNA involved in CNAs. Signaling pathway 
analysis classified these genes into 88 pathways (adjusted 
p < 0.05). Those related to cytokines, particularly IL-8, 
and integrin signaling were the most strongly enriched 
(Figure 3). On the other hand, no relevant modifications 
of gene expression were observed in those samples with 
less than 100 Mb affected by chromosomal changes.

Changes in DNA methylation between relapse 
and diagnosis

As an initial approach to the analysis of changes in 
DNA methylation between matched diagnosis and relapse 
samples from 20 MM patients, we measured general 
methylation status, comparing the number of methylated 
regions at diagnosis and relapse samples without assigning 
them to any genes. Overall, no significant differences 
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Figure 1: Genomic landscape of MM revealed by SNP microarrays. (A) Frequency plot of copy number changes  
(gains and losses) at a chromosomal position in MM samples at diagnosis (n = 19) and relapse (n = 19). (B) Box-plot showing the number 
of chromosomal changes. *p < 0.01 (Mann–Whitney U test). (C) Box-plot comparing the number of gains and losses at diagnosis and 
relapse. *p < 0.01 (Mann–Whitney U test). (D) Visualization of the size and location of genomic changes comparing diagnosis and relapse. 
Nineteen paired samples were ordered into three categories: cases with “no change”, “acquired lesions” or “acquired and lost lesions”. Both 
acquired and lost lesions can refer to gains or losses of chromosomal material. (E) Visualization of the size and location of CNAs emerging 
at relapse and not present at diagnosis. Only new gains and losses are shown. The chromosome number is indicated at the top of the graph. 
Visualization of the size and location of CNAs present at diagnosis but which had disappeared at relapse. (G) Classification of samples 
according to the total length of changed DNA (gained or lost). The X axis indicates the sample number; the Y axis shows the length of 
changed DNA (bp). The black line is a 100-Mb cutoff that separates samples into those with small and large DNA changes. 
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in the number of methylated regions between MM 
diagnosis and relapse were found (Figure 4A). In order 
to clarify this negative result, a pair-by-pair comparison 
of the number of methylated regions was carried out. This 
analysis revealed heterogeneous methylation patterns 
between the paired samples, whereby although most of 
them showed fewer methylated regions at relapse, seven 
patients exhibited the opposite pattern (Figure 4B). The 
chromosome-by-chromosome comparison identified only 
minute differences (Figure 4C). 

Since the analysis revealed no significant differences 
in the number of methylated regions at diagnosis and 
relapse, a more detailed DNA methylation analysis was 
carried out. The analytical strategies are summarized in 
Supplementary Table S2. 

Differentially methylated regions (DMRs) at MM 
diagnosis and relapse were compared using the Charm R 
Package. A total of 490 DMRs (p < 0.05, average DNA 
methylation percentage within the DMR > 5%, number 
of probes more or equal than 4) were identified, whose 
associated genes were mainly enriched in integrin family 
members, cell surface interactions and proteoglycan 
syndecan-mediated signaling events according to Pathway 
Commons. Interestingly, three members of the cluster of 
differentiation (CD7, CD53 and CD82), genes involved 
in the MAPK signaling pathway such as MAP3K19 and 
MAPK8IP3, the kinase PI4KB and the transcriptional 
factor POU6F1, were found among the genes with 
associated DMRs. The full list of DMRs with associated 
genes is presented in Supplementary Table S3. 

At first sight, analysis of DMR is informative, but 
further interpretation may be quite complex, since DMR-
associated genes are sometimes located thousands of 

nucleotides away from the methylated sequence, hindering 
further DNA methylation validation in vitro. Thus, the 
analysis was refined by screening the methylation status of 
two genomic regions relative to the nearest transcriptional 
start site (TSS), comparing the states at diagnosis and 
relapse. The first, 2000 bp upstream TSS considered as a 
“promoter region” and the second, +/− 250 bp surrounding 
the TSS called “core promoter”. Additionally, the 
maximum and average methylation signals were analyzed 
for each region (Supplementary Figure S1). This approach 
was dictated by the need to check whether a short 
sequence in each range could be strongly methylated. 
The analysis of methylation focused on promoter region 
showed more than 3000 methylated genes when average 
methylation was taking into account and 60 when 
maximum methylation signal was considered (q < 0.05). 
The list of genes identified as having differential DNA 
methylation levels between diagnosis and relapse is shown 
in Supplementary Table S4. 

