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ABSTRACT
There are significant inter-individual differences in the levels of gene expression. 

Through modulation of gene expression, cis-acting variants represent an important 
source of phenotypic variation. Consequently, cis-regulatory SNPs associated with 
differential allelic expression are functional candidates for further investigation as 
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INTRODUCTION

Breast cancer is a complex disease with a strong 
heritable component. Great efforts have been made during 
the last decades to elucidate the underlying etiology of 
this disease. Three classes of breast cancer susceptibility 
alleles with different levels of risk and prevalence in the 
population are now recognized. High-risk alleles such 
as BRCA1 [1, 2], BRCA2 [3, 4] and TP53 [5] explain 
approximately 20% of the inherited susceptibility, 
intermediate-risk alleles in DNA-repair genes increase 
this proportion by ~5% [6-18], and common lower-risk 
alleles, of which approximately 100 have been identified 
to date through genome-wide association studies 
(GWAS), replication and custom genotyping efforts, 
explain approximately 16% of the risk [19-41]. Recent 
evidence suggests that a substantial fraction of the residual 
aggregation could be explicable by other common variants 
not yet identified [35, 40]. 

Global analysis of genome-wide association study 
(GWAS) data has shown that the large majority of common 
variants associated with susceptibility to cancer lie in 
non-coding regions, and are presumed to mediate risk 
through regulation of gene expression [42, 43]. Indeed, 
variations in gene expression occur commonly in the 
human genome, playing a key role in human phenotypic 
variability [44-46]. Studies of allelic imbalances in 
expression indicate that allele-specific differences among 
transcripts within an individual can affect up to 30% of 
loci and, at the population level, ~30% of expressed genes 
show evidence of cis-regulation by common polymorphic 
alleles [47]. Recent evidence has also suggested that 
differences in gene expression play a critical role in the 
underlying phenotypic variation associated with many 
complex genetic diseases [48]. A recent report performed 
expression quantitative trait loci (cis-eQTL) analyses 
for mRNA expression in five tumor types (breast, colon, 

kidney, lung and prostate) and tested 149 known cancer 
risk loci for eQTL effects [49]. They observed that 42 of 
these risk loci were significantly associated with eQTLs 
in at least one gene within 500 kb, eight of which were 
breast cancer risk loci [49]. Furthermore, a recent study 
has shown that close to half of the known risk alleles for 
estrogen receptor (ER)-positive breast cancer are eQTLs 
acting upon major determinants of gene expression in 
tumors [50]. These results suggest that additional cancer 
susceptibility loci may be identified through studying 
genetic variants affecting regulation of gene expression.

In the current study, we performed a breast cancer 
association study of 313 genetic variants showing 
evidence of association with differential allelic expression 
(DAE) selected from 175 genes involved in cancer 
etiology. These included genes involved in DNA repair 
(homologous recombination (HR) and DNA interstrand 
crosslink (ICL) repair), interacting and/or modulating 
BRCA1 and BRCA2 cellular functions, cell cycle control, 
centrosome amplification and AURKA interactions, 
apoptosis, ubiquitination, known tumor suppressors and 
mitotic and other kinases, as well as sex steroid action and 
mammographic density. We used genotype data derived 
from the iCOGS (Collaborative Oncological Gene-
environment Study) custom array [35] to investigate the 
role of these variants on breast cancer risk. 

RESULTS

Overall and subtype-specific breast cancer risk 
association analyses

For the one hundred seventy-five selected genes 
involved in cancer-related pathways, we identified a set of 
355 genetic variants showing evidence of association with 

disease-causing variants. To investigate whether common variants associated with 
differential allelic expression were involved in breast cancer susceptibility, a list of 
genes was established on the basis of their involvement in cancer related pathways 
and/or mechanisms. Thereafter, using data from a genome-wide map of allelic 
expression associated SNPs, 313 genetic variants were selected and their association 
with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 
controls of European ancestry ascertained from 41 studies participating in the Breast 
Cancer Association Consortium. The associations were evaluated with overall breast 
cancer risk and with estrogen receptor negative and positive disease. One novel breast 
cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 
5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several 
genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and 
DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal 
Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting 
protein involved in DNA damage response and double-strand break (DSB) repair. 
Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated 
with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), 
explaining about 20%, 14% and 1%, respectively of the variance in expression of 
these genes in breast carcinomas.
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DAE (see S1 Table for complete list of genes and SNPs). 
Of the 355 SNPs originally selected, 313 (representing 
227 independent SNPs with pairwise r2 < 0.1) were 
successfully genotyped. Thirty-two variants were excluded 
because of low Illumina design scores, and eleven SNPs 
were excluded because of low call-rates and/or evidence 
of deviation from Hardy Weinberg Equilibrium (P-value 
< 10-7), respectively. Eighty-two SNPs were originally 
submitted to be included on the iCOGS array but were 
replaced with surrogates in the final design of the array. 
Association results with breast cancer risk for all 313 
SNPs are presented in S2 Table.

