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ABSTRACT
Macrophage migration inhibitory factor (MIF), a pleiotropic proinflammatory 

cytokine, has been showed to be associated with the immunopathogenesis of many 
diseases. Recent study demonstrated that MIF promoted tumorigenesis and tumor 
progression and played a critical role in various kinds of human cancer including head 
and neck squamous cell carcinoma(HNSCC). Hence, in this paper we retrospected the 
relationship between MIF and angiogenesis, epithelial-mesenchymal transition (EMT), 
inflammation, immune response, hypoxia microenvironment, and discussed whether 
it is a promising biomarker for diagnosis and supervisor of HNSCC.

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC), 
which accounts for 90 % of head and neck cancers, has 
been reported as the sixth common cancer worldwide and 
the third most common cancer in developing nations. [1-
3] Despite substantial advances in conventional treatment 
including surgery, radiotherapy, chemotherapy for 
HNSCC patients in recent decades, HNSCC continues to 
remain a dismal prognosis, of which the five-year overall 
and disease-free survival is only about 50%. [4] One of the 
main reasons is that HNSCC patients are often diagnosed 
at advanced stages. For the insufficiency of efficaciously 
therapeutic modalities, patients generally suffer from 
severe and debilitating adverse effects resulting from 
surgery and chemoradiotherapy even they are successfully 
cured. Thus, there is an obvious need for new biomarkers 
to diagnose HNSCC at an early stage or even provide 
alternative targeted therapeutic strategies.

Macrophage migration inhibitory factor (MIF), 
a T-cell-derived factor, was firstly thought to inhibit the 
migration of macrophages in experiments designed to 
characterize delayed-type hypersensitivity and hence 

derived its name in 1966. [5] Later, the molecule 
was verified secretion by a variety of cells including 
eosinophils, [6] lymphocytes, [7] and macrophages. 
[8] Extensive studies conducted on MIF revealed that 
it primarily acted as a proinflammatory protein. [9] The 
close association between MIF and innate immunity was 
first apparently revealed by studies of endotoxic shock 
models. [10] In 1996, the inhibition of T-cell activation 
and antibody production by MIF formed its relation with 
adaptive immunity. [7] Subsequently, many investigators 
demonstrated the central role of MIF in cancer-associated 
immune response. [11] For its pleiotropic effects on 
normally cellular activities, inflammatory and immune 
processes, there was enough evidence to confirm that 
MIF was capable of providing several levels of support 
to a developing tumor. Recently, a series of studies 
have enlightened that MIF governed angiogenesis, [12] 
epithelial-mesenchymal transition (EMT), [13] hypoxia 
[14] and cell cycle [12] in many kinds of human cancers 
including HNSCC, and indicated that MIF might be a 
potential driver and biomarker for HNSCC. 

Review
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MIF’S GENE AND STRUCTURE

The MIF lies on the human genome (22q11.2), 
regulated by the two polymorphic sites (CATT repeat 
at -794 and a single nucleotide polymorphism at -173 
(G/C)) in the promoter region. [15-17] Though the exonic 
structure or the sequence of MIF is highly conserved 
across phylogeny, there is a remarkable feature of the 
human MIF gene that is the presence of a microsatellite 
repeat (CATT)5-8 within the 5′ promoter region. [16] 
It is associated with plasma MIF level, severity of 
inflammatory diseases, and risk of cancer. [18] A detailed 
study revealed the individuals carrying five-CATT allele 
displayed lowest MIF level, while those with the six-
, seven-, and eight-CATT alleles showed proportionally 
increased gene expression. [16]

MIF is a molecule comprised of 115 amino acids 
with a molecular weight of 12.5 kDa. [19] In the active 
form, MIF is aligned by three 114-residue monomers to 
form a symmetrical trimer, the catalytic active site located 
between two adjacent monomers of the homotrimer, which 
has a strong homology with the enzyme D -dopachrome-
tautomerase (DDT). [20, 21] (S,R)-3-(4-hydroxyphenyl)-
4,5-dihydro-5-

isoxazole acetic acid methyl ester (ISO-1), an 
inhibitor of DDT, could decrease wild-type or mutant MIF 
activity in human and murine mononuclear cells. So there 
was a hypothesis that MIF also displayed some enzymatic 
activity. [22] 