DNA methylation changes at relapse and their 
effect on gene expression

The effect of methylation changes on gene 
expression was evaluated in 17 samples with matching 
DNA methylation and gene expression data. Although 
the mechanisms of regulation of gene expression by 
DNA methylation have not been completely deciphered 
and positive correlations have also been reported, we 
focused solely on negative associations (the presence of 
methylation and loss of expression or vice versa). 

As a first approach, the list of DMRs was combined 
with the list of genes whose expression at relapse changed 

Figure 2: Associations of chromosomal changes and modification of gene expression levels at relapse. (A) Heatmap 
showing the significant association between CNA and the expression level of two genes, BOP1 and PRAME. Color scale for expression: 
blue, Fold Change (FC) R/D < 0.67; red, FC R/D > 1.5; white, FC = 0. Color scale for CNAs: blue, log2 ratio R–D < –0.1; red, log2  
ratio R–D > 0.1; white, log2 ratio = 0. R: relapse, D: diagnosis. Data obtained from microarray analysis of 16 paired samples. (B) Pearson 
correlation of CNA and gene expression of BOP1 and PRAME.
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by at least 1.5-fold. An inverse association was only found 
for GLT1D1 and SORL1 genes, so that lower levels of 
expression of both genes were associated with increased 
methylation at relapse. Underexpression of SORL1 at 
relapse was confirmed by qRT-PCR (Figure 5A and 5B). 
Next, the relationship between SORL1 methylation and 
expression was investigated in vitro. To this end, the 
expression and methylation status of SORL1 was assessed 
in four MM cell lines (JJN3, RPMI, H929 and U266). The 
results showed that the two cell lines (H929 and U266)  
with the lowest SORL1 expression levels exhibited 
methylation in most of the CpGs present in the regulatory 
5ʹUTR region and first exon (Figure 5C and 5D). On the 
other hand, the two cell lines (JJN3 and RPMI) with high 
SORL1 expression levels exhibited lack of methylation in 
most of the CpGs (Figure 5C and 5D). To test whether 
DNA methylation repressed SORL1 expression, the DNA 
demethylating agent decitabine was used. After decitabine 
treatment, SORL1 expression was increased in both MM 
cell lines (Figure 5E). The results confirmed that SORL1 
expression could be regulated by DNA methylation. 
Similar results were obtained for GLT1D1, although 
decitabine treatment did not induce a significant increase 
in GLT1D1 expression (Supplementary Figure S2).

Subsequently, associations were sought between 
the expression levels of those genes whose expression 
changed by at least 2-fold between diagnosis and relapse 
samples in more than three pairs and the DNA methylation 
changes in the promoter region and the core promoter of 
this set of genes. No significant inverse correlations were 
found using the Pearson algorithm or a "random-effects 
model fitting" (SIM package).

The lack of significant correlation between DNA 
methylation and gene expression could be because this 
relationship exists only in a small set of samples and so its 
presence may be masked by weak or absent correlations in 
the majority of samples. This possibility was examined, but 
we also failed to find other associations between expression 
and methylation modifications observed at relapse. 

Gene expression profiles associated with relapse

Finally, to investigate the transcriptome signature 
of myeloma cells at relapse, gene expression of paired 
samples at diagnosis and relapse from 17 MM patients 
was compared using SAM software. Five genes, CNN2, 
P2RY8, CD27, KLHDC1 and AKT3, were found to be 
underexpressed at relapse (q < 0.05) as shown in Figure 6A.  