Thirteen SNPs from ten different loci were 
associated with overall breast cancer risk (P < 10-2) (Table 
1). Of these, three SNPs, namely rs11099601, rs656040 
and rs738200, had associations with an increased overall 
risk of breast cancer that reached P < 10-4 (approximate 
significance cut-off after Bonferroni correction, given 
313 tests). No significant evidence of heterogeneity 
was observed among odds ratios (ORs) for these SNPs 
among studies (I2 and P-values are given in S1 Figure). 
The minor alleles of rs11099601 at 4q21 (OR = 1.05, P 
= 5.6x10-6), rs656040 at 11q13 (OR = 1.05, P = 1.52 x10-

5), and rs738200 at 22q12.1 (OR = 1.09, P = 5.32x10-5) 

were associated with increased overall risk of the disease. 
rs11099601 was associated with both ER-positive (P = 
5.22x10-6) and ER-negative (P = 4.08x10-4) breast cancer 
risk (P for difference 0.93) while rs656040 and rs738200 
appeared primarily associated with ER-positive disease (P 
= 5.96x10-5 and P = 7.21x10-6, respectively), although the 
difference between ER-positive and ER-negative disease 
was not statistically significant for these two latter SNPs 
(P for difference 0.096 and 0.242, respectively). Of these 
three SNPs, only variant rs110099601 represents a novel 
low penetrance breast cancer susceptibility locus. The 
two other variants, (rs656040 at 11q13 and rs738200 at 
22q12.1) which were not known to be associated with 
breast cancer risk at the time the current study was 
designed, were identified through the main analyses of the 
iCOGS array. rs656040 is located on 11q13 in the 3’-UTR 
region of the SNX32 gene, approximately 6.8Kb upstream 
of MUS81, and is associated with differential allelic 
expression of this latter gene (S2 Figure). rs656040 is 
partially correlated with rs3903072 (r2 = 0.38), which was 
previously identified as associated with breast cancer risk 
at P < 10-8 in the combined GWAS and iCOGS analysis 
reported in Michailidou et al. [35]. Similarly, variant 
rs738200, located on locus 22q12 in the tetratricopeptide 

Table 1: Associations with breast cancer risk for SNPs showing evidence of differential allelic expression (overall p 
<0.01)

a Chromosome
b Build 37 position
c Major/minor allele, based on the forward strand and minor allele frequency in Europeans
d Mean minor allele frequency over all European controls in iCOGS
e Per-allele OR for the minor allele relative to the major allele
f One-degree-of-freedom P-value
 SNPs highlighted in bold are those with associations for overall breast cancer risk reaching p<10-4 (significance cut-off after 
Bonferroni correction)



Oncotarget80145www.impactjournals.com/oncotarget

Figure 1: Regional plots of breast cancer risk association at 4q21. Regional plot of association result, recombination hotspots 
and LD for the 4q21: 84,132,874-84,631,193 loci. The index SNP rs11099601 is plotted as a blue triangle. Directly genotyped SNPs are 
represented as triangles and imputed SNPs (r2 > 0.3, MAF > 0.02) are represented as circles. The LD (r2) for the index SNP with each SNP 
was computed based on European ancestry subjects included in the 1000 Genome Mar 2012 EUR. Pairwise r2 values are plotted using a 
red scale, where white and red signify r2 = 0 and 1, respectively. P-values were from the single-marker analysis based on logistic regression 
models after adjusted for age, study sites and the first six principal components plus one additional principal component for the LMBC in 
analyses of data from European descendants. SNPs are plotted according to their chromosomal position: physical locations are based on 
GRCh37/hg19. Gene annotation was based on the NCBI RefSeq genes from the UCSC Genome Browser.