MIF AND ASSOCIATED SIGNALING 
PATHWAYS

Although MIF was found in the 1960s, the cell 
surface receptor for MIF was identified until more than 
35 years later. [23] CD74 was identified as a high affinity 
cell surface binding protein for extracellular MIF with 
the help of expression cloning and functional analyses. 
[24] The prostate cancer invasion could be attenuated 
by the inhibition of MIF or CD74. [25] CD74 is a 
nonpolymorphic type II integral transmembrane protein 
which is involved in the transport from the Golgi apparatus 
to the endoplasmic reticulum. It is abundant on the cell 
surface, expressed on monocytes/macrophages, B cells and 
mesenchymal, epithelial and endothelial cells. [24] Kindt 
et al. proved that MIF/CD74 pathway was involved in the 
HNSCC progression. Knockdown of CD74 could slow 
down the proliferation and invasiveness of a squamous 
carcinoma cell line SCCVII as well as negatively affected 
the growth of orthotopic tumors generated by SCCVII cell 
inoculation. [12] The complex formed by MIF binding 
to the extracellular C-terminal domain of CD74 initiates 
MIF-dependent sustained activation of the ERK1/2 MAPK 
cascade resulting in increased cell proliferation via cyclin 
D1 transcription and subsequent phosphorylation of the 
Rb gene and prostaglandin E2 production. [23, 26] There 

are another pathways associated with the MIF-dependent 
activation of this cascade. Jab-1/CSN5, a protein that 
serves as an intracellular binding partner of MIF, and Src 
tyrosine kinase signaling pathway are involved in fast and 
transient activation of the ERK MAPK signalling pathway. 
[27] Besides, CD44, a transmembrane coreceptor, 
is required in the MIF-mediated ERK1/2 kinase 
phosphorylation for its role in serine phosphorylation. [28] 
The long-term enhanced activation of CD44 heightened 
inflammatory response and was responsible for promotion 
cancer invasion. [29] Intriguingly, MIF is also described as 
a non-cognate ligand for CXCR2 and CXCR4 which are 
ascribed to functional receptors. [30] In this context, MIF 
has to compete with known cognate ligands to bind with 
these receptors. MIF/CXCR2 interaction was identified 
to elicit the recruitment and arrest of monocytes, [31] 
whereas MIF-mediated T-cell recruitment was traced to 
the interaction of MIF and CXCR4. [30]

The nuclear factor - kappa B (NF-κB) which 
plays a vital role in carcinogenesis is involved in the 
MIF associated signaling pathways. In nasopharyngeal 
carcinoma (NPC) cell lines, C666-1, MIF/IL-8/ CXCR2 
signaling could enhance the growth of the tumor spheres. 
And NF-κB inhibitor parthenolide could inhibit the gene 
expression of IL-8. [32] Lv et al. found that MIF assisted 
lung metastasis of breast cancer via activation of HMGB1/
TLR4/NF-κB axis. [33] In the non-small cell lung cancer 
cell lines, the dissociation of MIF- ribosomal protein 
S3 complex induced by ionizing radiation sequentially 
activated NF-κB and made the expression of target 
genes of this factor, which promoted tumor metastatic 
conversion. [34] 