Figure 3: Signaling pathway analysis of the differentially expressed genes in the group of samples with more than  
100 Mb of DNA involved in CNAs. The 20 most significant pathways are shown. The black line represents the log Benjamini–
Hochberg adjusted p-value. 
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CD27 and P2RY8 expression was further validated 
by qRT-PCR in sets of six and four paired samples, 
respectively (Figure 6B–6E). Additionally, we performed 
a meta-analysis combining our data with two external 
series of microarray data in which diagnosis and relapse 
samples were included. The pooled effect sizes of the four 
genes, CNN2, CD27, KLHDC1 and AKT3 (P2RY8 was not 
included because of probe set disparity between arrays) 
showed a negative trend (g < 0) indicating a significant 
underexpression in the relapse samples (Figure 6F). 

The low number of differentially expressed genes 
(DEGs) between relapse and diagnosis led us to investigate 
the natural structure of gene expression data using an 

unsupervised approach. Both the multidimensional 
scaling algorithm and the hierarchical dendrogram 
showed that samples were mainly grouped as diagnosis-
relapse pairs (Figure 7A and 7B). When relapse samples 
were submitted to hierarchical cluster analysis based 
on a Euclidean distance of ~130 (Figure 7C and 7D)  
three groups of eight, four and four samples each were 
distinguished. SAM analysis was used to identify the 
DEGs between the relapse samples in each group and 
the matched diagnosis samples. However, similar to the 
first analysis, only two genes, ARHGAP31 and KIT, were 
significantly underexpressed at relapse in the first group; 
five genes, PLBD1, ITGAM, IL18RAP, MGAM and GPR97 

Figure 4: DNA methylation changes between relapse and diagnosis. (A) Number of methylated regions (mean ± standard 
deviation) in the 20 paired samples (diagnosis vs relapse). (B) Ratio of the number of methylated regions between relapse and diagnosis 
chromosome-by-chromosome. X axis, chromosomes; Y axis, fold change of methylated regions. (C) Ratio of the number of methylated 
regions between relapse and diagnosis for each pair of samples. X axis, sample identification; Y axis, fold change of methylated regions.
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were found to be underexpressed at relapse in the second 
group, and only the SNORA5 gene was significantly 
overexpressed at relapse in the third group. 

Finally, gene expression changes between diagnosis 
and relapse in each pair of samples were examined to 

identify those with a ≥ 2-|fold change|  between the two 
conditions. Only those genes deregulated in the same 
direction (upregulated or downregulated) in at least 
five samples were considered. This approach identified  
15 overexpressed and 67 underexpressed genes across all 

Figure 5: Expression and DNA methylation status of SORL1 gene. (A) Pearson correlation of SORL1 gene expression measured 
by qRT-PCR (Taqman) and by microarrays in 34 MM samples (17 paired samples). (B) Expression of SORL1 gene measured by qRT-PCR at 
diagnosis and relapse (17 paired samples). (C) Expression of SORL1 gene assessed by qRT-PCR in 4 MM cell lines. Results are normalized 
to the expression of GAPDH. Results are shown as ∆Ct and are the average of three independent experiments. (D) DNA methylation status 
of part of CpG island present in the 5ʹ UTR region of the SORL1 gene in H929 and U266 cell lines. Blue square: unmethylated CpG; red 
square: methylated CpG. Only CpGs are shown. Each line shows one sequenced clone. The percentages indicate percentage of methylated 
CpGs (average of 5 replicates). (E) SORL1 expression after decitabine (1 µM, 72 h) treatment of H929 and U266 cell lines. Control-cells 
treated with DMSO. Results are the average of three independent experiments. *p < 0.05 (Student’s t test).
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Figure 6: Gene expression profile associated with relapse. (A) Heat map of the five genes significantly underexpressed at relapse 
(q-value < 0.05). Green- decreased expression, red- increased expression. (B) Expression of gene CD27 measured by qRT-PCR of diagnosis 
and relapse samples (n = 8). (C) Pearson correlation of CD27 gene expression quantified by qRT-PCR (Taqman) and by microarrays (n = 8).  
(D) Expression of P2RY8 gene measured by qRT-PCR at diagnosis and relapse samples (n = 12). (E) Pearson correlation of P2RY8 gene 
expression quantified by qRT-PCR and by microarrays (n = 12). (F) Meta-analysis of gene expression data. Comparison of standardized 
mean difference (Hedges‘ g). w means percentage of weight of each study in the meta-analysis. Effect sizes for individual studies and the 
combined average are shown in forest plots with their 95% confidence interval (95% CI). For the pooled effect size, the z test value and its 
p value were also provided.
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samples (Figure 8A). The gene ontology analysis using 
WebGestalt (Figure 8B) revealed that 15 overexpressed 
and 67 underexpressed genes were involved in biological 
processes such as immune system processes (n = 21, 
adjusted p = 0.003) and the B cell receptor signaling 
pathway (n = 3, adjusted p = 0.04). 

