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ABSTRACT
Long-term exposure to air pollution is associated with age-related diseases. 

We explored the association between accelerated biological aging and air pollution, 
a potential mechanism linking air pollution and health. We estimated long-term 
exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-
use regression models in individuals from the KORA F4 cohort. Accelerated 
biological aging was assessed using telomere length (TeloAA) and three epigenetic 
measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age 
acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age 
acceleration (independent of immune cell counts, IEAA). We also investigated sex-
specific associations between air pollution and biological aging, given the published 
association between sex and aging measures. In KORA an interquartile range (0.97 
µg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 
0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with 
DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. 
We replicated this inverse BC-TeloAA association in the Normative Aging Study, a 
male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining 
all aging measures showed that BC and PM10 were broadly associated with biological 
aging in men. Thus, we conclude that long-term exposure to air pollution is associated 
with biological aging measures, potentially in a sex-specific manner. However, many 
of the associations were relatively weak and further replication of overall and sex-
specific associations is warranted.

INTRODUCTION

Long-term exposure to ambient air pollution is 
linked to a host of adverse age-related outcomes. Air 
pollution exposure is associated with cardiovascular 

disease [1-4], impaired cognitive function [5, 6], cancer 
[7-9], metabolic outcomes [10-12], and mortality [13-
15]. All of the aforementioned air pollution associated 
outcomes are also associated with aging [16-18]. Multiple 
studies have explored the underlying biology of these 
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associations and have linked air pollution exposure 
with DNA damage [19], epigenetic alterations [20-
23], inflammation [24-26], and oxidative stress [25, 27, 
28]. Given the overlap between air pollution and aging 
associated outcomes, accelerated biological aging may 
be another potential mechanism linking air pollution and 
adverse health outcomes. 

Telomere length is one of the most widely used 
and validated measures of biological aging [29, 30], and 
long-term air pollution exposure has been associated 
with shortened telomeres, indicating an accelerated 
aging process [31-33], however a recent study has failed 
to replicate these associations [34]. Recently, summary 
measures representing epigenetic states have emerged 
as an accurate assessment of age and biological aging. 
Using methylation measured at select genetic loci, 
researchers have built “epigenetic clocks” that assess an 
individual’s age and the deviation from their epigenetic 
age (DNAmAge) and chronological age [35, 36]. In 
particular the epigenetic age measure created by Horvath 
et al has been shown to be accurate across a wide range 
of tissues [35] and is associated with mortality [37] and 
metabolic outcomes [38].

A 2015 twin study compared the familial 
correlation of epigenetic age acceleration (DNAmAA) 

in monozygotic and dizygotic twins and concluded there 
was evidence for non-genetic, e.g. environmental, factors 
that influence DNAmAA [39]. However this study did not 
directly examine any environmental exposures. A 2016 
study examined associations between epigenetic aging 
and air pollution exposure amongst men and determined 
there was a strong association between accelerated aging 
and both particulate matter < 2.5 µm in diameter (PM2.5) 
and black carbon (BC) [34]. Here we use the 4th follow-
up of the Cooperation for Health Research in the Region 
of Augsburg (KORA F4) cohort to associate accelerated 
biological aging with long-term air pollution exposure. 
We also compare these associations to those observed in 
the Normative Aging Study (NAS), an all-male cohort of 
veterans residing the Boston, Massachusetts metropolitan 
area, USA.

RESULTS

Clinical characteristics of the KORA and 
NAS cohorts are given in Table 1. All biological age 
acceleration measures and air pollution exposures were 
independent of chronological age (Figures 1 and 2). We 
also note that telomere length is only weakly correlated 
with epigenetic aging measures indicating possible 

Figure 1: Pearson correlation between PM2.5, PM10, black carbon (BC), NO2, and NOx in KORA. Age is also shown to 
display the low correlation between the exposures and chronological age.
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independence between these molecular aging assessments 
(Figure 2). The inter-quartile range (IQR) for the air 
pollution measures in KORA are as follows: PM2.5 (0.97 
µg/m3), particulate matter < 10 µm in diameter (3.05 µg/
m3; PM10), BC (0.20 µg/m3), mono-nitrogen oxides (8.39 

µg/m3; NOx). IQRs for KORA are calculated from land-
use regression models that represent the annual average 
pollution in the Augsburg, Germany region. For NAS the 
IQR for PM2.5 was 1.32 µg/m3 and for BC was 0.21 µg/
m3. For NAS the PM2.5 and BC measurements represent 

Table 1: Descriptive statistics for clinical covariates, air pollution exposures, and biological aging measures for KORA 
and NAS. 