Oncotarget80146www.impactjournals.com/oncotarget

repeat domain 28 gene (TTC28), falls within a 610 
kb interval (Build 37 coordinates chr22: 28,314,612-
28,928,858) on chromosome 22 recently shown to be 
associated with breast cancer risk (smallest P = 8.2×10−22, 
for rs62237573). This interval lies approximately 100 kb 
centromeric to CHEK2, and further analysis showed that 
the associated SNPs were correlated with the deleterious 
CHEK2 variant c.1100delC and adjustment for this variant 
suggested the signal is driven by CHEK2 c.1100delC [40]. 
rs738200 was genotyped as a surrogate to our originally 
selected SNP for this locus (rs9620797), and therefore no 
allelic expression data were available for this SNP.

All variants associated with overall breast cancer 
risk with P < 10-2 included in Table 1 were also evaluated 
for association with breast cancer risk in BRCA1 and 
BRCA2 mutation carriers within the Consortium of 
Investigators of Modifiers of BRCA1 and BRCA2 
(CIMBA) in a total of 15 252 BRCA1 and 8 211 BRCA2 
carriers. However, none of the SNPs showed associations 
with breast cancer risk, including rs11099601, which had 
a P-value of 0.89 and 0.78 in BRCA1 and BRCA2 carriers 
respectively.

rs11099601 lies on 4q21 in a region containing 
numerous genes including FAM175A (ABRAXAS), 
HELQ and MRPS18C. It was selected on the basis of 
its association with differential allelic expression in 
FAM175A (see S2 Figure). In order to further map the 
novel association at this locus, we imputed genotype 
data for 2,456 common variants across a 500 kb region 
centered on rs11099601 (chr4: 84,132,874-84,631,193 
from GRCh37/hg19) using the March 2012 release of the 
1000 Genomes Project as a reference panel. Subsequent 
association analysis for overall breast cancer risk revealed 
that rs11099601 was located in a region of approximately 
135 kb exhibiting strong LD (Figure 1). SNP rs11099601 
remained one of the most strongly associated SNPs, along 
with three other perfectly correlated imputed SNPs (r2 = 
1.0), namely rs4235062 (P = 2.40x10-6), rs6838225 (P 
= 3.70x10-6) and rs13142756 (P = 4x10-6) (Figure1) (S3 
Table). 88 SNPs were strongly correlated with rs11099601 
(r2 > 0.8; S4 Table) and hence not distinguishable as 
potential causal variants on the basis of association data 
alone. 

Functional annotation of locus 4q21

In order to identify potential candidate causal 
variants at the 4q21 locus, we overlaid the associated 
variants with publicly available functional annotations. 
The analysis was performed on the subset of 88 variants 
strongly correlated with the lead SNP, rs11099601 (r2 > 
0.8). We first performed analyses using RegulomeDB 
(http://www.regulomedb.org) in order to obtain a predicted 
score of functionality for the set of variants. Interestingly, 
variant rs11099601 was one of three variants with the 
highest scores, along with rs1494961 and rs6535481. The 

corresponding RegulomeDB score (1f) (S4 Table) suggests 
that these variants are likely to affect transcription factor 
binding and to be linked to expression of a target gene. 
The scores for the other three strongest associated SNPs, 
namely rs4235062, rs6838225 and rs13142756, were not 
suggestive of functionality (S4 Table - for a description of 
the RegulomeDB scoring scheme and referenced datatypes 
refer to http://www.regulomedb.org). Five other highly 
correlated SNPs (rs10008742, rs6844460, rs7691492, 
rs526064, rs813298), however, also had high scores 
(2b), albeit lower than that of the lead SNP rs11099601, 
indicative of likely affecting transcription factor binding.

We then analysed ENCODE chromatin biofeatures, 
namely DNase I hypersensitivity, chromatin state 
segmentation by HMM (chromHMM) and histone 
modifications of epigenetic markers H3K4, H3K9 and 
H3K27 in all breast cell lines available in ENCODE, 
including breast myoepithelial cells, HMEC mammary 
cell line, and breast cancer cell line MCF-7. Analysis of 
these biofeatures revealed an overlap between H3K9Ac, 
a histone mark associated with active promoters, and our 
candidate variant, rs11099601 in breast myoepithelial 
cells. Further analysis of other genotyped and imputed 
variants correlated with rs11099601, revealed that 
only rs6844460 (P = 4.2x10-6, r2 = 0.967) overlapped 
with several chromatin biofeatures in mammary cells. 
rs6844460, which is located within intron 1 of FAM175A, 
overlapped with a DNase hypersensitivity site in MCF-
7 cells, with H3K4me3 histone marks (associated with 
active promoters) in breast myoepithelial cells, HMEC 
and MCF-7 cell lines, with H3K9Ac histone marks in 
both breast myoepithelial cells and HMEC cells, and 
with H3K27Ac histone marks in HMEC. ChromHMM 
data also predicts that this variant lies within an active 
promoter region in breast cell lines (Figure 2A). Moreover, 
rs6844460 overlapped with a binding site for transcription 
factor Max (MYC Associated Factor X) in MCF7 cells.