MIF AND INFLAMMATION MICRO-
ENVIRONMENT

The notion of MIF as a proinflammatory protein 
was firstly confirmed by the studies about delayed 
hypersensitivity and further evaluated in the mouse model 
of septic shock. [10] It was involved in many aspects 
of inflammatory. The level of MIF was elevated in both 
serum and synovial fluid of patients with rheumatoid 
arthritis. The anti-inflammatory effect of steroids has 
been proved both in vitro and in vivo. It was shown that 
MIF secretion was inhibited by high anti-inflammatory 
concentration of steroids. [5] Compared to the control 
group, the mortality rate of MIF-knockout mice showed a 
significant reduce in response to lipopolysaccharide (LPS). 
[35] Bacher et al. noted that MIF also influenced the 
proliferation and activation of T cells. [7] As mentioned 
previously, MIF had a direct effect on macrophages. 
In turn, MIF secretion could be induced by LPS in the 
murine macrophage cell line. [8] Moreover, in response to 
tumor necrosis factor (TNF) and interferon, macrophages-
released MIF was increased, and this led to increasing the 
production of NO and TNF-α in an autocrine fashion, 
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resulting in the removal of bacteria from infected tissue. 
[36] Additionally, MIF reduced the rate of apoptosis in 
neutrophil granulocytes. Baumann et al. reported that 
MIF delayed apoptosis in neutrophils by inhibiting the 
mitochondria-dependent death pathway. [37] 

The role of MIF in inflammation underlined its 
position in the development of HNSCC. In laryngeal 
carcinoma samples, Kindt et al. emphasized that the 
elevated MIF level was associated with a slightly 
decreased abundance of CD3+ T cells in the peritumoral 
tissue. [38] In another study, tumor-derived MIF could 
recruit neutrophils via CXCR2-dependent chemotaxis and 
trigger the inflammatory activity by eliciting neutrophils’ 
release of C-C Motif Ligand 4 (CCL4) and matrix 
metalloprotease 9 (MMP9) in human hypopharyngeal 
carcinoma cell line FaDu. [39] Both CCL4 and MMP9 
have been proved to be involved in several stages of 
tumor progression in other cancers. [40-42] Li et al. 
demonstrated that tumor-derived MIF promoted the 
generation and recruitment of Th17 cells dependent on the 
mTOR pathway and mediated by the MIF-CXCR4 axis 
in NPC. Th17 cells in tumor tissue produced more IFN-γ 
than healthy controls. Besides, the frequency of MIF-
positive tumor-infiltrating lymphocytes in NPC tissue was 
positively correlated with patients clinical outcomes. [43] 
With observations that the high-expression of MIF and 
IL-8 was significantly associated with increased lymph 
node metastasis in NPC patients and exogenous MIF 
treatment alone could upregulate IL-8 secretion in CNE-1 
and CNE-2 NPC cells in vitro, Liao et al. inferred that MIF 
contributed to lymph node metastasis by upregulating IL-8 
expression. [44]

MIF AND TUMOR HYPOXIA MICRO-
ENVIRONMENT

The crosstalk between tumor cells and 
microenvironment of the host is an important driving 
force in the selection of clone that is prone to invasion and 
metastasis. Hypoxia, resulting from rapid tumor growth 
in the absence of accompanying blood supply, is a critical 
symbol and determinant of tumor microenvironment. To 
maintain growth advantage, tumor cells under hypoxia 
microenvironment enhanced expression of hypoxia-
inducible factor-1 (HIF-1), which favors anaerobic tumor 
growth, resistance to therapy, and metastatic adaptation. 
[45] HIF-1, as a heterodimeric transcription factor, is 
composed of α and β subunits. HIF-1β is constitutively 
expressed whereas HIF-1α, the active subunit, is 
undetectable under normoxia for rapid proteasomal 
degradation. [46] Arguably, a series of facts have indicated 
that hypoxia is a potent inducer of MIF secretion in kinds 
of cells. [47-49] Our group demonstrated that hypoxia 
stimulated the accumulation of CD11b+Gr-1+ myeloid 
cells by elevating production of MIF via HIF-1α/HIF-
2α-dependent ways in HNSCC. [14] Fu et al. found that 

