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ABSTRACT
MicroRNAs(miRNAs) often exert their oncogenic and tumor suppressor functions 

by suppressing protein-coding genes expressions in cancers and thus have a 
strong association with cancers’ generation, development and metastasis. Through 
comprehensively understanding differentially expressed miRNAs (oncomiRNA) in 
tumor tissues, we can elucidate the underlying molecular mechanisms in tumorigenesis 
and develop novel strategies for cancer diagnosis and treatment. The differential 
expression of miRNAs can now be analyzed through numerous statistical significance 
tests based on different principles, which are also available in various R packages. 
However, the results can be notably different. In this study, we compared miRNAs 
obtained from 6 common significance tests/R packages (t-test, Limma, DESeq, edgeR, 
LRT and MARS) with the miRNAs archived in two databases; HMDD 2.0 database, 
which collects experimentally validated differentially expressed miRNAs, and Infer 
microRNA-disease association database, which contains the potential disease-
associated miRNAs by network forecasting. Finally, we sought the MARS method in 
DEGseq package more effectively searched out differentially expressed miRNAs than 
other common methods.

INTRODUCTION

MicroRNAs (miRNAs) are short (18-25-nucleotide) 
non-coding RNAs that function as posttranscriptional 
gene regulators by binding to the 3’UTR of mRNAs, 
consequently, either repress translation or initiate 
mRNA degradation [1, 2]. Since their discovery [3, 4], 
miRNAs have been implicated in the control of various 
cellular processes [5, 6], including cell proliferation [1], 
cell death [7-12] and differentiation [3, 13]. Therefore, 
many miRNAs could function as oncogenic miRNAs 
(oncomiRNAs), which cause cancer by down-regulating 
genes through both translational repression and mRNA 
destabilization mechanisms [14, 15], such as breast tumors 
[16, 17], esophageal carcinoma [18, 19] and lung cancer 
[1, 3]. miRNAs are also potential prognostic markers of 
chronic lymphocytic leukemia [20], colon tumors [15, 

21], pancreatic cancer [22], and neuroblastoma [23]. 
Associations between differentially expressed (DE) 
miRNAs and the cancer occurrence have been the focus 
of intense cancer biology investigation [24-28]. 

Next Generation Sequencing (NGS) technology 
can rapidly and accurately perform large-scale DNA/
RNA sequencing through a series of high-throughput 
technologies. These technologies facilitate genomic 
research and are increasingly replacing microarrays 
with gene expressing profiling of epigenetics and 
transcriptomics (RNA-seq) [29, 30]. Transcriptomic 
sequencing includes mRNA, small RNA and non-coding 
RNA (ncRNA), of which miRNAs are among the most 
important components [31-33]. Aided by the advantages 
of NGS, molecular biology has acquired a vast number 
of large-scale sequence data, which has also posed many 
challenges for high-throughput analysis. These challenges 
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include finding suitable statistical tests for large data 
and affirming their statistical assumptions by biological 
experiments, such as quantitative RT-PCR, northern blot, 
and overcoming the shortcomings of genetic sequencing 
technologies through statistical methods, which should 
fully uncover the essence of biology. Selective miRNAs 
expression profiling based on high-throughput test can 
strongly support the prognosis prediction of various 
cancers [34, 35]. Therefore, a significance test or R 
package which can efficiently screen out DE miRNAs in 
tumor tissues will guide the subsequent validation by low-
throughput experiments. 