DISCUSSION

Advances in cancer genomic technologies have 
enabled the genomic landscape of MM to be described 
in detail. However, the genomic basis of the continuous 
relapses of myeloma over time, from presentation to end-
stage disease remains to be elucidated. Genomic analysis 
based on copy number abnormalities (CNAs) and massive 
deep genome sequencing studies has demonstrated that 
subclonal diversity observed in myeloma cells at the 
relapse stage often differs from that observed at diagnosis, 
suggesting that early genetic subclones resistant to 
initial treatments emerge at relapse. However, it is 
unknown whether the dramatic differences in the CNA 

status observed between relapse and diagnosis result in 
significant changes in the genomic expression profile 
of myeloma cells. On the other hand, changes in the 
DNA methylation patterns leading to gene expression 
deregulation might also contribute to the triggering of 
MM relapse. The present study aimed to investigate more 
deeply the genomic changes generated in the transition of 
myeloma cells from diagnosis to relapse, analyzing not 
only DNA imbalances but also epigenetic modifications 
(methylation profiles), and evaluating the influence of both 
types of DNA modification on the expression phenotype of 
myeloma cells at relapse. 

SNP array analysis revealed different subclonal 
composition at relapse compared to that at diagnosis 
in most paired MM samples, consistent with previous 
reports showing the clonal tiding in MM. Interestingly, 
the acquisition of chromosomal abnormalities at relapse 
was significantly more frequent than the loss of lesions 
present at diagnosis. The CNA most frequently associated 
with relapse was gains on 8q. The correlation between 
CNA and the expression level of the genes located on 

Figure 7: Unsupervised analysis of gene expression in MM samples. (A) Hierarchical dendrogram and (B) Multidimensional 
scaling of 34 MM samples (17 paired samples) based on the expression of 33297 genes. (C) Hierarchical dendrogram plot adjusted to show 
the AU (Approximately   Unbiased) p-values (red digits). (D) Multidimensional scaling of the 17 relapse samples. Three clusters were 
identified with a Euclidean distance of ~130.
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Figure 8: Gene expression changes between diagnosis and relapse in each pair of samples. (A) Heatmap of those genes 
that presented changes (|FC| ≥ 2) in the same direction in at least five of the 17 relapse samples. (B) Biological processes of genes shown 
in panel A.
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the corresponding DNA regions showed that most of 
the genes with increased or decreased expression at 
relapse were not located within the gained or lost DNA 
regions. Only PRAME and BOP1 overexpression was 
significantly correlated with gain of the DNA containing 
these genes. PRAME has been found to be expressed in 
23% of advanced-stage MM patients [11]. Further studies 
are needed to ascertain whether PRAME expression is 
associated with a gain of chromosome 22. Gains of 8q24 
were only correlated with overexpression of one of the 
genes, BOP1, located at this region. BOP1 is known to 
play an oncogenic role in hepatocellular carcinoma by 
promoting epithelial-to-mesenchymal transition [12]. 
Although deregulation of MYC, a well-known oncogene 
located in proximity to BOP1, has been considered as a 
late progression event in MM, an association between 
MYC overexpression and 8q24 gains at relapse was not 
found in this set of samples. 

