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ABSTRACT
Abnormal regulation of Sonic hedgehog (Shh) signaling has been described in a 

variety of human cancers and developmental anomalies, which highlights the essential 
role of this signaling molecule in cell cycle regulation and embryonic development. 
Gas1 and Boc are membrane co-receptors for Shh, which demonstrate overlapping 
domains of expression in the early face. This study aims to investigate potential 
interactions between these co-receptors during formation of the secondary palate. Mice 
with targeted mutation in Gas1 and Boc were used to generate Gas1; Boc compound 
mutants. The expression of key Hedgehog signaling family members was examined in 
detail during palatogenesis via radioactive in situ hybridization. Morphometric analysis 
involved computational quantification of BrdU-labeling and cell packing; whilst TUNEL 
staining was used to assay cell death. Ablation of Boc in a Gas1 mutant background 
leads to reduced Shh activity in the palatal shelves and an increase in the penetrance 
and severity of cleft palate, associated with failed elevation, increased proliferation and 
reduced cell death. Our findings suggest a dual requirement for Boc and Gas1 during 
early development of the palate, mediating cell cycle regulation during growth and 
subsequent fusion of the palatal shelves.

INTRODUCTION

Development of the mammalian secondary palate is 
a complex process, which requires a coordinated network 
of molecular and cellular events to produce appropriate 
growth, elevation and fusion of the constituent palatal 
shelves [1–3]. In humans, palatogenesis occurs relatively 
early in development, taking place between 5 and 12 
weeks of intrauterine life [4]. In the mouse, this process is 
remarkably similar to that in the human, but occurs more 
rapidly between embryonic stages (E) 10.5 and E15.5 
[5]. Formation of the secondary palate begins with the 
appearance of two outgrowths from the maxillary process 
(palatal shelves, PS), which grow vertically to flank the 
lateral borders of the developing tongue (Figure 1B) [6, 7]. 
The PS subsequently elevate to a horizontal position above 
the tongue, which itself descends to help facilitate this 

process. Following elevation, medial growth of the paired 
PS towards the midline results in contact and then fusion 
with each other. During this stage, a transient medial 
epithelial seam (MES) is generated from the adhered 
epithelia [8, 9], which progressively disappears as midline 
confluence is achieved. The secondary PS also fuse with 
the primary palate anteriorly at the incisive foramen 
and complete confluence is usually observed around the 
twelfth week of human embryogenesis (E15.5 in mice) 
(Figure 1) [4, 8].

The Hedgehog (Hh) family of signaling molecules 
have emerged as major contributors to the developmental 
process in a wide variety of organisms, coordinating cell 
proliferation, survival and differentiation in multiple 
tissues [10–13]. Dysfunction of Hh signaling underlies 
a number of human developmental abnormalities and 
diseases, making it an important therapeutic target [10]. 
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More specifically, genetic defects in the pathway can cause 
Holoprosencephaly (HPE) [14] or complex genetic diseases, 
such as Pallister–Hall syndrome [15] and Basal Cell Nevus 
Syndrome (BCNS) [16–18]. The Hh signaling pathway can 
undergo aberrant activation through the overexpression 
of Hh ligands, loss of receptor and co-receptor function 
or dysregulation of downstream transcription factors. All 
these aberrations in Hh signaling have been implicated 
in the initiation and progression of multiple cancer types, 
including breast, prostate, hepatocellular, pancreatic and 
brain cancers [11]. Sonic hedgehog (Shh) is the most 
comprehensively studied member of the Hh family [10] with 
the secreted ligand binding the primary Patched-1 (Ptch1) 
receptor to effect signal transduction [19, 20]. In the absence 
of ligand, Ptch1 acts as a ligand-independent inhibitor of 
the transmembrane protein Smoothened (Smo), a positive 
regulator of the pathway [10, 21, 22]. This regulation of 
Shh activity takes place in the primary cilium, by an as yet 
undefined mechanism [23–26]. Once the repression exerted 
by Ptch1 is released by Shh binding, increased ciliary 
levels of Smo lead to active transcription of Gli (Glioma-

associated oncogene family members) transcription factors, 
through binding of specific consensus sequences located in 
the promoter region of target genes [10, 21]. More recently, 
the complexity of Shh signal regulation has become 
further evident as new proteins involved in modulating 
the pathway have been uncovered [21]. Among these, 
Growth arrest-specific 1 (Gas1) [27, 28], Cell-adhesion-
molecule-related/downregulated by oncogenes (Cdon) 
[29, 30] and Biregional Cdon-binding protein (Boc) have 
been established as essential co-receptors that promote 
Shh signal transduction within a number of developmental 
contexts [31, 32]. Interestingly, some mutations causing 
HPE impair the palmitate-dependent interaction between 
Shh and Ptch1 [33, 34]. This interaction is also abolished in 
the BCNS, a congenital predisposition to cancers driven by 
hyperactive Hh signaling, such as basal cell carcinoma and 
medulloblastoma [34]. Not surprisingly, the features of HPE 
and aggressive basal-cell carcinomas have been previously 
reported in the same individual [35].