HIF-1α rapidly induced MIF expression in human vascular 
smooth muscle cells via ERK activity. [50] Baugh et al. 
showed that MIF was a direct HIF-1 transcriptional target. 
HIF-1 bound to the hypoxia response elements in the 
5´UTR of the MIF. [51] Mladenova et al. demonstrated 
that HIF-1α knockout caused downregulation of MIF in 
a mouse model of proximal colon cancer. [52] Increasing 
evidence has indicated that cellular senescence serves 
as a tumor suppressor and that the host may utilize 
senescence as an anti-tumor defence mechanism. HIF-
1α delayed premature senescence, and thus activation of 
HIF-1α in tumor cells would limit premature senescence 
and confer a biological advantage on these cells. Using 
embryonic fibroblasts from HIF- 1α knockout mouse, the 
onset of cellular senescence significantly accelerated and 
the cellular division decreased under hypoxia condition. 
Welford et al. identified that the MIF was a crucial effector 
of HIF-1α delaying senescence. [53]

Conversely, MIF also contributed to stabilize HIF-
1. No et al. suggested that a ternary complex formed by 
HIF-1α, MIF, and CSN9 signalosome subunit 5 (the bridge 
between HIF-1α and MIF) was necessary to prevent 
degradation of HIF-1α under aerobic condition. [54] 
Oda et al. demonstrated that MIF enhanced activation of 
HIF-1 under hypoxic condition in MCF-7 cells via p53-
dependent manner in vitro and in vivo. [55] 

However, Larsen et al. found that inhibition of HIF-
1α, HIF-2α using siRNA had no effect on hypoxia-induced 
MIF secretion in MCF-7 breast cancer cells, which hinted 
that there existed other hypoxia-induced regulatory 
mechanisms for the up-regulation of MIF. The authors 
considered that NF-κB and C/EBPβ signaling pathways 
were association with this phenomenon. [56]

MIF AND ANGIOGENESIS

Analogous to normal tissues, tumors require 
vessels to sustainably supply nutrients and oxygen as 
well as evacuate metabolic wastes and carbon dioxide 
simultaneously. Indeed, no matter synthetic or catabolic 
metabolism is excessively exuberant in tumors. Hence, it 
is necessary to induce new blood vessels to meet tumor 
cells metabolism. Angiogenesis, as a vital mode to achieve 
this goal, is the formation of new blood vessels from the 
existing vasculature by sprouting. [57,58] Opposite to the 
orderly normal vessels, the organization of these vessels is 
tortuous, saccular, and chaotic. The structure of vessel wall 
is also abnormal, which is formed by endothelial cells with 
large gaps, detached pericytes and abnormal basement 
membranes. The excessively leaky vessels are prone to 
fuel the tumor metastasis. [59] Therefore, angiogenesis is 
regarded as one hallmark of cancer.

 Accumulated evidence has proved that MIF 
was associated with tumor angiogenesis. When the 
B lymphoma mouse model was administrated with 
monoclonal antibody (mAb) specific for MIF, Chesney 
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et al. observed a marked reduction in B lymphoma 
growth. However, profound analysis showed that anti-
MIF antibody unaffected B-cell lymphoma proliferation. 
Reciprocally, microvascular endothelial cells were 
sensitivity to the mAb, whose proliferation was dependent 
on MIF. This result suggested that the antitumor effect 
caused by anti-MIF resulted from MIF suppression on 
angiogenesis. [11] Subsequently, Shimizu et al. reported 
that anti-MIF reduced xenografted melanoma-associated 
angiogenesis. [60] Further study showed that both the 
ERK and the PI3K pathways were regarded as the MIF-
signaling pathways that underly this angiogenic response. 
[61] 

Vascular endothelial growth factor (VEGF) is the 
well-known angiogenesis inducer. [62] One possible 
mechanism of MIF-induced angiogenesis in HNSCC was 
related to the upregulation of VEGF. When MIF/CD74 
signaling pathway was blockaded via using anti-CD74 
shRNA, the SCCVII cells showed a significant decrease in 
producing VEGF compared to the control, which damaged 
the capacity of promotion angiogenesis. [12] IL-8, another 
prominent pro-angiogenic molecule, was considered to 
associate with the angiogenesis in HNSCC. In NPC tissue, 
the high-expression of MIF and IL-8 was significantly 
associated with increased intratumoral microvessel 
density and microvessels or lymph node metastasis in 
NPC patients. Liao et al. inferred that MIF contributed to 
lymph node metastasis by inducing angiogenesis through 
the way of upregulating IL-8 expression. [44]