The diversity of changes at relapse might prevent 
clusters being distinguished with common DNA 
imbalances when it comes to searching for an associated 
specific expression signature. Unstable genomes at 
relapse, with a branching or linear evolution, are more 
closely associated with high-risk patients than are stable 
genomes [7]. This prompted us to investigate whether 
the magnitude of genomic changes, in other words the 
length of DNA involved in chromosomal imbalances, 
could influence gene expression patterns. Thus, the 17 
paired samples could be divided into two groups on the 
basis of the length of DNA affected by CNAs at relapse. 
Interestingly, only modifications in the transcriptome were 
observed in the group of relapse samples with more than 
100 Mb of DNA involved in CNAs. Expression of more 
than 250 genes was found to be deregulated in this group, 
with a predominance of underexpressed genes. The IL-8 
signaling pathway was the most significantly altered, 
particularly because of the decreased expression of two 
IL-8 receptors, CXCR1 and CXCR2. IL-8 plays a critical 
role in tumor growth, and promotion of cancer invasion 
and metastasis. In this context, decreased expression 
of CXCR1 and CXCR2 could act as a counterbalancing 
mechanism leading to the reduction of IL-8 signaling in 
relapsed MM. The exact role of IL-8 in MM relapse is 
worthy of further investigation.

Epigenetic modifications form a complex network 
of inter-dependent mechanisms that are known to be 
critical factors in cancer development and progression 
[13, 14]. One of the most widely investigated epigenetic 
modifications is DNA methylation. In plasma cell 
dyscrasias, global hypomethylation and gene-specific 
DNA hypermethylation during the transformation from 
MGUS to myeloma have been described. However, our 
study identified no significant modifications in global DNA 
methylation at the relapse stage. A similar observation 
was made in acute lymphocytic leukemia in which DNA 
methylation of some crucial genes like MDR1, p73, p15 

(CDKN2B) and p16 (CDKN2A) was stable in a majority of 
patients with relapsed leukemia [15]. Nevertheless, further 
studies with more paired diagnosis-relapse samples from 
MM patients are needed to confirm this negative result.

A further analysis using an algorithm for DMR 
detection identified roughly 500 DMR-associated genes 
between relapse and diagnosis samples. Members 
belonging to clusters of differentiation such as CD7, CD37 
and CD82 have previously been shown to be regulated by 
DNA methylation [16–18]. However, the intersection of 
the list of DMRs and DEGs between relapse and diagnosis 
did not show significant overlap, which is consistent 
with the weak association between DNA methylation 
and gene transcription observed in MM by other groups 
[19, 20]. Only two DMR-associated genes (SORL1 and 
GLT1D1) with decreased expression and increased DNA 
methylation were identified. SORL1 is a member of the 
low-density lipoprotein receptor family [21] that has a 
potential biomarker role in patients with non-Hodgkin’s 
lymphoma [34, 35], and GLT1D1 (glycosyltransferase 1 
domain containing 1) has been reported to be a candidate 
oncogene in human colorectal cancers with microsatellite 
instability [24]. Our results using bisulfite sequencing and 
decitabine treatment showed for the first time that SORL1 
can be regulated by DNA methylation. 

Although the analysis of DMRs is relatively 
automatic and time-saving, DMRs are sometimes 
thousands of nucleotides distant from the TSS gene, 
which may represent an obstacle for further data 
validation. Keeping this limitation in mind, we decided 
to investigate DNA methylation in specific regions such 
as the enhancer/promoter zone (−2000 bp from TSS) and 
proximal promoter (250 bp either side of the TSS), since 
many regulatory elements are present within 2000 bp 
[25] and the sequence of proximal promoters are within 
the region +/− 250 bp surrounding the TSS have the 
strongest effect on gene expression [26, 27]. By applying 
this method, a total of 4270 genes with significant change 
in DNA methylation of the promoter/enhancer region 
were identified. Despite this high number of differentially 
methylated genes, no inverse correlation with gene 
expression changes was detected. 