Gas1 is a N-glycosylated glycosylphosphatidyl 
inositol (GPI)-linked plasma membrane protein originally 

Figure 1: Palatogenesis in the mouse. Representative histological frontal sections from the middle region of the developing palate 
at each indicated stage. (A) The secondary palate arises as paired outgrowths. (B) The PS initially grow vertically flanking the developing 
tongue. (C) The PS reorient to the horizontal position above the dorsum of the tongue in a process known as palatal shelf elevation. The 
fusion of palatal shelves involves the formation of a MES. (D) Subsequent disintegration of the MES allows mesenchymal confluence. 
Mc, Meckel’s cartilage; mes, medial epithelium seam; mtb, molar tooth bud; ps, palatal shelf; t, tongue. Scale bar in D = 200 µm for A–D.
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isolated via differential screening of fibroblasts maintained 
under growth arrest [36, 37]. Subsequently, GAS1 
was mapped to human chromosome 9q21.3-22.1 and 
established as a negative cell cycle regulator and tumor 
suppressor [38]. The first link between Hh signaling 
and Gas1 was established through immunoprecipitation 
assays demonstrating Gas1 as capable of binding Shh 
and reducing its action [39]. However, subsequent in 
vivo studies have argued against these initial in vitro 
observations [27, 28, 40, 41]. Analysis of Gas1 mutant 
mice have demonstrated malformations characteristic 
of Shh loss-of-function, including micropthalmia [42], 
HPE [27, 28], axon guidance deficiency and neural tube 
patterning defects [40, 41]. Moreover, depletion of Shh 
dosage in a Gas1 mutant background leads to even more 
severe developmental defects [40]. These correlations 
and genetic interactions support the view that Gas1 is a 
positive component of the Shh signaling pathway [27, 
28, 40]. Boc was identified via screening of a human 
fetal brain cDNA library using a rat Cdon cDNA probe 
[43]. Biochemical analysis depicts Boc with a single 
transmembrane domain and four immunoglobulin like 
loops plus three fibronectin type III (FNIII) repeats in its 
ectodomain [43, 44]. BOC localizes to the plus strand of 
human chromosome 3q13.2 [45]. A study on the guidance 
of commissural axons in mice provided evidence to 
correlate Boc and Shh signaling [46]. Boc was shown 
to act as a receptor, capable of interacting directly with 
Shh via its third FNIII repeat (FNIIIc) [46]. Moreover, 
immunopreciptation experiments demonstrated that Boc 
can also physically bind to Ptch1 [31]. Interestingly, the 
presence of Shh does not alter the ability of Ptch1 to bind 
Boc, suggesting a constitutive interaction [31]. Recently, 
mutations affecting CDON disrupted its ability to interact 
with GAS1 and PTCH1, reinforcing the importance of 
these interactions for appropriate SHH signal reception. 
This mutation-induced disruption of interactions between 
SHH co-receptors has been shown to be a mechanism in 
HPE, a congenital anomaly associated with diminished 
Shh activity [47]. Taken together, these data have 
established the concept that these molecules can act as Hh 
co-receptors [32].

Shh transcriptional activity is detected in epithelium 
of the developing PS [48, 49] and the ligand plays a key 
role in mediating palatal outgrowth and patterning through 
an interaction with Fgf10 in the underlying mesenchyme 
[50]. Shh is also involved in a further regulatory feedback 
loop between epithelium and mesenchyme during growth 
of the PS, interacting with Bmp4 and Msx1 to induce 
proliferation in the mesenchyme [51]. Shh is also able to 
promote cell proliferation in the palatal mesenchyme via 
the activation of additional transcription factors, including 
Foxf1a, Foxf2 and Osr2 [52, 53]. More recently, tissue-
specific deletion of Pax9 from mesenchyme of the PS 
has been shown to indirectly regulate Shh expression in 
the adjacent epithelium and downregulate key targets in 

the mesenchyme (Bmp4, Fgf10 and Msx1), placing Pax9 
upstream of this complex gene network [54, 55]. Gas1–

/– mice also demonstrate cleft of the secondary palate 
(CP) with 50% penetrance, which is associated with 
reduced Shh signal transduction [28]. We have previously 
demonstrated that fine-tuning of Shh transduction is 
also crucial for PS fusion. The PS of transgenic mice 
overexpressing Shh in the PS epithelium under control of 
a Keratin-14 promotor (K14-Shh) demonstrate reduced 
cell death in the MEE, which prevents PS fusion [56]. 
Collectively, these findings highlight the importance of 
undisturbed Shh signaling during the events underlying 
normal palatogenesis.