KORA (N = 1,777) NAS (N = 496, Nobs = 734)

Mean SD Mean SD

Age (y) 61 8.9 74 6.8

BMI (kg/m2) 28 4.8 27.9 4

LDL (mg/dL) 140 35

Total cholesterol (mg/dL) 187.1 39.1

HDL (mg/dL) 57 15 48.4 13.1

Systolic BP (mm Hg) 120 19 127.7 17.4

Diastolic BP (mm Hg) 76 9.9 72.7 10.4

Pack-years 13 21 20.4 24.3

Physical Activity (METs) 13.6 22.2

N Percent N Percent

Sex (female) 855 48.4% 0 0%

Physical Activity (active) 1018 56.3%

Smoking (ex-smoker) 772 43.4% 469 64%

Smoking (never) 747 42.0% 238 32%

Smoking (current) 256 14.4% 27 4.0%

Hypertension (yes) 350 19.7% 546 74%

Air Pollution Exposures Mean SD Mean SD

PM2.5 (µg/m3) 14 0.84 11.1 1

PM10 (µg/m3) 20 2.4

BS (µg/m3) 1.7 0.17 0.53 0.2

NOx (µg/m3) 33 7.1

Biological Aging Measures Mean SD Mean SD

Telomere Length 1.8 0.31 1.3 0.7

DNAmAge (y) 59 7.7 74.5 8.2

TeloAge (y) 61 2.5 74.1 4.2

TeloAA (y) 1.9x10-17 2.4 1.5x10-12 1.5

DNAmAA (y) -0.016 4.5 1 6.2

IEAA (y) -0.027 4.3 0.3 5.3

EEAA (y) -0.027 6 0.1 6.2

Pack-years was calculated as packs/day * years spent smoking as described in the methods. In NAS physical activity was 
measured as a continuous variable based on standardized questionnaires. BMI = body mass index; BC = black carbon; 
DNAmAA = epigenetic age acceleration; DNAmAge = epigenetic age; EEAA = extrinsic epigenetic age acceleration; HDL = 
high-density lipoprotein cholesterol; IEAA = intrinsic epigenetic age acceleration; LDL = low-density lipoprotein cholesterol; 
METs = metabolic equivalents; TeloAA = telomere length based age acceleration; TeloAge = age estimated via telomere length



Oncotarget74513www.impactjournals.com/oncotarget

the average over the year prior to blood draw. We use the 
terms “inverse associations” and “inversely associated” to 
indicate associations with a negative coefficient for the air 
pollution exposure being considered.

Combined sex associations

PM2.5 exposure was significantly associated with 
EEAA in KORA in all models (Table 2). The regression 
coefficient was stable across the models (β = 0.35 (basic); 
0.35 (full)) indicating an independence of the association 
from the behavioral and clinical factors. For all of the 
models the regression coefficient was positive indicating 
that increased exposure to PM2.5 is associated with 
increased age acceleration. Neither IEAA, DNAmAA, 
nor TeloAA were associated with air pollution exposure 
in any of the combined sex models at the P < 0.05 level 
(Table 2, Figure 3, Supplemental Table 1). As expected 

given their strong correlation, results for NO2 were 
highly similar to that of NOx. However, NOx associations 
were often larger in magnitude with smaller confidence 
intervals (Supplemental Table 2), reinforcing our 
reasoning to focus analyses on NOx. When adjusting for 
all air pollution exposures in a co-pollutant model PM2.5 
was still associated with EEAA (β = 0.45; CI = 0.06, 0.85, 
P = 0.02).

Sex-specific associations

One possible reason for the lack of robust 
associations for IEAA, TeloAA, and DNAmAA is 
sex-specific associations that are attenuated in the 
combined-sex models. All of the age acceleration 
measures showed significant associations with sex, 
with the estimates indicating that males had a greater 
age acceleration (positive β values) than females with 

Figure 2: KORA Pearson correlations between telomere length based age acceleration (TeloAA), epigenetic age 
acceleration (DNAmAA), extrinsic epigenetic age acceleration (EEAA), intrinsic age acceleration (IEAA), chronological 
age (Age), telomere length estimated chronological age (TeloAge), and epigenetic age (DNAmAge). 
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EEAA having the strongest association with sex (P = 
1.3x10-32) (Supplemental Table 3). Chronological age 
was not associated with sex. To identify sex-specific 
associations we stratified KORA F4 by sex. We then tested 
for interactions to determine if there was a significant 
difference between the sex-specific associations. 

There were three male-specific associations in the 
full model. PM10 was inversely associated with DNAmAA 
and IEAA in men, with IEAA having the strongest 
association (β = -0.53; CI = -0.89, -0.16; Table 3), and 
BC was inversely associated with TeloAA (β = -0.28; 
CI = -0.47, -0.08). We observed four female-specific 
associations, two with DNAmAA and two with IEAA 
for the BC and NOx exposures. DNAmAA was more 
strongly associated with BC (β = 0.41; CI = 0.04, 0.78) 
and NOx (β = 0.48; CI = 0.13, 0.83) than IEAA (Table 
3). No exposure was significantly associated with aging 
amongst both men and women, however we observed 
that exposures were positively associated with biological 
aging measures amongst women and inversely associated 

amongst men. As before the sex-specific associations 
were largely independent of the clinical factor adjustment 
applied (Supplemental Table 4). Of the seven sex-specific 
associations, three remained significant in the co-pollutant 
models. Two of these were male-specific associations 
(PM10-IEAA and BC-TeloAA) and one was female-
specific (NOx-IEAA) (Table 4). Of those three sex-specific 
associations that remained significant in the co-pollutant 
models, all had their effect estimate increase by 15.7% to 
44.5%.