Finally, we also searched for gene expression 
changes between diagnosis and relapse irrespective 
of DNA status. Surprisingly, only five genes were 
significantly underexpressed at relapse. Four of these 
(CNN2, P2RY8, CD27 and AKT3) were significantly 
decreased in those relapse samples, with CNAs involving 
more than 100 Mb of DNA. Low CD27 expression is an 
unfavorable marker in MM patients, linked to shorter 
survival of MM patients [28, 29]. Even the analysis of 
differential gene expression between the three clusters 
identified at relapse and the corresponding diagnosis 
samples did not improve the results. Indeed, few genes 
were associated with relapse condition. Interestingly, 
underexpression of KIT (CD117) was observed in a set 
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of samples at relapse. This finding is consistent with a 
previous observation indicating that CD117 expression 
by clonal plasma cells confers a favorable prognosis in 
multiple myeloma [30], and with the reported decrease 
in CD117 expression from monoclonal gammopathy of 
undetermined significance to smoldering and symptomatic 
MM [31]. The limited changes between the transcriptome 
of myeloma cells at relapse and diagnosis suggest a broad 
diversity in the pattern of MM relapse. This prompted 
us to undertake a pair-by-pair analysis to look for genes 
that changed their expression in the same direction in 
more than five pairs of samples. This approach revealed 
82 deregulated genes, many of which belong to the B 
cell receptor signaling pathway and immune system 
process. Thus, PTPRC (CD45), a protein tyrosine 
phosphatase whose lack of expression has previously been 
associated with the phenotype of progressive MM, was 
downregulated in MM relapse samples [32]. Likewise, 
PRKCH, a member of the protein kinase C family, which 
plays an integral role in B cell survival and antigenic 
responses, and the B cell receptor component CD79a were 
also underexpressed at relapse. 

To sum up, cross-platform integration of three sets 
of microarray data revealed that genomic heterogeneity of 
MM already described at diagnosis remains at relapse with 
chromosomal imbalances that emerge and disappear in a 
variegated fashion. The lack of common genomic patterns 
at relapse would prevent the identification of broad gene 
expression changes in the relapse condition. Although 
specific DNA gains and losses were not associated with 
the respective modifications in the expression of genes 
located at these regions, an interesting finding was the 
significant impact of CNAs involving total DNA of 
> 100 Mb on gene expression, indicating that the more 
chaotic the genome, the more gene expression changes 
will be detected. On the other hand, this study showed a 
very limited effect of methylation changes at relapse on 
the transcriptome of myeloma cells.

MATERIALS AND METHODS

Patients and cell lines

Twenty patients with newly diagnosed symptomatic 
MM were studied. Clinical information is summarized 
in Supplementary Table S5. Paired bone marrow (BM) 
samples were obtained at diagnosis and at first relapse 
from all the patients. A CD138-positive PC isolation using 
the AutoMACs automated separation system (Miltenyi-
Biotec, Auburn, CA, USA) was carried out in all the 
BM samples (purity > 90%). DNA was extracted from 
samples frozen in RLT-Plus buffer using commercially 
available kits (Allprep Kit, Qiagen, Valencia, CA). 
DNA quality and quantity were determined using a ND-
1000 Spectrophotometer (Nano-Drop Technologies, 
Wilmington, DE, USA). Total RNA was extracted using an 

RNeasy Mini Kit (Qiagen, Valencia, CA, USA) following 
the manufacturer’s protocol. RNA integrity was assessed 
using an Agilent 2100 Bioanalyzer (Agilent Tech, Palo 
Alto, CA, USA). All patients provided written informed 
consent in accordance with the Helsinki Declaration, and 
the research ethics committee of the University Hospital 
of Salamanca approved the study.

The H929, RPMI and U266 human MM cell lines 
were obtained from the American Type Culture Collection 
(ATCC), and JJN3 was obtained from Deutsche Sammlung 
von Mikroorganismen und Zellkulturen GmbH (DSMZ). 
Cell culture conditions and decitabine treatment were 
performed as described elsewhere [33]. 