Various normalizations and statistical hypotheses 
have been incorporated into statistical significance 
tests and R packages which can detect DE miRNAs in 
cancer tissues. For example, the t-test (Student’s t-test) 
is widely used for comparing independent samples by 
statistical hypothesis test. This test examines whether 
the expressions of certain miRNAs significantly differ 
among different parent population samples. A 2011 study 
compared the miRNAs expressions in 20 patients with 
glioblastoma and other 20 age- and sex-matched healthy 
controls [11]. The researchers identified 52 significant DE 
miRNAs among 1158 tested miRNAs in glioblastoma 
tissues, however, only 2 miRNAs (miR-128 and miR-
342-3p, which are up- and down-regulated respectively) of 
these 52 miRNAs were validated by low-throughput real-
time PCR experiments, which means only two miRNAs 
were suitable biomarkers for blood-derived glioblastoma-
associated characteristic miRNA fingerprints [36]. The 
Limma package analyses gene expression data obtained 
from microarrays or RNA-seq technologies. The core 
capability of this package is the evaluation of differential 
expression in multifactor-designed experiments by linear 
modeling [37]. Sun [38] used the Limma package to 
screen out numerous DE miRNAs in ductal carcinoma in 
situ compared with normal controls . The DESeq [39] and 
edgeR [40] package solve the overdispersion problem in 
RNA sequencing data by applying the negative binomial 
distribution. Hamfjord [41] used both tools to statistically 
test the miRNA expression differences in read counts per 
miRNA between two samples. In DESeq, they treated 
the tumor and normal samples as independent groups; in 
edgeR, they considered paired information. According 
to their results, 37 miRNAs were identified to be DE 
miRNAs (19 up-regulated and 18 down-regulated) in 
colorectal cancer both in DESeq and edgeR [41], however, 
among these miRNAs, 16 miRNAs had not been validated 
in previously documented experiments. Thus, DESeq 
and edgeR both have limited screening ability for DE 
miRNAs. In 2010, Wang [42] proposed MA-plot-based 
method with random sampling (MARS) in DEGseq 
package. This method incorporates the random sampling 
method and is based on MA plot, which is widely used 
to detect and visualize the intensity-dependent ratios in 
microarray data [43]. DEGseq package also includes 

another commonly used method called Likelihood Ratio 
Test (LRT) [44].

Despite the wide range of statistical significance 
tests and R packages for detecting DE miRNAs in 
RNA expression profiles, few studies have considered 
which method gives the most accurate result. Along 
with the flourishing development of bioinformatics 
and applications of machine learning [24, 26, 45, 46], 
literature mining [47, 48] has greatly assisted biomedicine 
and genomics research. The HMDD 2.0 database (http://
www.cuilab.cn/hmdd) collects experimental evidences of 
DE miRNAs and disease associations through literature 
mining [47]. The Infer microRNA-disease association 
database (http://lab.malab.cn/soft/ifmda) [49] predicts 
the underlying interactions between miRNAs and disease 
for further confirmation of biological experiments. The 
Infer method constructs a heterogeneous network that 
connects the disease similarity subnetwork to the miRNA 
similarity subnetwork by validated experimental miRNA-
disease associations. The HMDD 2.0 database contains 
the experimentally validated DE miRNAs, and the Infer 
microRNA-disease association database offers miRNAs 
that are potentially associated with diseases. 

In this study, we selected 5 miRNA expression 
profiles of cancers (BRCA, ESCA, LUAD, PAAD and 
THCA), and their corresponding controls miRNA profiles. 
We then screened the DE miRNAs in the cancer tissues by 
the six abovementioned methods (t-test, Limma, DESeq, 
edgeR, LRT and MARS), then compared and classified 
the six sets of results with the miRNAs in HMDD 2.0 and 
Infer microRNA-disease association. By calculating the 
Area Under the Curve (AUC) of the Receiver Operating 
Characteristic (ROC), we identified the method with the 
best screening results. Among the six methods, MARS 
delivered the highest performance. 

RESULTS

Expression analysis of miRNAs in cancer vs 
normal groups

After applying the six methods to the five datasets 
(Figure 1 and Table 1), we acquired the significant DE 
miRNAs in cancer tissues (P or Padj < 0.05) among the 
miRNAs. The numbers of DE miRNAs returned by the six 
methods have huge differences (Figure 2). 