Multiple phenotype associations

We used a multiple phenotype association approach 
similar to some pleiotropy analyses undertaken in genetic 
epidemiology [40] to observe if any of the air pollution 
measures were associated with multiple biological aging 
measures. Our clinical covariate adjustment matched 
the full model used before. Given our observation of 
multiple sex-specific associations we did this for both the 

Table 2: Results from the combined sex model for PM2.5. 
Biological 
Aging 
Measure

Exposure Basic Clinical Behavioral Full

TeloAA PM2.5
β = -0.07 
(CI = -0.20, 0.06; P = 0.29)

β = -0.09 
(CI = -0.22, 0.04; P = 0.18)

β = -0.09 
(CI = -0.22, 0.04; P = 0.18)

β = -0.11 
(CI = -0.24, 0.02; P = 0.11)

DNAmAA PM2.5
β =0.04 
(CI = -0.20, 0.28; P = 0.73)

β =0.03 
(CI = -0.21, 0.27; P = 0.81)

β =0.05 
(CI = -0.19, 0.28; P = 0.71)

β = 0.04 
(CI = -0.20, 0.28; P = 0.77)

EEAA PM2.5
β =0.35 
(CI = 0.04, 0.66; P = 0.03)*

β = 0.33 
(CI = 0.024, 0.64; P = 0.04)*

β = 0.34 
(CI = 0.02, 0.65; P = 0.04)*

β = 0.32 
(CI = 0.007, 0.64; P = 0.045)*

IEAA PM2.5
β =0.02 
(CI = -0.21, 0.25; P = 0.89)

β = 0.007 
(CI = -0.22, 0.24; P = 0.96)

β = 0.02 
(CI = -0.21, 0.25; P = 0.84)

β = 0.02 
(CI = -0.21, 0.25; P = 0.88)

Results for all exposures and all biological aging measures can be found in Supplemental Table 2. * = P < 0.05 are marked. 
CI = 95% confidence interval. β = regression estimate scaled to the inter-quartile range for PM2.5 (0.97 µg/m3). DNAmAA 
= epigenetic age acceleration, EEAA = extrinsic epigenetic age acceleration, IEAA = intrinsic epigenetic age acceleration, 
TeloAA = Telomere length based age acceleration.

Table 3: Sex-specific results for full model.
Biological Aging Measure Exposure Male Female Interaction

DNAmAA PM10
β = -0.47
(CI = -0.85, -0.02; P = 0.02)*

β = 0.17 
(CI = -0.23, 0.56; P = 0.41) 0.02

IEAA PM10
β = -0.53 
(CI = -0.89, -0.16; P = 0.005)**

β = 0.10 
(CI = -0.28, 0.48; P = 0.61) 0.02

TeloAA BC β = -0.28 
(CI = -0.47, -0.08; P = 0.005)**

β = 0.08 
(CI = -0.12, 0.27; P = 0.44) 0.008

DNAmAA BC β = -0.30 
(CI = -0.65, 0.06; P = 0.10)

β = 0.41 
(CI = 0.037, 0.78; P = 0.03)* 0.01

IEAA BC β = -0.31 
(CI = -0.65, 0.03; P = 0.075)

β = 0.38 
(CI = 0.02, 0.74; P = 0.04)* 0.0097

DNAmAA NOx
β = -0.31 
(CI = -0.67, 0.04; P = 0.09)

β = 0.48 
(CI = 0.13, 0.83; P = 0.008)** 0.003

IEAA NOx
β = -0.33 
(CI = -0.67, 0.010; P = 0.057)

β = 0.44 
(CI = 0.11, 0.78; P = 0.01)* 0.003

Results for the male and female-specific full model analyses. Only those results with a P < 0.05 in one of the sexes are shown. 
Supplemental Table 3 has the complete results for all models and exposures. β = air pollution effect estimate scaled to the 
inter-quartile range for each exposure, * = sex-specific P < 0.05, ** = sex-specific P < 0.01. Bolded associations are those 
with interaction P < 0.01. BC = black carbon, CI = 95% confidence interval, DNAmAA = epigenetic age acceleration, IEAA 
= intrinsic epigenetic age acceleration, TeloAA = Telomere length based age acceleration.
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combined sex and sex-specific cohorts. When considering 
all four biological aging measures we observed evidence 
for associations with multiple phenotypes in the male 
stratified cohort, with PM10 (P = 0.005) and BC (P = 0.02) 
showing evidence for a broad association with the aging 
measures. We observed similar results when we excluded 
telomere length and restricted to just the three epigenetic 
aging measures, with males again showing the only 
association (PM10, P = 0.01).

Associations in NAS

The NAS has previously published associations 
between epigenetic aging and air pollution amongst males 
[34]. Here we used a broader and slightly different array 

of aging measures. We retained their use of repeated 
measures as opposed to restricting to a single time 
point as this was the most powerful method in previous 
analyses. In this all male cohort, IEAA and TeloAA were 
both inversely associated with an IQR increase in PM2.5 
in all models (Table 5). These inverse associations match 
what we observed in KORA F4 and each was greater in 
magnitude than the associations in the KORA F4 cohort. 
We did not observe an association between PM2.5 and 
either DNAmAA or EEAA in NAS. An IQR increase in 
BC was significantly, inversely associated with TeloAA in 
all models (Table 5), replicating the associations between 
TeloAA and BC amongst males in KORA F4. All NAS 
associations for PM2.5 and BC are given in Supplemental 
Table 5.