There are currently over one thousand identified 
loci associated with orofacial clefting [57], but only 
around half of these have a defined molecular basis [58]. 
A precise integration between cell cycle regulation and 
cell-type specification is required during embryogenesis 
to direct the appropriate formation and function of 
each tissue. Gas1 and Boc have been shown to be key 
for harmonious integration of these two programs [31, 
59–61]. Furthermore, disruption of Gas1 and Boc has 
highlighted their importance in human diseases, including 
cancer [59, 62–64]. In the present investigation, we aim to 
further elucidate potential interactions between Gas1 and 
Boc during cell cycle regulation in the developing palate. 
Significantly, ablation of Boc in a Gas1 mutant background 
led to reduced Shh activity in the PS and increased severity 
of the CP phenotype. This was associated with failed 
PS elevation, increased mesenchymal proliferation and 
reduced epithelial cell death. Our findings suggest a dual 
requirement for Boc and Gas1 during early palatogenesis, 
mediating cell proliferation during growth and cell 
survival during subsequent PS fusion.

RESULTS

Normal expression of Shh, Ptch1, Gas1 and Boc 
during secondary palate development

Shh transcriptional activity was observed in the 
developing rugae of the PS oral epithelium between E12.5-
14.5 (Figure 2A–2C), with transient transcriptional activity 
also seen in the future MEE region at E12.5 (Figure 2A). 
Shh signaling was therefore active during growth and 
elevation of the PS and confirmed by the presence of 
strong Ptch1 expression in condensed mesenchyme 
adjacent to regions of Shh expression (Figure 2D–2F). 
However, Ptch1 expression was not observed in the MES 
during fusion (Figure 2F). Gas1 showed widespread 
expression within PS mesenchyme during growth of 
these structures in regions adjacent to those expressing 
Ptch1 (Figure 2G–2I). Interestingly, Gas1 was also 
upregulated in nasal epithelium of the PS following fusion 
(Figure 2I). In contrast, Boc showed diffuse low-level 
transcription in PS mesenchyme but strong expression 
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within the epithelium at E12.5 (Figure 2J). Although 
the epithelial expression was somewhat downregulated 
at E13.5 (Figure 2K), transcripts were still observed in 
the mesenchyme. Following PS elevation and fusion, 
Boc transcriptional activity was detected throughout the 
oral palatal epithelium and within the region of the MES 
(Figure 2L).

Interactions between Gas1 and Boc during 
palatogenesis

Histological analysis of Gas1+/–; Boc+/– mice 
demonstrated a craniofacial midline comparable to 
wild type mice, with normal palatal development 
(Figure 3A– 3C). Gas1–/–; Boc+/– mice exhibited 

microfom HPE, which has been previously described in 
Gas1- /- mice [28, 61] and includes CP with incomplete 
penetrance (Figure 3D–3F). In agreement with previous 
investigations, Boc–/– mice were viable, did not display 
any gross craniofacial phenotype and could not be 
distinguished from their wild type littermates [30, 31, 
61]. Moreover, palatal development was not affected by 
an absence of Boc function (Figure 3G–3I). In contrast, 
Gas1–/–; Boc–/– compound mutant mice exhibited a fully 
penetrant CP associated with a failure of PS elevation 
above the tongue (Figure 3J–3L). In addition, an 
abnormally positioned vomeronasal organ was observed 
and a cleft tongue present in the pharyngeal region (Figure 
3L). Significantly, the more severe craniofacial phenotype 
observed in Gas1; Boc compound mutants was associated 

Figure 2: Normal expression of Shh, Ptch1, Gas1 and Boc during palate development. Radioactive in situ hybridization 
showing frontal sections of medial developing palate at pre (E12.5 A, D, G, J and E13.5 B, E, H, K) and post palatal shelf elevation (E14.5 
C, F, I, and E15.5 L) and normal mRNA expression of Shh (A–C), Ptch1 (D–F), Gas1 (G–I) and Boc (J–L). Mc, Meckel’s cartilage; mee, 
medial edge epithelium; mes, medial epithelium seam; nc, nasal cavity; nce, nasal cavity epithelium; oe, oral epithelium; ps, palatal shelf; 
rg, rugae; t, tongue. Scale bar in L = 200 µm for A–L.
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with a reduction in expression levels of the Shh target 
genes Ptch1 and Gli1, respectively (Figure 4A–4C; 
4D–4F). However, transcriptional activity of Shh was 
seemingly unaltered when compared to control Gas1+/–; 
Boc+/– mice (Figure 4G– 4I).