The DE miRNAs in BRCA obtained by those 6 
methods were compared in a Venny distribution using the 
Venny web server 2.0 (http://bioinfogp.cnb.csic.es/tools/
venny/index.html) [50] (Figure 3). The miRNAs obtained 
from the six methods were also very different. For 
example, in BRCA dataset, hsa-mir-4482 was classified 
as a DE miRNA by Limma and edgeR, but as a normally 
expressed miRNA in DESeq. 

http://www.cuilab.cn/hmdd
http://www.cuilab.cn/hmdd
http://lab.malab.cn/soft/ifmda
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Figure 2: The histogram of the number of DE miRNAs obtained from 6 methods on 5 datasets. The DE miRNAs were 
obtained from 6 methods(t-test, Limma, DESeq, edgeR, LRT and MARS) and the threshold: P or Padj < 0.05

Figure 1: The flowchart to analyze miRNA and to compare with the other two databases in this study. Note: DE: 
differentially expressed. Database 1: HMDD 2.0 database. Database 2: Infer microRNA-disease association database
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Figure 3: The venn diagrams of BRCA dataset. BRCA dataset: The DE miRNAs were obtained from 6 methods(t-test, Limma, 
DESeq, edgeR, LRT and MARS) and the threshold P or Padj < 0.05, since venn diagrams based on 6 sets looks not intuitionistic, so we 
choose every 4 sets in 6 sets to draw venn diagrams. 

Table 1.1: Number of samples of selected miRNA sequencing datasets from the TCGA database.

Cancers NT samples TN samples

BRCA 90 90

ESCA 13 13

LUAD 45 45

PAAD 4 4
THCA 57 57

Table 1.2: The number of selected miRNA from the database 1 and database 2
Cancers TCGA Database 1 Database 2

BRCA 1881 243 100

ESCA 1881 83 100

LUAD 1881 157 100

PAAD 1881 117 100
THCA 1881 56 100

Note: 
NT: normal sample; TN: tumor sample;
Database 1: HMDD 2.0; Database 2: Infer microRNA-disease association; 
BRCA: Breast invasive carcinoma
ESCA: Esophageal carcinoma
LUAD: Lung adenocarcinoma
PAAD: Pancreatic adenocarcinoma
THCA: Thyroid carcinoma.
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These two figures indicated the large differences 
on the DE miRNAs obtained from those 6 methods. The 
differences not only lie in the number of those miRNAs 
but also in the predicted DE miRNAs.

Compared with the miRNAs in HMDD 2.0 and 
Infer microRNA-disease association

The total number of DE miRNAs can be varied by 
adjusting the threshold (P or Padj) of the six methods. Here, 
we classified the miRNAs obtained by the six methods 
with miRNAs in the HMDD 2.0 and Infer microRNA-
disease association database. As these classifications 
are binary classifications (Table 2), we can estimate the 
screening DE miRNA performance of these methods by 
plotting the ROCs and computing their AUCs. When 
integrating the miRNAs from HMDD 2.0 and Infer 
microRNA-disease association, we incremented the 
k-value from 0.5 to 1 in 0.05 steps as a weight factor 
(Figure 4, Figures S1-S4; Table S1). When individually 
considering these two databases, we constructed separate 
ROCs for the miRNA comparisons between each statistical 
method and HMDD 2.0, and between each method and 
Infer microRNA-disease association (Figrue 5, Figures 
S5-S8; Table S2). 

DISCUSSION

Abnormal mRNA expression are induced by DE 
miRNAs, which prevents the mRNA from executing its 
regular biological functions [51-53], which is a primary 
cause of cancer. Altered miRNA expression will likely 
contribute to the initiation and progression of human 
cancers [10, 11, 13, 14, 16, 47], and the relationship 
between miRNAs and cancers has become a major focus 
in cancer research. Vast numbers of miRNA expression 
profiles have been generated throughout the past decade, 
as rapid NGS development has continuously lowered the 

gene sequencing cost. Although DE miRNAs in tumor 
tissues can be detected by various available methods, the 
accuracy of these methods remains a critical issue. 

DE genes have been ubiquitously detected by the 
t-test, which is popular for its simple calculation and easily 
understandable characteristics. Even though the standard 
error in the t-test is based on a small sample size, some 
miRNAs with miniscule standard error will still inevitably 
exist among the great number of miRNAs. Consequently, 
the t-test will increase the false positives prediction for 
these miRNAs [54, 55]. Examining the ROC of PAAD 
dataset which has only 4 cancer samples and 4 control 
samples, we could observe clearly that the t-test cannot 
selectively screen the DE miRNAs in this dataset (Figure 
S3, Figure S7). In addition, the performance of t-test 
method on PAAD dataset was worse than any other 
methods when we compare the results with both integrated 
and independent considerations of HMDD 2.0 and Infer 
microRNA-disease association. 