Table 4: Comparison of single- vs co-pollutant models for sex-specific associations. 
Sex Exposure Aging Single β Single CI Single P Co β Co CI Co P β Diff % Diff

Male PM10 DNAmAA -0.47 -0.85, -0.09 0.02 -0.51 -1.10, 0.04 0.07 -0.04 9.2%

Male PM10 IEAA -0.53 -0.89, -0.16 0.005 -0.61 -1.10, -0.08 0.02 -0.08 15.7%

Male BC TeloAA -0.28 -0.47, -0.08 0.005 -0.38 -0.72, -0.04 0.03 -0.10 37.0%

Female BC DNAmAA 0.41 0.037, 0.78 0.03 0.15 -0.52, 0.81 0.66 -0.26 -63.6%

Female BC IEAA 0.38 0.02, 0.74 0.04 0.16 -0.48, 0.81 0.62 -0.21 -56.7%

Female NOx DNAmAA 0.48 0.13, 0.83 0.008 0.62 -0.03, 1.3 0.06 0.14 29.8%

Female NOx IEAA 0.44 0.11, 0.78 0.01 0.64 0.02, 1.3 0.045 0.20 44.5%

 Columns labeled “Single” refer to the single pollutant models (model with only one air pollution exposure estimate) while 
columns labeled “Co” refer to the estimates from the co-pollutant models which contained all air pollution exposure estimates. 
The covariate adjustment followed the full model. Associations that were significant (P < 0.05) in the co-pollutant model are 
given in bold. β = effect estimate, CI = 95% confidence interval, P = P-value, β Diff = difference in effect estimates taken 
as the co-pollutant model β – single pollutant model β, % Diff = Percent difference in model effect estimates relative to the 
single pollutant model effect estimate.

Table 5: Significant (P < 0.05) associations from NAS. 
Model Exposure Aging Estimate CI P

Basic PM2.5 IEAA -0.37 -0.74, 0.00 0.049

Behavior PM2.5 IEAA -0.39 -0.76, -0.02 0.04

Clinical PM2.5 IEAA -0.40 -0.78, -0.02 0.04

Full PM2.5 IEAA -0.42 -0.80, -0.04 0.03

Basic PM2.5 TeloAA -0.54 -0.67, -0.41 <0.0001

Behavior PM2.5 TeloAA -0.54 -0.67, -0.41 <0.0001

Clinical PM2.5 TeloAA -0.49 -0.62, -0.36 <0.0001

Full PM2.5 TeloAA -0.49 -0.62, -0.36 <0.0001

Model Exposure Aging Estimate P

Basic BC TeloAA -0.43 -0.55, -0.30 <0.0001

Behavior BC TeloAA -0.43 -0.56, -0.31 <0.0001

Clinical BC TeloAA -0.40 -0.52, -0.28 <0.0001

Full BC TeloAA -0.40 -0.53, -0.28 <0.0001

Models follow the same naming convention as used for KORA. In NAS a continuous physical activity measure was used and 
total cholesterol was adjusted for while LDL was unavailable. All four aging measures examined in KORA were examined in 
NAS however only IEAA and TeloAA had significant associations. Supplemental Table 5 contains all NAS associations; BC 
= black carbon; IEAA = intrinsic epigenetic age acceleration; TeloAA = telomere-length based age acceleration
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DISCUSSION

We observed that exposure to ambient particulate 
matter is associated with epigenetic biomarkers of aging. 
A 0.97 µg/m3 increase in ambient PM2.5 was associated 
with a 0.32 - 0.35 y increase in EEAA indicating 
accelerated epigenetic aging. This association remained 
significant in our co-pollutant models indicating that it is 
independent of the other long-term air pollution exposures. 
We also observed multiple sex-specific associations with 
associations consistent with  accelerated epigenetic 
aging amongst females, while we generally observed 
associations consistent with decelerated epigenetic 
aging for males (Figure 3, Table 3, Supplemental Table 
4). The opposite directions of these associations may be 
responsible for the relative lack of associations in the 
combined-sex analysis. Exposure to NOx and BC was 
associated with accelerated epigenetic aging amongst 
females. In men the direction of association for these 

exposures was in the opposite direction though not 
significant. A similar observation was noted for PM10 
where men showed significant inverse associations with 
DNAmAA and IEAA while women showed positive, 
but non-significant, associations. Additionally BC was 
inversely associated with TeloAA amongst men in KORA. 

PM2.5 is a measure of all particles less than 2.5 µm 
in diameter and is dominated by combustion particles, 
including both ones from primary sources (e.g. diesel 
engines) as well as secondary particles formed in the 
atmosphere via chemical reactions (e.g. sulfates). BC is 
primarily from diesel engines, but can also be produced 
from other combustion sources. Traffic exhaust contains 
NOx, a mixture of nitrogen oxides, which oxidizes into 
NO2 over timescales of hours. Emissions from diesel 
engines are substantially higher than from gasoline fueled 
vehicles. Hence, NOx and BC are better representations of 
primary traffic emissions while PM2.5 and NO2 also include 
secondary pollutants. The stronger association with NOx 

Figure 3: Associations between environmental exposures and measures of biological aging for full model in KORA. 
Black is used for the combined-sex analyses, green associations when stratified on males, and red for the associations when stratified on 
females. The regression estimate (β) for each model is given on the y-axis and scaled to the inter-quartile range for each air pollution 
exposure. BC = black carbon, DNAmAA = epigenetic age acceleration, EEAA = extrinsic epigenetic age acceleration, IEAA = intrinsic 
epigenetic age acceleration, TeloAA = telomere length based age acceleration.
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than with NO2, and the association of both NOx and 
BC with some of the epigenetic biomarkers of aging in 
females suggest differences between traffic and non-traffic 
pollutants in the impact on epigenetic aging measures, and 
this should be addressed in future studies.