MIF AND EMT

 EMT is a process that polarized epithe lial cells 
convert into motile mesenchymal phenotype which is 
characterized by suppression of the adherent protein 
E-cadherin and overexpression mesenchymal markers, 
such as N-cadherin and vimentin. [63-66] In this 
process, epithelial cells lose their cell-cell adhesion and 
acquire migratory and invasive properties, contributing 
to the gaining mesenchymal stem cell characteristics. 
[67, 68] A series of transcription factors, for instance, 
Snail, Slug, Twist, and Zeb1/2, which control the 
expression of proteins involved in cell polarity, cell-
cell adhesion, cytoskel eton structure and extracellular 
matrix degradation, orchestrate the EMT and contribute 
to the initial invasion and metastatic dissemination of 
carcinoma cells. [69] The major development signaling 
circuits, including TGF-β/Smad, Wnt, and growth factor 
receptor signaling cascades, and their crosstalks have been 
implicated in some aspects of the EMT program. [70, 71] 
A compelling body of evidence has indicated that EMT is 
a crucial procedure in metastasis cascade for epithelium-
derived cancer cells.

MIF has been deemed one of the factors triggering 
EMT. In A549 lung adenocarcinoma cells, Keshamouni 
et al. identified that MIF was up-regulated during 

TGF-β induced EMT with quantitative differential 
proteomic analysis. [72] Funamizu et al. found that the 
overexpression of MIF decreased E-cadherin and increased 
vimentin and ZEB1/2 in pancreatic cancer cells. And it 
was considered to be mediated by miR-200b, a member 
of miR-200 family. [73] When the colorectal cancer cells 
were cultured in conditioned media containing higher level 
of soluble MIF, the tumor cells elevated N-cadherin and 
vimentin expression and decreased E-cadherin expression. 
Although these findings have established the links between 
MIF and EMT, there still need to make further efforts to 
elucidate the exact mechanism. [74] Zeng et al. utilized 
small siRNA to knock down the expression of MIF 
which inhibited the proliferation, migration, and colony 
formation of oral squamous cell carcinoma (OSCC) 
cells. They also found that Twist1, the transcriptional 
factor of the EMT, downregulated concomitantly in 
the MIF-knockdown (KD) OSCC cells. [13] In breast 
cancer cell, along with enhancing MIF expression, the 
expression of snail, vimentin and twist was increased in 
a time-dependent manner. Conversely, the expression of 
snail, vimentin and twist could be decreased by the MIF 
knockdown. [33] 