To improve the estimates stability in the traditional 
t-test, Limma introduces a prior distribution which can 
strengthen the sample variance estimation. The results of 
ROCs clearly showed that Limma delivered much better 
performance than the t-test in the small sample case, such 
as ESCA and PAAD datasets (Figure S1, Figure S3, Figure 
S5, Figure S7; Table S2). Limma also outperformed the 
t-test in the remaining datasets. 

The DESeq and edgeR packages are based on the 
negative binomial (NB) distribution. The NB model 
corrects the overdispersion problem in RNA sequence 
data by an additional term in the variance of the Poisson 
model. The variance parameter is estimated differently in 
DESeq and edgeR; DESeq estimates the mean-dependent 
dispersion by a local regression method, whereas edgeR 
assumes that the mean and variance are related and 
thus share a single common estimate of the dispersion 
parameter across the read counts. edgeR also weakens 
each miRNA’s the dispersion degree through an empirical 
Bayes method [40]. We note that many statistical methods 

Table 2: The binary classifier 
True class

Hypothesized class
TP(True Positives) FP(False Positives)

FN(False Negatives) TN(True Negatives)

Note: 
TP: true positive, the number of predicted miRNAs by statistical methods and also that appear in HMDD 2.0 or Infer 
microRNA-disease association
FP: false positive, the number of predicted miRNAs by statistical methods but not appear in HMDD 2.0 and Infer microRNA-
disease association 
TN: true negative, the number of not predicted miRNAs by statistical methods and also not appear in HMDD 2.0 and Infer 
microRNA-disease association
FN: false negative, the number of not predicted miRNAs by statistical methods but still appear in HMDD 2.0 or Infer 
microRNA-disease association
Hypothesized class: the predicted miRNA by those 6 methods
True class: the miRNA achieved in those 2 databases, HMDD 2.0 and Infer microRNA-disease association



Oncotarget85618www.impactjournals.com/oncotarget

Figure 5: The ROC of 6 methods on BRCA dataset based on independently HMDD 2.0 and Infer microRNA-disease 
association. These ROC are obtained from classification of miRNAs obtained from 6 methods (t-test, Limma, DESeq, edgeR, LRT and 
MARS) on 5 datasets based on the true class in independently HMDD 2.0 and Infer microRNA-disease association.

Figure 4: The ROC of 6 methods on BRCA dataset based on integrated HMDD 2.0 and Infer microRNA-disease 
association. These ROC are obtained from classification of miRNAs obtained from 6 methods (t-test, Limma, DESeq, edgeR, LRT and 
MARS) on 5 datasets based on the true class in integrated HMDD 2.0 and Infer microRNA-disease association and k-value is the weighting 
coefficient, which is arithmetic progression from 0.5-1 with the step size equaling to 0.05
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cannot properly handle the small sample sizes which 
are very common in RNA sequencing experiments, for 
example, in DESeq, which are based on generalized 
linear models, small sample sizes consequently violated 
the assumptions of its statistical tests [39, 40]. As a result, 
DESeq was almost the worst performer in our experiments 
(Figures S1-S8). The edgeR method also inflated the 
type I error rates in the simulations. The results of both 
DESeq and edgeR deviated largely in relatively small 
samples, such as the PAAD (4) and ESCA (13) dataset 
(Table 1.1). The AUCs of both methods were also quite 
different (Tables S1-S2); in the ESCA dataset, the AUC 
in edgeR was 0.18-0.2 larger than in DESeq, and in the 
PAAD dataset, the DESeq was even ineffective due 
to the very small sample size. In other three datasets, 
which has relatively larger sample sizes than PAAD and 
ESCA, reduced the differences between performances in 
edgeR and DESeq (Tables S1-S2). Our simulations also 
confirmed a higher computational speed of edgeR than 
DESeq, moreover, the latter could even incur memory 
leakage at relatively large sample sizes.