We re-examined our associations in NAS, a 
cohort of male veterans from the USA. As would be 
expected based on observations in KORA F4 we saw 
multiple inverse associations in this cohort with PM2.5 
exposure inversely associated with TeloAA and IEAA. 
This matches the direction of association for the PM2.5-
IEAA associations in KORA F4. Additionally, PM10 was 
significantly inversely associated with IEAA in KORA 
F4 males. Though PM10 was not assessed, in NAS it is 
primarily (up to 80%) composed of the smaller PM2.5 size 
fraction in this cohort making it likely that associations 
are similar for these related measures. BC was inversely 
associated with TeloAA, replicating the associations we 
observed in KORA. For NAS we used the subsection 
of the cohort with the clinical measures necessary for 
analysis. When we examined a slightly larger subset 
missing data on physical activity we still observed the BC-
TeloAA associations however the PM2.5-IEAA associations 
were in the opposite direction (data not shown). 

Thus, while we did replicate both associations these 
results still need to be carefully considered and further 
analyses in cohorts with even greater ethnic and exposure 
diversity should be undertaken to more firmly establish 
associations between molecular biomarkers of aging and 
air pollution.

Both accelerated and decelerated biological aging 
have been linked with negative health outcomes with 
accelerated aging linked to mortality and metabolic 
dysfunction [37, 38], and decelerated biological aging 
associated with the development of psychosocial stress 
[41]. To insure that the sex-specific associations in 
KORA F4 were not due to estimation inaccuracies in the 
biological aging measures, all measures were re-estimated 
in sex-stratified cohorts and the analyses re-run and the 
results were unchanged (data not shown). 

Air pollution and aging

Telomeres play an important role in inflammation-
related pathways/cells [42-44], and inflammatory cells 
have the unique ability to extend their telomeres possibly 
to preserve replicative senescence [44]. It is possible 
that this short-term telomere extension is the reason 
that short-term exposure to air pollution is associated 
with increased telomere length [45, 46]. In long-term 
exposure studies, increased air pollution exposure has 
been generally associated with shorter telomere length 
[31-33, 46]. Coke oven workers, who are highly exposed 
to polycyclic aromatic hydrocarbons, were found to 
have significantly shorter telomere length than controls, 
and increased years of work in coke ovens was also 

associated with shorter telomere length [31]. In a study 
comparing truck drivers and office workers in Beijing, 
China, increased air pollution on the examination day 
was associated with longer telomere length, while 14-day 
average PM10 exposure was associated with a 10% shorter 
telomere length [47]. A 2015 study of 211 twins indicated 
that decreased residential traffic exposure of mothers was 
associated with longer placental telomere lengths [32] 
indicating that long-term traffic exposure during pregnancy 
may be passed down and affect biological aging in utero. A 
2010 study of 165 non-smoking males indicated that long-
term exposure to BC (often an indicator for automobile 
traffic) was associated with shorter telomere length [33]. 
This was the inverse of the associations observed in 
KORA. The differences could be due to differences in 
exposure assessment or in the fact that we calibrated our 
telomere based aging measure to the age of the cohorts 
whereas most previous studies simply used telomere 
length as their outcome. Although previous associations 
between BC and telomere length was strongest in the 
elderly (age > 75) subset, the age of the population is 
unlikely to be the main driver of these differences as 
we also observed inverse associations between BC and 
TeloAA in the NAS where the average age was 74 (SD 
= 6.8 y). With respect to epigenetic biomarkers of aging, 
there has been one previous study using the NAS cohort 
which showed positive associations between epigenetic 
age and 1-year PM2.5 and BC exposure [34].

Our study is one of the first to examine the effects 
of environmental exposures on two separate measures 
of biological aging, telomere length and epigenetic age. 
In our study and a previous that analyzed epigenetic 
and telomere length-based biomarkers of aging, no 
relationship was found between epigenetic aging and 
aging according to telomere length indicating that 
these processes might be independent [34]. In addition, 
our study extends the previous work by incorporating 
multiple air pollution and epigenetic aging measures and 
examining interactions by sex. All of the epigenetic age 
acceleration measures were strongly associated with sex 
(Supplemental Table 3) and we observed multiple female 
and male specific associations for these epigenetic age 
acceleration measures. For the epigenetic biomarkers of 
aging, the directions of associations were consistent across 
the exposures once the sex-stratifications are taken into 
account. For the male-specific KORA F4 associations 
we generally observed similar directions of effect in the 
all-male NAS cohort, with the BC-TeloAA association 
replication. However, these associations should still be 
carefully considered as substantial statistical evidence and 
replications are necessary to firmly validate sex-specific 
associations such as these. Further replications of the 
male-specific associations and replication of the female-
specific associations should be performed for the sex-
specific associations observed here..

In a multi-phenotype analysis in KORA F4, PM10 
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and BC were jointly associated with all biological aging 
measures in men. This indicates that these measures 
may be broadly associated with measures of biological 
aging while NOx and PM2.5 may be more specific in their 
associations with biological aging measures. 