Palatal shelf mesenchymal cell packing and 
proliferation indices in the absence of Gas1 and 
Boc function

The phenotypic analysis of Gas1 and Boc single 
and compound mutant mice was suggestive of a role for 
these co-receptors during the regulation of PS growth. We 

therefore analysed the PS phenotype in these mutants at the 
cellular level, specifically focusing on the mesenchymal 
component Figure 5. In mesenchymal tissues, the 
extracellular matrix can contribute significantly to tissue 
volume, therefore we also incorporated a measure of cell 
spacing [65]. Specifically, we generated a cell packing 
index (CPI) and a proliferation index per unit area (PIPUA) 
within the PS using image segmentation to determine total 
and BrdU-positive cells within the mesenchyme [66]. 
A descriptive analysis of the CPI is shown in Table 1, 
containing the number of PS analysed for each genotype, 
the median, range and interquartile range. Kruskal-Wallis 
test revealed a statistical significant difference among the 

Figure 3: Histological phenotype of Gas1+/−; Boc+/−, Gas1−/−, Boc+/−, Boc−/− and Gas1−/−; Boc−/− palate. Frontal sections of 
H&E stained E14.5 embryos through the anterior, medial and posterior palate. Gas1+/−; Boc+/− (A–C), Gas1–/–;Boc+/− (D–F), Boc−/− (G–I) 
and Gas1−/−; Boc−/− (J–L). The midline clefting within the posterior third of the tongue in the Gas1−/−; Boc−/− embryo is highlighted by the 
green arrowhead in L. Abnormal positioning of the vno is highlighted by the red arrowhead in K. The black asterisks (J-L) indicate the CP 
associated with a failure of palatal shelf elevation observed in Gas1−/−; Boc−/− mice. Mc, Meckel’s cartilage; mes, medial epithelium seam; 
mtb, molar tooth bud; nc, nasal cavity; ns, nasal septum; ps, palatal shelf; t, tongue; vno, vomeronasal organ. Scale bar in L = 200 µm for A–L.
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four genotypes analyzed (p < 0.001). Table 2 illustrates 
the Poisson regression analysis performed to evaluate 
CPI differences among the genotypes. Post hoc pairwise 
comparisons demonstrated that the only non-statistical 
significant result was the CPI difference between Gas1- /-; 
Boc–/– and Gas1+/–; Boc+/– PS (p = 0.636) (Figure 6B). 
In fact, the same median was observed for both groups 

(Gas1–/–; Boc–/– and Gas1+/–; Boc+/–) (Table 1). Gas1–

/–; Boc+/– PS showed a higher CPI compared to control 
(Gas1+/–; Boc+/–); whereas Boc–/– PS showed the lowest 
CPI amongst genotypes (Figure 6B, Table 2). The CPI is 
a measure of cell density; that is the number of cells per 
region of interest. It then follows that upon comparison of 
two samples (e.g. Gas1+/–; Boc+/– versus Gas1–/–; Boc- /-) 

Table 1: CPI descriptive analysis 
Genotypes N Median Q1-Q3 IQR Range

Boc–/– 55 2.12 1.86–2.73 0.87 1.38–4.29
Gas1+/–; Boc+/– 127 2.47 2.15–2.87 0.72 1.55–3.81
Gas1–/–; Boc+/– 44 3.16 2.92–3.39 0.47 1.47–4.44
Gas1–/–; Boc–/– 65 2.47 2.24–2.73 0.49 1.72–8.11
Overall 291 2.51 2.15–2.96 0.81 1.38–8.11

N, number of PS; IQR, interquartile range.

Figure 4: Expression of Ptch1, Gli1 and Shh during palate development at E12.5 in Gas1; Boc compound mutants. 
Radioactive in situ hybridization showing frontal sections of the medial developing palate at stage E12.5 of Gas1+/−; Boc+/− (A, D and G), 
Gas1−/−;Boc+/− (B, E and H) and Gas1−/−; Boc−/− (C, F and I) mice. Ptch1 (A–C), Gli1 (D–F) and Shh (G–I). III vt, third ventricle; ps, palatal 
shelf; t, tongue. Scale bar in I = 200 µm for A–I.
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if the cell density is constant, any differences in the 
PIPUA denotes a true change in proliferation as a result of 
mutation in Gas1 and Boc or genetic interaction. Analysis 
of the PIPUA revealed a statistical significant difference 
among the four genotypes (p < 0.001). Table 3 illustrates 
descriptive analysis for the PIPUA, containing the number 
of PS analysed for each genotype, the median, range and 
interquartile range. Post hoc pairwise comparisons among 
groups revealed a statistical significant difference between 
PIPUA amongst all genotypes, except for Gas1–/–; Boc–/– 
versus Gas1–/–; Boc+/– (Figure 6D). Table 4 illustrates the 
Poisson regression analysis performed to evaluate PIPUA 
differences among the genotypes. The PIPUA of Boc–/– 
PS showed the highest value (2612.54, p < 0.001), whilst 
Gas1–/–; Boc+/– and Gas1–/–; Boc–/– PS also demonstrated a 
higher PIPUA compared to control, but to a lesser extent 
(Table 4, Figure 6D).