According to the technical characteristic of RNA-
Seq, Wang [42] proposed the MARS method in DEGseq, 
which can detects DE genes from MA plots and its 
test hypothesis is based on a random sampling model 
[42]. The DEGseq package includes LRT as well. Both 
methods were demonstrated higher DE miRNA screening 
performance in all five datasets than the other four 
methods (t-test, Limma, DESeq and edgeR). The results 
showed some AUCs of MARS and LRT were close to 0.90 
and some were much higher than 0.9, suggesting that the 
both methods are very effective on detecting DE miRNAs 
(Figures S1-S8, Tables S1-S2). Moreover, the AUCs of the 
PAAD and ESCA dataset confirmed that MARS and LRT 
can also effectively identify DE miRNAs even in small 
samples. Although both MARS and LRT performed well, 
MARS achieved a higher True Positive Rate (TPR) at low 
False Positive Rate (FPR) than LRT in the BRCA, ESCA, 
LUAD and THCA datasets, in PAAD dataset, MARS and 
LRT achieved nearly identical TPR at the same low FPR 
(Figures S3 and S7), which indicated that MARS could 
correctly identify DE miRNAs with fewer misidentified 
miRNAs than LRT (Figures S1-S8). In summary, among 
the six tested methods, MARS could most accurately 
detecte the DE miRNAs in cancer tissues.

The detection of DE miRNAs in cancers 
(oncomiRNAs) has always been among the most 
important issue in cancer biology research. Prior 
accurate computational detection of DE miRNAs will 
effectively reduce the cost of clinical experiments. Current 
computational analyses focus on statistical significance 
tests [56], literature mining and networking prediction 
[57]. However, few works have considered all of these 
approaches. In the present study, we integrated these three 
approaches to maximize the uniformity of the results to see 

which method could most accurately detect DE miRNAs. 
The DE miRNAs detected by the best performer (MARS) 
were highly consistent with the miRNAs extracted from 
literature mining and network prediction. This supports 
our inference that MARS outperforms other statistical 
significance tests (such as t-tests) in DE miRNAs 
detection. Complex genetic regulatory mechanisms in 
high-level organisms is considered to be achieved through 
controlled and coordinated miRNAs networks. The 
associations between miRNAs and disease are not only 
conducive to develop novel therapeutic applications for 
cancer patients by miRNA delivery and inhibition, but 
also help to construct the RNA network which is crucial to 
understand the underlying mechanisms of genetic network. 
In future work, we will continue to focus on improving 
the accuracy of oncomiRNA detection through integrating 
significance tests, literature mining and network prediction 
with including more data resources and also involving 
machine learning methods modify the MARS method. 

MATERIALS AND METHODS

Flowchart

Figure 1 is a flowchart of the present study. After 
a comprehensive analysis of miRNA expression in 
cancerous and normal tissue samples, the results were 
compared with the miRNAs in HMDD 2.0 and the Infer 
microRNA-disease associations. Finally, we identified the 
best DE miRNA detection method among the six statistical 
significance tests/R packages.

Source data and sequence expression analysis

In this study, we selected five deep sequencing 
miRNA datasets from The Cancer Genome Atlas 
(TCGA) pilot project (https://tcga-data.nci.nih.gov/
tcga/). All of these data were sequenced by the BCGSC 
(IlluminaHiSeq_miRNAseq) sequencing platform. HMDD 
2.0 database collects DE miRNAs in various cancer types 
which were validated by biological experiments. However, 
many of the cancer types in HMDD 2.0 have not collected 
sufficiently experimentally validated miRNAs, only 5 
cancer types not only collect more than 50 validated DE 
miRNAs in HMDD 2.0, included the miRNA sequences of 
breast invasive carcinoma (BRCA), esophageal carcinoma 
(ESCA), lung adenocarcinoma (LUAD), pancreatic 
adenocarcinoma (PAAD) and thyroid carcinoma (THCA), 
but also have corresponding miRNAs in Infer microRNA-
disease association database. So in order to assure the 
statistical significance, we selected these 5 datasets 
(BRCA, ESCA, LUAD, PAAD and THCA) for further 
analysis. As the sample sizes differed between tumor and 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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normal samples, we randomly selected corresponding 
tumor samples with the same and similar characteristics 
(Table 1). 