MIF AND CELL PROLIFERATION, 
APOPTOSIS AND AUTOPHAGY

Research evidence supported that the activation of 
MIF was involved in cell proliferation and apoptosis. [75] 
During cell cycle, there are various check point proteins 
so that cells can correct the errors in DNA replication 
during proliferation and force the abnormal cells to 
undergo apoptosis. [76] As we known, the balance of 
proliferation and apoptosis is necessary for the normal 
cell development. MIF can interfere with the cell cycle 
check points so that cells proliferate at a very high rate. 
Li et al. showed that recombinant human MIF increased 
the proliferation of gastric cancer MGC-803 cells by 
inducing the expression of cyclin D1 and inhibiting the 
expression of p27Kip1 via the PI3K/Akt pathway. [77] 
Both the cyclin D1 and p27Kip contributed to regulate 
cell cycle progression from G1 to S phase. [78] Thus, the 
abnormal expression of them led to the loss of control of 
cell proliferation. Wen et al. demonstrated that siRNA-
mediated knockdown of MIF caused the downregulation 
of cyclin D1 and cyclin-dependent kinase 4 (CDK4) 
which activated cell progression from G1 to S phase. 
[79] In renal cell carcinoma, miRNA-451 inhibited 
cell proliferation, migration and invasion through up-
regulation of MIF. [80] SiRNA against MIF significantly 
decreased the proliferation and migration as well colony 
formation ability of OSCC. [13] MIF-KD substantially 
negatively affected SCCVII cells proliferation compared 
to the control. [38] And partial CD74 deficiency resulted 
to impair proliferative activity together with increasing 
in the G0/G1 phase of the cell cycle in SCCVII cells, 
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which was associated with lower activation of signaling 
cascades such as the ERK1/2 MAPK cascade. [12] MIF 
inhibitor 4-iodo-6-phenylpyrimidine(4-IPP) exerted an 
inhibitory effect on the proliferation of SCCVII cells in a 
dose-dependent manner. [81] CPSI-1306, MIF antagonist, 
could enhance keratinocyte apoptosis and inhibit the 
UVB-induced epidermal proliferation by promoting p53 
degradation, which antagonized UVB-induced squamous 
carcinogenesis. [82] Xia et al. indicated that MIF exerted 
a role in protecting bone marrow-derived mesenchymal 
stem cells from apoptosis via the AMPK/mTOR signaling 
pathway. [83] In malignant pleural mesothelioma cell 
lines, activated MIF/CD74 pathway had protumorigenic 
function by increasing tumor cell proliferation and 
protecting them from apoptosis. [84] Park et al. 
demonstrated that the combined induction of TAp63 with 
blockade of the MIF/CD74 signaling pathway could boost 
apoptosis of malignant B cells. [85] Liu et al. used siRNA 
to knockdown MIF resulting in proliferation suppression 
and G0/G1 cell cycle arrest in HEK293 cells. To elucidate 
the molecular mechanism underlying this phenomenon, 
they analyzed the genomewide expression profile in MIF-
KD cells and normal cells. The results demonstrated that 
in MIF deficient cells, the positive regulators of G1/S 
cell cycle progression, Cyclin, CDK, CAK and APC/C 
were downregulated. However, members of CKI family 
(p21Cip1/Waf1, p27Kip1 and p57Kip2) antagonizing both 
cyclin and CDK subunits to block of G1/S transition, were 
upregulated. It was thought to be related to the inhibition 
of MAPK, PI3K/Akt, NF-κB, c-Myc-dependent pathways 
and activation of TGF-β, p53-dependent pathway. [86] 

p53, one crucial tumor suppressors, is the most 
commonly silenced or mutated gene in cancer. [87] 
Generally, p53 level is low or even undetectable, while 
the cellular p53 protein level rises dramatically in response 
to the stress signals such as DNA damage, oncogene 
activation and hypoxia. Then, activated p53 results in a 
variety of genes activation and transcription which play 
important roles in cell cycle arrest, senescence, apoptosis, 
and differentiation. The process ensures that an abnormal 
cell fails to proliferate, thereby providing a critical barrier 
against tumor development. [88-90] Hudson et al. pointed 
out that MIF bypassed the p53-mediated growth arrest or 
apoptosis with functional screens. Endogenous expressed 
or exogenously added recombinant MIF was able to inhibit 
p53-dependent transcriptional activity of p21, cyclin 
G1, and Mdm2. [91] Subsequently, considerable studies 
identified MIF as an effective p53 antagonist by inhibiting 
p53-dependent apoptosis and tumor suppressor role. [92-
94] However, the mechanism how MIF achieved this was 
not yet elucidated. It was speculated that oxidoreductase 
activity of MIF should be responsible for this inhibition. 
[95] And Jab1 was deemed to participate in this process. 
Observations suggested that the ternary MIF-Jab1-p53 
complex indeed was a molecular basis for the MIF 
mediated suppression of the p53-dependent apoptosis. [96, 

97] Besides, in the inflammatory microenvironment, NO 
mediated apoptosis in macrophages via p53-dependent 
manner. [98] Reciprocally, high MIF concentrations 
sustained monocyte and macrophage function in the face 
of NO induction of p53-dependent apoptosis. [99] 