Biological aging and clinical outcomes

Telomeres are known to shorten over time, and 
accelerated shortening of telomeres has been associated 
with mortality [48-50]. More recently epigenetic age 
acceleration has also been associated with mortality [37]. 
Biological age acceleration measured by either telomere 
length or epigenetics has also been associated with a 
variety of other clinical outcomes including metabolic 
outcomes [38, 51], cancer [52], and atherosclerosis [51]. 
Although leukocyte telomere length is associated with a 
wide range of outcomes [51, 52], epigenetic aging has, 
for now, appeared to be more cell-type specific with 
DNAmAge associated with body mass index in liver cells 
but not in blood [38]. The strong associations between 
blood-based epigenetic biomarkers of age and mortality 
may be due to a causal association or result from systemic 
aging effects being reflected in the blood. 

EEAA and IEAA are both associated with 
Parkinson’s disease [53]. Semi-supercentenarians, 
individuals at least 105 years old, have a decreased IEAA 
as compared to controls (individuals age 52 - 75 with no 
centenarian parent) [54], and IEAA is associated with 
lung cancer incidence, particularly in older age groups, 
even when adjusting for smoking status [55]. Early-age 
telomere length in zebra fish has been associated with 
lifespan [56] strengthening the case for a causal role but 
further studies are needed to more fully explore underlying 
biological mechanisms.

Strengths and limitations

This is one of the first studies to examine the 
association between environmental exposures and 
biological aging in a large population-based cohort. A 
previous study of epigenetic biomarkers of aging and 
air pollution using the NAS cohort observed positive 
associations between the epigenetic biomarkers and both 
PM2.5 and BC [34]. Our analysis included additional 
epigenetic aging biomarkers (e.g. IEAA and EEAA) 
than utilized in their study. In our replication, we used a 
slightly different subset of the NAS cohort and adjusted 
for confounders not assessed in the previous study. These 
differences likely account for the lack of association with 
DNAmAA (which is similar to the previous DNAmAge 
measured used in [34]) and the inverse associations 
observed with IEAA. No association between leukocyte 
telomere length and PM2.5 or BC was reported in the 
previous NAS publication, however our TeloAA measure 

calibrates leukocyte telomere length to the age of the 
cohort and thus may better assess associations with air 
pollution. Other previous studies used between 92 [31] 
and 211 [32] participants with either a case-control [31, 
47] or twin study [32] design. With samples from 1,777 
individuals drawn from the general population, our KORA 
F4 cohort is larger than any previous study. We were able 
to use the size and gender parity of our study to examine 
sex-specific associations and interactions. While some 
previous studies incorporated both sexes, none examined 
potential sex-based differences in the associations between 
environmental exposures and biological aging. Another 
strength of this study is the use of multiple measures of 
biological aging. Most previous studies only examined 
telomere length while this study used both telomere length 
and multiple DNA methylation based aging measures 
to assess biological aging. Our study was also able to 
incorporate multiple estimates of long-term air pollution 
exposures including both particulate matter and volatile 
compounds. Previous publications focused on particulate 
matter [34], land-use based indicators of traffic exposure 
[32], biomarkers of exposure [31], or only used a single 
ambient exposure for longer-term studies [47]. Thus this 
study builds upon and extends these previous analyses.

A limitation of this study is the inability to 
determine the precise number of years spent at the address. 
Exposures were assessed at the primary residence however 
we do not have the exact time at residence for the KORA 
F4 participants. Despite this we do know that all of the 
KORA F4 participants were also residents of Augsburg, 
Germany during the baseline survey (KORA S4) which 
took place 5-9 years prior to their follow-up examination. 
Thus, we expect these exposures to represent multi-year 
long-term exposures. The land use regression models used 
to assess air pollution exposure were developed for the 
2008-2009 time period while KORA F4 was sampled in 
2006-2007. Despite this these models have been shown 
to reflect historical exposures and similar modeling 
approaches have been shown to have a high correlation 
with long-term average exposures [57]. Another limitation 
of this study is that personal exposures could not be 
assessed and that epigenetics could only be measured 
in blood. Blood measures may not be the best tissue to 
assess epigenetic changes associated with air pollution 
exposure as the most directly affected tissues would be 
the esophagus and lung. Additionally, land use regression 
modeling may not perfectly correlate with personal 
exposure to air pollution, however land use regression 
modeling is a well-established technique, and the models 
developed for the ESCAPE study and implemented here 
have been validated and associated with a number of 
clinical outcomes [58-62]. A final limitation of this study 
is that many of these associations have thus far only been 
observed in the KORA cohort. While the NAS previously 
published their associations between BC and PM2.5 in men 
[34], research in this area is relatively new and our female-
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specific associations remain to be replicated. 
In conclusion, multiple air pollution exposures 

are associated with biological aging, many of them in 
a sex-specific manner. Telomere-based and epigenetic 
measures of biological aging are associated with long-
term exposure to air pollution and have distinct patterns 
of sex-specific associations. Further research is needed to 
connect accelerated aging and environmental exposures 
with clinical outcomes and to determine if patterns of sex-
specific associations between environmental exposures 
and accelerated aging measures match patterns of sex-
specific associations between environmental exposures 
and clinical outcomes.

MATERIALS AND METHODS

KORA F4

Participants for this study were taken from the 
follow-up to the fourth baseline survey of the Cooperation 
for Health Research in the Region of Augsburg (KORA 
F4). The baseline survey (N = 4,261) took place from 
October, 1999 to September, 2001 and 3,080 individuals 
participated in the follow-up (F4) survey from October, 
2006 to May, 2008. The KORA F4 survey consisted of a 
lifestyle and medical history questionnaire as well as the 
collection of blood samples for later clinical chemistry and 
genomic analyses. The collection and details of this cohort 
have been previously published [63]. Of 3,080 individuals 
who participated in KORA F4, 1,799 had methylation data 
available. The collection and subsequent analysis of the 
KORA F4 cohort was approved by the Bavarian Medical 
Association Ethics Committee.