Palatal shelf cell survival in the absence of Gas1 
and Boc function

Regression of the MES is an important step during 
palatogenesis and contributes to formation of a confluent 

secondary palate [5]. Programmed cell death (apoptosis) 
is one of the proposed mechanisms involved in mediating 
MES degeneration [58, 67]. In the present study, we 
assayed the presence of apoptotic cells using TUNEL 
assays. Interestingly, we found similar levels of apoptosis 
in the anterior, medial and posterior sections of Boc–/– PS 
when compared to corresponding sections of Gas+/–; Boc+/– 
PS (Figure 7G’-I’; A’-C’, respectively). Conversely, the 
levels of cell death within Gas–/–; Boc+/– (Figure 7D’–7F’) 
and Gas–/–; Boc–/– PS was reduced in relation to Gas+/–; 
Boc+/–.

DISCUSSION

Understanding the role of Shh during palatogenesis 
is important because of the key regulatory role this 
signaling protein plays during development of this 
structure [68]. Gas1 and Boc are now established as 
essential Shh co-receptors during development and are 
required for regulating Shh-mediated cell proliferation 
in other regions of the embryo [31, 32]. Shh pathway 
components demonstrate distinct regional expression 
in the PS during development [28, 49, 50] and here we 

Table 2: CPI poisson regression analysis
GLM Poisson regression Pairwise comparisons (p values)

Genotypes Coef 95% CI P value Genotypes Boc–/– Gas1+/–; Boc+/– Gas1–/–; Boc+/– Gas1–/–; Boc–/–

Boc–/– –0.21 –0.41, –0.03 0.025 Boc–/– _ _ _ _
Gas1+/–; Boc+/– Baseline _ _ Gas1+/–; Boc+/– 0.025 _ _ _
Gas1–/–; Boc+/– 0.61 0.45,0.77 < 0.001 Gas1–/–; Boc+/– < 0.001 < 0.001 _ _
Gas1–/–; Boc–/– 0.05 –0.16,0.26 0.636 Gas1–/–; Boc+/– 0.040 0.636 < 0.001 _

Coef, Poisson regression coefficients for the model; CI, confidence interval; GLM, generalized linear models.

Figure 5: BrdU labeling and image analysis methodology. (A) BrdU labeling. A perpendicular line from the palatal shelf ‘’hinge’’ 
to the opposite palatal surface delimitates the analysed area. (B) The epithelium is deleted. (C) The region of interest is delimitated, and 
subsequently measured. (D) Thresholding for the total cells within the region of interest; the watershed plugin is applied for segmentation 
and the total cell counting is obtained. (E) Thresholding for the BrdU positive cells within the region of interest; the watershed plugin is 
applied for segmentation and the positive cell counting is obtained. Scale bar in A = 200 µm for (A). Scale bar in E = 200 µm for (B–E).
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have shown non-overlapping domains between Ptch1, 
Gas1 and Boc in the epithelium and mesenchyme 
during palatogenesis. Recent evidence suggests that 
the co-receptor function exerted by Gas1 and Boc in 
combination with Ptch1 is unlikely to involve all three 
molecules in the same complex [31]. The observed Boc 
expression pattern shows evidence for redundancy with 
Gas1 in the palate, as previously demonstrated in other 

regions of the developing embryo, such as the neural tube 
and heart [32].

Ablation of Boc activity in a Gas1 mutant 
background leads to a unique form of HPE [61]. 
Although Boc–/– mice were viable and fertile with no overt 
embryonic phenotype (Figure 3G–3I), Gas1–/–; Boc–/– 
embryos show defects not previously observed in mice 
lacking Gas1 activity [28, 61]. Of relevance to palatal 

Table 3: PIPUA descriptive analysis
Genotypes N Median Q1-Q3 IQR Range

Boc–/– 55 2175.3 1170.19–3184.81 2014.62 585.13–10055.89
Gas1+/–; Boc+/– 127 2.51 2.09–3.24 1.15 1.23–8.17
Gas1–/–; Boc+/– 44 4.90 3.63–8.15 4.52 2.45–21.18
Gas1–/–; Boc–/– 65 3.63 2.30–5.38 3.09 0.96–40.18
Overall 291 3.52 2.39–8.17 5.78 0.96–10055.99

N, number of PS; IQR, interquartile range.