Autophagy is another manner that manipulates 
the survival and death of cell. Since it’s essential in the 
degradation of accumulated damaged or long-lived and 
superfluous organelles which are toxic for cells with the 
lysosomal machinery, autophagy has been characterized 
as an intracellular catabolic pathway that plays vital 
role in maintenance cellular homeostasis. [100] In 
general, there are three main forms of autophagy in 
mammalians: microautophagy, chaperone-mediated 
autophagy (CMA), and macroautophagy, and the latter 
one is the major subtype of autophagy. The main feature 
of macroautophagy is the formation of “autophagosomes” 
in which cytosolic components are sequestrated by 
plasma membrane to delivered to the lysosome for their 
breakdown. [101, 102] For the hostile microenvironment 
such as hypoxia and nutrient depletion in cancer, 
autophagy can be activated in tumor cells. So far, whether 
autophagy is beneficial for tumor cell survival or death has 
been a controversial topic. On the one hand, autophagy 
endows cancer cells the capability to limit damage and 
sustain viability by recycling the damaged proteins 
and organelles. On the other hand, recent studies have 
discovered that defective autophagy links to increased 
tumorigenesis. The loss of the essential autophagy 
gene beclin1 induced hepatocellular carcinoma, lung 
adenocarcinoma, mammary hyperplasia, and lymphoma in 
the mice. The constitutive activation of PI3k/Akt pathway 
by mutations might stimulate the process. Tamoxifen, used 
to treat certain types of breast cancer, was considered to 
activate autophagy by up-regulation beclin1. Thus, 
autophagy is considered as a double-edged sword for its 
role may be altered during tumor progression. [103, 104]

MIF-induced cytokines, such as IL-1β, TNF-α, 
have been confirmed to be involved in autophagy. 
Chuang et al. found that MIF could induce autophagy in 
hepatocytes through ROS generation. [105] Chen et al. 
demonstrated that MIF-induced autophagy in endothelial 
cells caused an increase in vascular permeability. The 
inhibition of autophagic flux could reverse MIF-induced 
vascular leakage in both in vitro cell culture and in vivo 
mice experiments. [106] In breast cancer cells, Wu 
et al. revealed that the suppression of MIF increased 
microtubule associated protein 1 light chain 3 expression, 
which was in proportion to autophagic vacuole formation 
and used to quantify autophagy. In the same study, MIF-
knockdown enhanced chemosensitivity and suppressed 
tumorigenesis in the mice by inducing autophagy. [107] 
In Liu et al. study, MIF inhibition induced ROS-mediated 
autophagy to rescue cell death in osteosarcoma. [108]

Taken together, the relationship beteewn MIF and 
HNSCC has been established by a great deal of studies, 
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however, the mechanism is still ambiguous and further 
research is needed. We summarize the relationship 
between them mentioned above in the Figure 1.

A POTENTIAL BIOMARKER FOR 
HNSCC

With the analysis of quantitative 
immunohistochemistry, Kindt et al. found that MIF 
staining intensity significantly increased in hypopharyngeal 
squamous cell carcinoma samples compared to tumor-free 
epithelia, low-grade dysplasia or high-grade dysplasia. 
[109] They had similar results in the laryngeal carcinoma 
and oral cavity carcinoma. Interestingly, HPV positive 
oral cavity carcinoma samples exhibited lower level of 
MIF expression. They further searched whether the MIF 
expression was correlation with the clinical outcome. 

Finally, in laryngeal carcinoma, elevated MIF expression 
was associated with a worse prognosis in terms of 
local recurrence and cancer metastasis. Reciprocally, 
in oral cavity carcinoma, it was not correlation with 
recurrence, while in parallel with the development of a 
second primary tumor during the follow-up period. [38, 
110] Complementally, the serum MIF level of HNSCC 
patients reached approximately three times compared 
to their healthy counterparts. [110] By immunostaining 
MIF in specimens from 50 HNSCC patients treated with 
chemoradiotherapy, Suzuki et al. demonstrated that MIF-
negative was association with poor prognoses. [111] Souza 
et al. indicated that serological MIF concentration elevated 
prior to treatment and significantly reduced after tumor 
resection in oral squamous cell carcinoma patients. [112] 
High MIF expression in tumor cells were significantly 
associated with worse prognosis of NPC patients. [113] 
Thus, MIF can be treated as a potential biomarker for 