Methylation analysis, SNP-based mapping array 
and expression profiling were performed in 20, 19, and 
17 pairs, respectively. Integrated analysis of CNA and gene 
expression was carried out in 16 patients, and integrated 
analysis of DNA methylation and gene expression was 
conducted in 17 patients Supplementary Table S6

SNP-based mapping array

Genome-wide detection of CNA was carried out 
using the standard Affymetrix CytoScan 750k assay 
protocol (Affymetrix, Santa Clara, CA, USA). Briefly, 
genomic DNA was digested with Nsp I restriction enzyme, 
ligated to adaptors and amplified by PCR. PCR products 
were purified and fragmented, and then end-labeled with 
biotin, denatured, and hybridized to the CytoScan 750k 
Array. The arrays were processed using the Fluidics 
Station 450, GeneChip Scanner 3000 7G and AGCC 
(Affymetrix GeneChip Command Console Software). 

DNA methylation array

DNA methylation was assessed using the Human 
DNA Methylation 3x720K CpG Island Plus RefSeq 
Promoter Array according to the standard procedures of 
NimbleGen Systems, with minor differences. Arrays were 
scanned in a NimbleGen MS 200 Microarray Scanner 
(Roche, Basel, Switzerland). 

Gene expression array

RNA labeling and microarray hybridization methods 
have been previously reported [34]. Briefly, 300 ng of 
total RNA were amplified and labeled using the WT Sense 
Target labeling and control reagents kit (Affymetrix, Santa 
Clara, CA, USA), and then hybridized to Human Gene 
1.0 ST Array (Affymetrix). Washing and scanning were 
carried out using the Affymetrix GeneChip System (Gene-
Chip Hybridization Oven 640, GeneChip Fluidics Station 
450 and GeneChip Scanner 7G). 

Complete microarray data are available from the 
Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/, 
accession number GSE77540).
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Copy number analysis

The genomic imbalance of 19 paired samples 
was analyzed using the Chromosome Analysis Suite 
of Affymetrix (ChAS). CNAs were reported when the 
following three criteria were attained: a minimum of 
25 markers per segment, 100 Kb minimum genomic size 
and less than 50% overlap with known copy number 
variants (http://dgv.tcag.ca/dgv/app/home). Copy number-
based heatmaps were constructed using the Integrative 
Genomics Viewer (version 4.3) [35]. Operations on 
genomic intervals were carried out using the Galaxy suite 
[36–38]. The copynumber package, implemented in R, was 
used to “winsorize” [39] and segment the CNA data in order 
to construct the frequency plots. A threshold log2 ratio was 
set to 0.1 and –0.1 for gain and loss, respectively. The data 
analysis workflow is presented in Supplementary Table S2.

DNA methylation analysis

Data from 20 paired samples were extracted using 
the NimbleScan Software (version 2.5). Three workflow 
processes were defined using the peak scores, the raw 
intensity values and the log2 ratios as input. 

With the first approach, a peak score was estimated 
from log2 ratios. These data were quantile-normalized using 
the Affy R package [40] and the batch effect was corrected 
using the ComBat package in R [41]. Peak parameters were 
set to a width of 750 bp and a minimum of two probes per 
peak. A peak score cutoff of 2 was established to determine 
the peak methylation. Comparisons between diagnosis and 
relapse methylation status, as well as per sample or per 
chromosome methylation relapse/diagnosis ratios using 
bar-plots were depicted.

In the second approach, the Comprehensive High-
throughput Arrays for Relative Methylation (CHARM) R 
package was used to identify the DMRs from this data 
after controlling for the batch effect [42]. All DMRs with 
fewer than four probes were removed; significant DMRs 
were defined as those with a value of p < 0.05.

The third approach involved the use of the 
normalized and adjusted log2 ratios. Methylation values 
were assigned to genes at enhancer/promoter and proximal 
promoter levels based on the mean or the maximum 
log2 ratio methylation values of probes present in these 
regions. Unsupervised analysis was carried out in SIMFIT 
(http://www.simfit.org.uk/) using the Euclidean distances 
and the group average linkage method. Fifty percent of 
the genes with lower profile variance were removed 
[43, 44] to perform SAM paired statistical analysis [45]. 
Variables with a value of q < 0.05 were considered to 
have significant changes in methylation. Gene enrichment 
analyses were performed using the web tool Webgestalt 
with the Gene Ontology and Pathway Commons data 
sources. The data analysis workflow is presented in 
Supplementary Table S2.