Epigenetic aging measures

DNAmAge was calculated in KORA F4 using 
the online calculator as provided by the lab of Dr. Steve 
Horvath [35]. The details of the quality control for 
the methylation data as well as the use of the Horvath 
DNAmAge calculator in KORA F4 have been previously 
published [64]. Briefly, whole blood methylation was 
measured on 1,799 KORA F4 participants using the 
Infinium HumanMethylation450 BeachChip Array 
(Illumina). Background correction was performed by 
color channel and chip using the negative control probes 
available on the array. Background subtracted but 
unnormalized methylation values were used to calculate 
DNAmAge via the online calculator (https://dnamage.
genetics.ucla.edu/). Unnormalized values were used as the 
online calculator performs its own internal normalization. 
Based on quality control metrics output by the online 
calculator we additionally filtered out samples according 
to the following quality control metrics: gender mismatch 

(N = 22); tissue type mismatch, i.e. non-blood estimated 
type, (N = 0); low correlation (r < 0.80) with an internal 
standard population (N = 0). This left 1,777 samples for 
subsequent analyses. 

The DNAmAge calculator provides several 
estimates of epigenetic age acceleration. We focused on 
three measures from it. The first was the residuals after 
regressing DNAmAge on chronological age (DNAmAA). 
DNAmAA provides an estimate of age acceleration which 
has been shown to be valid for a variety of tissues [35]. 
The other two assessments of epigenetic aging adjust for 
blood immune cell counts and are thus blood specific. The 
epigenetic aging measure used was extrinsic epigenetic 
age acceleration (EEAA). This is a measure of age 
acceleration that adjusts for age as well as cell counts 
as determined by the Houseman [65] and Horvath cell 
count estimation methods [66] including: CD8 T-cells, 
CD4 T-cells, B lymphocytes, monocytes, and plasma 
blastocysts. EEAA is constructed to still strongly correlate 
with changes in naïve CD8+ T cells and exhausted CD8+ 
T cells [53], and could be interpreted as a modified 
Hannum epigenetic age [36] measure that even more 
strongly correlates with some immune cell counts. Thus 
EEAA assesses biological aging as associated with the 
immune system, particularly naïve and exhausted CD8+ 
T cells. The final epigenetic age acceleration measure 
was intrinsic epigenetic age acceleration (IEAA). IEAA 
adjusts for age and a broader set of cell counts including: 
naïve CD8+ T cells, exhausted CD8+ T cells, plasma B 
cells, CD4+ T cells, natural killer cells, monocytes, and 
granulocytes [53]. This more complete set of cell counts 
adjustments makes IEAA independent of the extrinsic 
cellular environment with respect to cell counts and thus 
more driven by the “intrinsic” intracellular environment.

Telomere length assessment

Telomere length was measured in KORA via 
quantitative PCR [67] and expressed as the standardized 
ratio of the telomere repeat copy number to a single 
gene copy. This ratio was standardized to genomic DNA 
from the K562 line which was included on each assay. 
Full details on the method are presented elsewhere [68, 
69]. To calculate telomere length based age acceleration 
(TeloAA) first a regression model was built to predict 
age based on telomere length (TeloAge). Telomeres are 
known to shorten over the lifetime and this was seen in 
our models where the regression coefficient of the model 
was negative. TeloAA was then estimated as the residuals 
from regressing chronological age on TeloAge. A positive 
TeloAA indicates an accelerated aging process from the 
perspective of telomere length. We observed only a weak 
correlation between telomere length and our epigenetic 
aging measures (Figure 2).
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Air pollution exposures

A total of four air pollutants were used for this 
analysis: particulate matter < 2.5µm in diameter (PM2.5), 
particulate matter < 10µm in diameter (PM10), PM2.5 
absorbance (black carbon, BC), and mono-nitrogen oxides 
(NOx). NOx is composed of several nitrogen oxides the 
primary of which is nitrogen dioxide (NO2). NO2 has been 
associated with several health outcomes [13, 70, 71] and 
existing air quality standards are often set relative to NO2. 
We observed strong correlation between NOx and NO2 
(Supplemental Figure 1), and despite their similar effect 
estimate, the CI for NOx associations was often smaller 
than that for NO2. Therefore, rather than include both 
exposures we focused our analyses on NOx. All of the air 
pollutants were estimated via land use regression models 
developed as part of the multi-city ESCAPE study (www.
escapeproject.eu). Full details on the modeling procedure 
including model validation and the formulation of the 
land-use regression models for the Augsburg, Germany 
region can be found elsewhere [61, 62]. After merging 
all clinical factors, aging measures, and air pollution 
exposures a total of 1,777 participants were available for 
this study.