Figure 6: Cell packing and proliferation in the developing palate of Gas1+/−; Boc+/−, Gas1−/−, Boc+/−, Boc−/− and Gas1−/−; 
Boc−/− mice at E14.5. (A) Histogram for the CPI values indicates that the data is not normally distributed. (B) CPI box plots for the 
genotypes analysed. (C) Histogram for the PIPUA values indicates that the data is not normally distributed. (D) PIPUA box plots for the 
genotypes analysed. CPI, cell packing index; PIPUA, proliferation index per unit area



Oncotarget79241www.impactjournals.com/oncotarget

development, Gas1; Boc compound mutants exhibited a 
fully penetrant CP, associated with failed elevation of the 
PS. Other phenotypes included clefting of the posterior 
tongue and abnormal positioning of the vomeronasal 
organ. These characteristics correlate with a reduction 
of Shh signaling, which seems more drastically affected 
in Gas1; Boc compound mutants (Figure 4). Similarly, 
in the context of limb development, a more severe 
defect in digit patterning and specification is observed 
in Gas1; Boc compound mutants [32]. In addition, Gas1 
and Boc in conjunction with Cdon have recently been 
shown to modulate the levels of Hh-responsiveness in 
the pathogenesis of pancreatic cancer. When all three co-
receptors are ablated intra-tumoral proliferation is reduced, 
highlighting the importance of combined mutagenesis 
screens when describing pathway function [62].

Whole population cell analysis of the PS epithelium 
has highlighted the importance of considering factors 
other than cell proliferation in isolation when evaluating 
tissue growth [65]. Here we focused on the mesenchyme, 
as elevation and growth of the PS is likely to be driven 

by changes in the mesenchymal stroma [8]. In order to 
determine the effects of targeted mutations in Gas1 and 
Boc on the developing PS, BrdU and TUNEL assays were 
performed. A CPI and a PIPUA were implemented in order 
to generate an unbiased proliferation map of the entire PS 
mesenchyme (rather than randomly selecting isolated 
areas of tissue) taking into account the interdependent 
relationship of the two quantities [28, 56, 65, 69]. 
However, Boc–/– PS presented a decreased cell density 
(CPI) and increased proliferation (PIPUA) in comparison 
to control (Gas+/–; Boc+/– mice). These seemingly 
conflicting results can be explained by two possible 
mechanisms: (1) either an increased compensatory 
apoptosis, resulting in a net reduction in cell number or (2) 
an increase in the average distance between cells as a result 
of an increase in overall tissue size. The former hypothesis 
can be excluded following the apoptosis analysis, which 
demonstrated cell death present primarily in the epithelium 
at levels similar to those observed in Gas+/–; Boc+/– PS 
(Figure 7). Similar results in terms of cell death have also 
been observed in a different context (cerebellar granule 

Table 4: PIPUA poisson regression analysis
GLM Poisson regression Pairwise comparisons (p values)

Genotypes Coef 95% CI P value Genotypes Boc–/– Gas1+/–; Boc–/– Gas1–/–; Boc–/– Gas1–/–; Boc–/–

Boc–/– 2612.54 2084.14,3140.95 < 0.001 Boc–/– _ _ _ _
Gas1+/–; Boc+/– Baseline _ _ Gas1+/–; Boc+/– < 0.001 _ _ _
Gas1–/–; Boc+/– 3.48 2.40,3.83 < 0.001 Gas1–/–; Boc+/– < 0.001 < 0.001 _ _
Gas1–/–; Boc–/– 2.38 0.92,3.83 0.001 Gas1–/–; Boc–/– < 0.001 0.001 0.228 _

Coef, Poisson regression coefficients for the model; CI, confidence interval; GLM, generalized linear models.