After obtaining the miRNA expression profiles from 
TCGA (the original sequencing data had been subjected 
to mapping analysis), we analyzed the miRNAs through 
abovementioned statistical methods (t-test, Limma, 
DESeq, edgeR, LRT and MARS), and computed the 
corresponding P or Padj (the associated FDR (False 
Discovery Rate)) value of each miRNA in the five 
datasets. Results were deemed significant at the P or Padj 
= 0.05 level. 

Statistical comparison with HMDD 2.0 and Infer 
microRNA-disease association

If the P or Padj value was below 0.05, the miRNA 
expression between the cancer and normal samples was 
considered as statistically significant, and the miRNA was 
assumed as a DE miRNA in the tumor tissue. By varying 
P or Padj, we can vary the numbers of miRNAs that pass 
the hypothesis test.

All of the tested methods generated a P or Padj value 
for each miRNA in the miRNAs differential expression 
analysis. Therefore, the comparison between the miRNAs 
obtained from these six methods and those in HMDD 
2.0 database and Infer microRNA-disease association 
database can be regarded as a binary classification process. 
Here, the predicted outputs are the miRNAs obtained from 
the significance tests/R packages, and the true classes are 
the miRNAs of the corresponding cancers in HMDD 2.0 
and Infer microRNA-disease association. The matrix so 
constructed is the basis of many common metrics (Table 2)

The performance of a binary classification could 
be characterized by two basic measurements; the recall 
rate and precision rate. However, these measurements are 
of limited usefulness due to their single-valued feature 
[58], we instead computed the True Positive Rate (TPR) 
and False Positive Rate (FPR), then plotted the ROC, 
which could be quantified by the AUC. In biomedical 
applications, the ROC is commonly used to judge the 
performance of a discriminant across varying decision 
thresholds [59, 60], and it has become increasingly 
important in the classification of unequally distributed 
categories, since its unique attributes can handle unequal 
costs incurred by classification errors [59, 60]. Thus, the 
ROC could provide a better metric than the accuracy 
measure in certain classifiers [61, 62]. In the binary 
classification of our DE miRNA analysis, we specified 
a threshold for the obtained outcome, such as 0.01, and 
assigned respectively all instances above and below this 
value as negative (no differential expression) and positive 
(differential expression). Increasing the threshold to 0.05 
will increase the number of true positive instances, and 

thereby the proportion of true positives among all positive 
instances (the true positive rate, or TPR) increases. 
However, a higher threshold also classifies more negative 
instances as positive, increasing the false positive rate 
(FPR). The AUC of the ROC is another indicator of the 
classifier performance [63, 64]. The TPR and FPR are 
respectively calculated as:

, (1)

, (2)
Where True Positive (TP) and False Positive (FP) 

denote the numbers of positive and negative samples that 
are classified as positive, respectively, and True Negative 
(TN) and False Negative (FN) represent the corresponding 
values of the negative samples.

Because the AUC is a portion of a unit square area, 
its value always lies in the range 0-1.0. Another important 
statistical property of AUC is that the value equals the 
probability that the classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative 
instance. A higher AUC shifts the ROC toward the upper-
left of the square, indicating higher performance of 
the classifier [60]. As the miRNAs in HMDD 2.0 were 
validated by biological experiments and those miRNAs 
in Infer microRNA-disease association were predicted 
by network, we must assign a weighting coefficient when 
considering the true classes in an integrated manner. Here, 
we applied a simple linear function. Specifically, we 
modified the TP and FN by introducing a parameter k: 

, (3)

 , (4)
In Eqs. (3) and (4), sum1 and sum2 are the sums of 

the miRNAs appearing in HMDD 2.0 (correctly classified 
positives in HMDD 2.0) and Infer microRNA-disease 
association (correctly classified positives in the Infer 
database), respectively, and sum3 is the total sum of the 
miRNAs obtained by all methods.

As the miRNAs obtained from Infer microRNA-
disease association might not be associated with cancers, 
they should be weighted less heavily than those in HMDD 
2.0, whose associations with cancer are confirmed. Hence, 
the k-value was varied as 0.5 ≤ k ≤ 1
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