Figure 1: The model of how MIF promoting the progression of HNSCC. First, in recurrent or persistent inflammation 
microenvironment, MIF can promote epithelial cells to undergo malignant transformation. Second, the MIF can increase the cancer cells 
proliferative activity and inhibit their apoptosis which lead to the formation of primary tumor. MIF also enhances the invasion ability of 
cancer cells. Meanwhile, the interaction between MIF and HIF-1 is vital to maintain the tumor growth in hypoxia microenvironment. Third, 
MIF can promote the angiogenesis in HNSCC via VEGR and IL-8. However, these vessels are abnormal. Besides, MIF can induce EMT of 
tumor cells, and these mesenchymal cells are prone to enter the leaky vessels, which fuel the tumor metastasis.
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HNSCC. In C3H/HeN mice inoculated orthotopically 
with MIF-KD or control SCCVII cells, the MIF-KD 
tumors grew more slowly and appeared more sensitive to 
Cisplatin, 5-fluorouracil and Taxol. [38] Chang et al. used 
tricine-SDS-gel-assisted fractionation in conjunction with 
liquid chromatography-tandem mass spectrometry (LC-
MS/MS) to systematically identify low-molecular-weight 
proteins in the secretomes of five OSCC cell lines and 
found that MIF was specifically overexpressed in OSCC 
tumor cells compared to the normal oral epithelium. The 
overexpression of MIF was associated with cervical 
metastasis, perineural invasion, deeper tumor invasion, 
higher overall stage, and a poorer prognosis. Besides, 
MIF promoted the migration and invasion of OSCC cell 
lines in vitro. Collectively, they proposed that MIF could 
be a potential tissue biomarker for OSCC. [114] Liu et 
al. demonstrated that miR-451 downregulated in NPC cell 
lines and tissue samples leading to enhanced cell migration 
and invasion in vitro and xenograft tumor growth in vivo 
by targeting MIF. [115] In laryngeal carcinoma, the high 
level of AHNAK combination with MIF up-expression 
was strongly associated with poor survival. [116] 

CONCLUSIONS

Firstly, MIF was ascribed as a proinflammatory 
factor. Further studies have demonstrated that MIF 
is involved in the progression of tumors including 
HNSCC. The expression of MIF in HNSCC samples 
has been proved to be related to the clinical outcomes of 
patients. The higher MIF level in serum was also found 
in patients with HNSCC. MIF can regulate HNSCC cells 
proliferation, apoptosis, invasion, and metastasis though 
its pleiotropic roles in mediating hypoxia response, 
angiogenesis, and EMT. The inhibition of MIF can restrict 
the progression of tumors. This evidence hints that MIF 
may be a potential biomarker of HNSCC.

As mentioned above, for the roles of MIF in 
supporting cancer, there exists possibility that it can be a 
therapeutic target for cancer. Indeed, the restriction of MIF 
showed the efficacy of cancer treatment. The inhibition of 
MIF in gallbladder cancer cell line by ISO-1 and 4-IPP or 
its specific siRNA led to a decrease in the colony forming 
ability. [117] ISO-1, the antagonist of MIF, prevented 
adenoid cystic carcinoma cell line cell growth and 
impaired the migration and invasion abilities. [118] Zheng 
et al. showed that ISO-1 could significantly reduce gastric 
cancer cell proliferation. Besides, CD74, the receptor of 
MIF, was also a potential therapeutic target. They found 
that the knockdown of CD74 or using anti-CD74 mAb 
could achieve the similar results in gastric cancer. [119] 
Thus, CD74, as a cell membrane protein, may serve as 
a therapeutic target, whereas MIF may be viewed as a 
diagnostic marker.
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