Figure 7: Cell survival in the developing palate of Gas1+/−; Boc+/−, Gas1−/−; Boc+/−, Boc−/− and Gas1−/−; Boc−/− mice at E14.5. 
Frontal sections through the anterior, medial and posterior regions of the developing palate. Gas1+/−; Boc+/− (A–C, A’-C’), Gas1−/−;Boc+/− 
(D–F, D’-F’), Boc−/− (G–I, G’-I’) and Gas1−/−; Boc−/− (J–L, J’-L’). 4′, 6-diamidino-2-phenylindole (DAPI) staining (A–L) to visualize 
cell nuclei and tissue architecture. Merged images (A’-L’) used to distinguish between TUNEL-positive cells (green fluorescence) and 
background staining (orange). Red arrowheads in (J’-L’) highlight the TUNEL-positive cells. Scale bar in L = 200 µm for (A–L). mes, 
medial epithelial seam. Scale bar in L' = 100 µm for (A'-L').
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neuron progenitors), where Boc ablation does not affect 
apoptosis [31]. As no overt differences were observed in 
overall tissue size, the alternative hypothesis would require 
further analysis (whereby cell distances are measured 
directly) in order to determine the precise causation 
of a cell proliferation increase with concomitant cell 
packing decrease. In Gas- /-; Boc+/– PS there was increased 
PIPUA accompanied by an increased CPI. This suggests 
a more straightforward relationship between Gas1 and 
proliferation, whereby Gas1 acts as a negative regulator 
of cell proliferation in the PS mesenchyme. This is in 
agreement with other studies demonstrating that Gas1 is 
capable of initiating apoptosis and inhibiting proliferation 
[70, 71]. Interestingly, Gas1 exerts similar functions in 
oncogenesis [63, 72]. Gas1 activity detains tumour growth 
by inhibiting the proliferation of breast cancer cells [63] 
and has been reported to play the same mechanistic role 
in a variety of other cancers; such as colorectal carcinoma 
[72], papillary thyroid carcinoma [64] and glioma [70]. In 
Gas–/–; Boc–/– PS the CPI was restored to levels observed in 
Gas+/–; Boc+/– suggesting that the two genes have opposing 
roles in regulating cell density. However, their relationship 
with respect to proliferation regulation appears to be 
more complex and non-synergistic, as demonstrated by 
the (significantly higher) PIPUA observed in the Gas- /-; 
Boc–/– PS. Although both genes seem to be negative 
regulators of proliferation in this developmental context, 
it is highly suggestive that additional regulators play a 
role in this network. Moreover, higher CPI and PIPUA are 
not necessarily an indication of aberrant palatogenesis, as 
observed in Boc–/– embryos. Therefore, it is reasonable to 
speculate that the HPE midline facial anomalies present in 
Gas1–/–; Boc–/– [61] could play an important role in the CP 
phenotype observed in these mice.

We have excluded tissue packing changes as a 
potential cellular mechanism underlying the Gas1; Boc 
mutant PS phenotype. Histological analysis demonstrated 
that the Gas1–/–; Boc–/– PS size are similar to that of Gas+/–; 
Boc+/–. Therefore, in order to further understand how the 
observed differences in proliferation contribute to the 
CP phenotype, a direct measure of the overall midfacial 
region of Gas1–/–; Boc–/– mice would be required. This 
may prove challenging to perform in plane section, 
because no account would be taken of cellular movements 
and rearrangements that might be taking place in the 
z- dimension [65, 69]. Alternative approaches might 
include three-dimensional and potentially live imaging, 
and cell tracking to encompass cellular rearrangements; 
these techniques would underpin our future studies. 
Recent reports of extensive cellular rearrangements in 
oral epithelia render this scenario plausible [73]. Similar 
experimental approaches could be adopted to further 
elucidate the links between genetic lesions and the cellular 
mechanistic defects underlying the CP phenotype. We 
have previously demonstrated that increased transduction 
of Shh signaling in the PS mesenchyme leads to reduced 
proliferation [56]. The results of the present study 

illustrate an opposite effect (increased PIPUA in Gas1–/–; 
Boc–/– mice) that correlates with reduced transcriptional 
activity of Shh signaling readouts. Furthermore, deletion 
of Gas1 leads to reduced apoptosis in the PS. Although the 
CP phenotype in mice lacking Gas1 [28] or in compound 
Gas1; Boc mutants is associated with PS that fail to 
elevate above the tongue; it is unlikely that the PS would 
fuse, as demonstrated by transgenic mice over-expressing 
Shh in the oral epithelium [56].

The results from this study further highlight the 
importance of Shh signaling in coordinating the process 
of palatogenesis. Hh family members are expressed at key 
stages during palate development [49, 56, 61]. Moreover, 
ablation of Boc in a Gas1 mutant background leads to 
reduced transduction of Shh signaling. Morphometric 
analysis revealed that the more severe clefting phenotype 
observed in these mice was associated with higher 
proliferation levels and reduced apoptosis. Additional 
mRNA expression analysis of known mediators of 
palatal development may help to further define a gene 
network in developing palate. While systems approaches 
are important to elucidate the vast molecular network 
regulating complex developmental processes such as 
palatogenesis, understanding the role of individual genes 
implicated in cell regulation is also highly valuable. 
This study has directly addressed the role of two key 
Hh signaling components and their dual requirement for 
orchestrating palatogenesis. Similar studies addressing the 
roles of other key Hh components should eventually lead 
to a more complete picture of the genetic basis of midline 
development and how it relates to human syndromic 
disorders.