Statistical methods

Linear regression models implemented in R version 
3.1.0 [72] were used to associate air pollution exposure 
with accelerated aging in the KORA F4 cohort. Air 
pollution measures were scaled to the inter-quartile range 
prior to all association analyses. Four models were used 
to explore the air pollution-biological aging associations. 
The initial model was a basic model adjusting for 
chronological age, chronological age2 and gender (sex). 
We included a quadratic age term to account for possibly 
non-linear associations with chronological age. Our 
second model was termed our “behavioral” model as it 
adjusted for age, age2 and sex but also included factors 
related to behavior such as physical activity (categorical: 
high vs low) and smoking both categorical (never, former, 
infrequent, frequent) and continuous (pack-years). Pack-
years was calculated as packs/day (with 20 cigarettes to 
a pack) multiplied by years spent smoking. Our “clinical” 
model was so named because it adjusted for age, age2 and 
sex as well as the clinical variables body mass index (BMI, 
kg/m2), systolic blood pressure, diastolic blood pressure, 
low-density lipoprotein cholesterol (LDL, mg/dL), high-
density lipoprotein cholesterol (mg/dL), and a binary 
indicator of hypertension. Hypertension was defined as 
systolic blood pressure above 90 mm Hg or diastolic blood 
pressure above 120 mm Hg. Our final model was a full 
model which included all terms from both the behavioral 
and clinical models. We tested for the independence of any 
significant air pollution measures by including multiple 

exposures in a co-pollutant model based on the full model. 
In this modeling approach all air pollution exposures 
were included in the same model and we observed the 
differences in effect estimates and confidence intervals as 
compared to the single pollutant models. As we observed 
significant correlation amongst the air pollution exposures 
(Figure 1), we used the variance inflation factor (VIF), 
as estimated via the “car” package [73], to determine 
the degree of multicollinearity. We used a conservative 
VIF cutoff of 4 to identify exposures showing substantial 
multicollinearity. This cutoff protects against substantial 
multicollinearity even though higher VIFs may not be 
purely indicative of multicollinearity [74]. As none of 
our air pollution exposures exceeded this VIF cutoff, we 
retained all in our co-pollutant models. The unit for all 
of the biological aging measures is years (y). Thus all of 
the regression estimates (β) represent biological aging 
acceleration/deceleration in number of years per inter-
quartile range (IQR) increase in air pollution exposure. 
Given the correlation amongst some of the biological 
aging measures (Figure 2), we used a nominal significance 
threshold of P < 0.05 for all analyses.

To determine if any air pollution exposures show 
evidence for a broad association with multiple biological 
aging measures we used an approach similar to what is 
done when testing for pleiotropy in genetic association 
analyses [40]. In this approach we used the long-term air 
pollution estimates as the dependent variable and included 
each of our four biological aging measures in the set of 
predictor variables. We used the full model as the basis for 
our covariate adjustment. The “complete” model included 
all terms from the full model plus the four biological aging 
measures, while the “nested” model was the complete 
model lacking any biological aging measure terms. We 
tested for significance using a likelihood ratio test as 
implemented in the “lmtest” R package [75]. 

Telomere length is known to differ by sex [76-
78]. Additionally, there have been multiple reports of 
sex differences in air pollution exposure associations 
[10, 79]. For these reasons we examined potential sex 
differences in associations between biological aging and 
air pollution as a secondary analysis, focusing on results 
from the full model. To examine sex-specific associations 
we stratified KORA F4 into female (N = 855) and male (N 
= 922) specific cohorts and re-analyzed the associations 
between air pollution and our biological aging measures. 
For any air pollution-aging measure pairs that showed a 
significant (P < 0.05) association in sex-stratified models, 
we formally tested for difference in the association 
between males and females by including an interaction 
term between air pollution and sex in the full model. The 
sex interaction term was considered significant at the P < 
0.01 level. 
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Associations in VA normative aging study 

We compared our associations to those observed 
in the VA Normative Aging Study (NAS). NAS is a 
longitudinal cohort consisting of male volunteers residing 
in the Boston metropolitan area, USA. We retained all 
NAS participants with continued participation after 2000 
as that is when PM2.5 measurements began in the study 
area. After excluding participants with missing values 
there were 496 left for analysis. As NAS is a longitudinal 
study some individuals had multiple assessments available 
(Nobs = 734). We used all available measures as this was 
the most powerful method in the previous analysis using 
NAS[34]. 

Leukocyte telomere length was assessed via 
quantitative real time polymerase chain reaction. 
Methylation was assessed via the 450K chip and 
epigenetic aging measures assessed via the epigenetic 
aging online calculator as done in KORA. Descriptions 
of the NAS cohort telomere length and methylation 
assessment have been previously published [80]. 

All statistical analyses were done using R v3.1.1 
[72]. A generalized linear mixed effects model was used 
with a random intercept for each participant to account 
for the multiple observations per individual [34]. A 
spatiotemporal land-use regression model was used to 
assess BC at each resident’s address [81] while PM2.5 was 
assessed via a hybrid model that combined satellite aerial 
optical depth measurements with land-use regression. 
PM2.5 measurements were available on a 1x1 km grid 
[82, 83]. Both PM2.5 and BC were measured in µg/m3 and 
scaled to their respective IQRs of 1.32 µg/m3 and 0.21 
µg/m3. Air pollution measurements in NAS represent the 
average air pollution in the year prior to the blood draw 
used for analysis. LDL was unavailable in NAS and thus 
total cholesterol was adjusted for in the models. Physical 
activity was assessed as the metabolic equivalents per 
week based on validated and standardized questionnaires 
[84] and was used as a continuous variable in the models. 
All clinical covariates for the NAS are available in Table 
1. NAS was approved by the Harvard T.H. Chan School 
of Public Health and Veterans Affairs (VA) Institutional 
Review Board (IRB). Records of written and informed 
consent from each participant were provided to the VA 
IRB.
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