Gene expression data analysis

Data from 17 paired CEL files were normalized 
with the RMA algorithm using the Affymetrix Expression 
Console version 1.3.1.187. Unsupervised analysis was 
carried out with SIMFIT. Probesets with a low expression 
level across all samples were deleted in order to enhance 
the performance of the analysis [46]  of the analysis. 
Statistical comparisons were conducted with the SAM add-
in in Excel, selecting the two-class paired statistical option. 
Only non-duplicated and well-annotated genes that attained 
a value of q < 0.05 in the SAM analysis were reported in 
this study. We also introduced another method based on the 
magnitude of the change in gene expression, considering 
only those genes with a ≥ 2-|fold change| (in the same 
direction) in at least five pairs. Gene enrichment analysis 
was carried out using the web tool Webgestalt. The data 
analysis workflow is presented Supplementary Table S2.

 Gene expression meta-analysis was conducted 
combining our data with two series of GEO (https://
www.ncbi.nlm.nih.gov/geo/) microarray data (GSE38627 
and GSE37414) in which diagnosis and relapse samples 
were included. The CMA software version 3 was used for 
statistical calculations (https://www.meta-analysis.com/) 
and the SIMIT package. Heterogeneity between studies 
was tested using the Cochran’s Chi-square test (Q-test) 
and the I2 statistic. Studies were considered heterogeneous 
if p < 0.05 for Q-test [47] and I2 value > 50% [48]. 
Effect size between the 2 groups analyzed for each study 
were computed using the standardized mean difference 
(Hedges’ g). Since the 3 studies showed significant 
heterogeneity for the genes tested, the meta-analysis 
calculations were based on random-effects models which 
takes into account both between-study and within-study 
variances. Effect sizes for individual studies and the 
combined average are shown in forest plots with their 95% 
confidence interval (95% CI). For the pooled effect size, 
the z test value and its p value are also provided.

Analysis of associations between array data 

Association studies were conducted using the same 
approaches for methylation and CNA data, both associated 
with gene expression data, following three steps. Firstly, 
global Pearson correlations were calculated using the 
Psych R package [49]. In order to improve the accuracy we 
used the fold change (FC) in each pair, as an association 
parameter in the case of the gene expression and 
methylation samples, and the ratio difference in the case of 
the CNA samples. Only those genes with gene expression 
|FC| > 2 or |FC| > 1.5 in at least 3 pairs were selected for 
the correlation analyses.  In order to adjust p-value the 
false discovery rate (FDR) method was used. Secondly, we 
used a method called Statistical Integration of Microarrays 
(SIM) [50, 51] implemented in R. The input matrices are 
described in the above Pearson procedure. We considered 



Oncotarget80677www.impactjournals.com/oncotarget

the chromosome level as the dependent region to be 
analyzed and the FDR as a procedure for multiple testing 
correction. In the third step, we proceeded to correlate 
genes pair by pair carrying out analysis procedure based 
on the |fold change| > 2. The data analysis workflow is 
presented in Supplementary Table S2. 

A detailed description of the data analysis is 
provided in the Supplementary Methods file. 

In vitro validation of epigenetic regulation of 
SORL1 expression

DNA spanning SORL1 5ʹUTR and first exon or part 
of CpG island covering GLT1D1 5ʹUTR was amplified 
by PCR with following primers: SORL1 forward 
5ʹ-GTAGGGAGAATAAGGAGGTGTGTT-3ʹ and reverse 
5ʹ-TCCCCAATAATACCTACACCTAAAA-3ʹ GLT1D1 
forward 5ʹ-GTAGAAGTAGGATGGGAGTAGGATT-3ʹ 
and reverse 5ʹ-TACACTCCAACCTAAATAACACAAC-
3ʹ. The bisulfite DNA treatment procedure, cloning of PCR 
product and data visualization were performed as described 
elsewhere [33]. To test whether DNA demethylation 
affected expression of SORL1, selected cell lines were 
treated with decitabine as previously described [33].
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