MATERIALS AND METHODS

Generation of Gas1; Boc compound mutant mice

All mice were housed and all experiments 
conducted in compliance with the approved protocols at 
King’s College London, UK and the Carnegie Institution 
of Washington, USA. Gas1–/– mice were generated and 
maintained in a 129sv/C57BL6 mixed background and 
genotyped as previously described [27]. Boc–/– mice 
were generated and maintained in a CD1/129sv mixed 
background and genotyped as previously described [46]. 
Gas1+/– mice were crossed with Boc+/– mice, to generate 
Gas1–/–; Boc–/–  compound mutants in a mixed background 
(129sv/C57BL/6/CD1). Timed-matings were set up such 
that noon of the day on which vaginal plugs were detected 
was considered as embryonic day (E) 0.5.

Histological analysis

For histological analysis, embryos were fixed in 4% 
paraformaldehyde (PFA) at 4˚C, dehydrated through a 
graded ethanol series, embedded in paraffin wax, sectioned 
at 7 mm and stained with haematoxylin and eosin (H&E).
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In Situ hybridization 

Radioactive section in situ hybridization was carried 
out as previously described [74]. Dark-field images of sections 
were photographed using a Zeiss Axioscop microscope and 
montages constructed using Adobe Photoshop CS.

Cell packing and proliferation index per unit 
area assays

A CPI was generated by dividing the total number 
of cells by the area of the region of interest. Assays 
for cell proliferation were carried out using a Zymed 
Bromodeoxyuridine (BrdU) Labeling and Detection Kit 
(Invitrogen), according to the manufacturer instructions. 
Mouse embryos were labeled with BrdU via intra-
peritoneal injection into pregnant females (5 mg/100 g body 
weight) 2 hours prior to sacrifice. Slides were photographed 
using a Zeiss Axioscop microscope (Germany). 

The imaging software package FIJI [66] was 
used to count BrdU-positive and total cells. Cells were 
counted in the mesenchyme of the anterior, medial and 
posterior palate. The lateral extent of the palate shelf 
was determined by drawing a perpendicular line from 
the ‘‘hinge’’ region to the opposite palatal surface [75]. 
Morphological segmentation of cells was performed 
using manual thresholding, followed by watersheding, 
to improve segmentation of closely neighboring cells 
[76]. Segmentation was performed twice, once for total 
and once for BrdU-positive cells. The palatal shelf area 
was measured by selecting the region of interest with the 
polygon selection tool. A proliferation index was first 
generated by dividing the number of positive cells by the 
total number of cells. The proliferation index per unit area 
(PIPUA) was generated by dividing the proliferation index 
by the region of interest. Due to the small numeric scale of 
the data and to make it more easily presentable, CPI was 
multiplied by 10-3 and PIPUA was multiplied by 10-9. The 
graph illustrating the PIPUA is in a logarithmic scale to 
facilitate visualization of the data.

Apoptosis

Immunohistochemical detection of apoptotic cell 
death was carried out on histological sections using Terminal 
deoxynucleotidyl transferase-mediated deoxyUridine 
triPhosphate Nick End Labeling (TUNEL). TUNEL was 
carried out using an APOPTag® Plus Fluorescein In Situ 
Apoptosis Detection Kit (Chemicon International) according 
to the manufacturer’s instructions. Slides were photographed 
using a Zeiss Axioscop microscope (Germany).

Statistical analysis

The assumption of normality for each variable 
was checked with with the Shapiro-Wilk test [77]. The 
assumption of homoscedascity was carried out with 

an information matrix test, according to Cameron and 
Trivedi [78]. As both the CPI and the PIPUA were not 
normally distributed (p < 0.001 from the Shapiro-Wilk 
test for both), the median and interquartile range (IQR) 
are reported as descriptive statistics. The Kruskal-Wallis 
test was used to test for differences in CPI and PIPUA 
among the four groups. Differences among the four 
groups were identified by calculating coefficients and 
the corresponding 95% confidence intervals (95% CI) 
through generalized linear regression models, only if 
the null hypothesis was rejected with the Kruskal-Wallis 
test, so as to reduce the risk of increased Type II error. 
According to inspection of the histograms and to model 
fit, a Poisson distribution was adopted for the models with 
calculation of robust standard errors to control for mild 
violation of underlying assumptions [79]. As post hoc 
pairwise comparisons among groups were performed only 
in case of a statistically significant Kruskal-Wallis test and 
these were of explorative nature, no P-value correction 
was applied. All statistical analyses were conducted with a 
2-sided α of 5% in Stata version 12 (StataCorp LP, College 
Station, TX) with the macros swilk, kwallis, and glm.
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