In order to identify potential target genes, we 
analysed enhancer-promoter interactions using ChiA-
PET data for CCCTC-binding factor (CTCF) and DNA 
polymerase II (PolII) in MCF-7 breast tumour derived 
cells. Multiple, dense, chromosomal interactions were 
observed in ChiA-PET data for PolII across most of 
the entire locus, especially in the region encompassing 
rs11099601, in the vicinity of the promoter regions of 
HELQ, MRPS18C and FAM175A genes. ChiA-PET data 
for CTCF in MCF-7 cells showed fewer interactions, none 
of which encompassed variant rs11099601. Similarly Hi-C 
data revealed few interactions in HMEC cells, none of 
which included our top candidate SNP (Figure 2B).

Lastly, although super-enhancers mapped to the 
4q21 locus in HMEC mammary cells, none overlapped 
with our top candidate SNPs (Figure 2C). Predicted 
enhancer-promoter interactions were observed with the 
promoters of AGPAT9, COQ2, HELQ and MRPS18C 
genes in HMEC cells. However amongst these, only 
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Figure 2: Functional annotation of the 4q21 locus. A. Functional annotations using data from the ENCODE and NIH Roadmap 
Epigenomics projects. From top to bottom, epigenetic signals evaluated included DNase clusters in MCF7 and HMEC cells, chromatin 
state segmentation by Hidden Markov Model (ChromHMM) in HMEC, breast myoepithelial cells (BMC) and Variant human mammary 
epithelial cells (vHMEC), where red represents an active promoter region, orange a strong enhancer and yellow a poised enhancer 
respectively (the detailed color scheme of chromatin states is described in the UCSC browser), histone modifications in MCF7, HMEC 
and BMC cell lines ; and overlap between candidate variants and Max binding site in MCF7 cells. All tracks were generated by the UCSC 
genome browser (hg 19). B. Long-range chromatin interactions. From top to bottom, ChIA-Pet interactions for PolII and CTCF in MCF7 
cells and Hi-C interactions in HMEC cells. The ChIA-PET raw data available on GEO under the following accession (GSE63525.K56, 
GSE33664, GSE39495) were processed with the GenomicRanges package. C. Maps of mammary cell super-enhancer locations as defined 
in Hnisz et al. are shown in HMEC cells. Predicted enhancer-promoter determined interactions in MCF7 and HMEC cells, as defined by the 
integrated method for predicting enhancer targets (IM-PET) are shown. D. RNA-Seq data from MCF7 and HMEC cell lines. The value of 
the RNA-Seq analysis corresponds to the mean RPM value for FAM175A, MRPS18C, HELQ, AGPAT9, HSPE and COQ2 from four HMEC 
and 19 MCF7 datasets, respectively. The annotation was obtained through the Bioconductor annotation package TxDb.Hsapiens.UCSC.
hg19.knownGene. The tracks have been generated using ggplot2 and ggbio library in R.



Oncotarget80148www.impactjournals.com/oncotarget

interactions with MRPS18C overlapped with our top 
putative candidate functional variants (rs11099601 and 
rs6844460) (Figure 2C).

Analysis of RNASeq data from ENCODE showed 
high levels of expression for MRPS18C in both HMEC 
and MCF-7 while HELQ and FAM175A are expressed at 
very low levels in these cell lines (Figure 2D). However, 
as illustrated in Figure 3, analysis of TCGA breast cancer 
RNAseq data in primary tumor (n = 765), adjacent normal 
(n = 93) and metastasis (n = 6) showed that HELQ, 
FAM175A and HPSE, but not MRPS18C, were all found 
to be differentially expressed between normal breast and 
tumor tissue (P = 1x10-45, P = 6.6x10-31, P = 7.3x10-10, 
and P = 0.28, respectively, as determined by a Kruskal-
Wallis rank sum test). Further analysis comparing the 
tumor expression levels of these genes between the 5 
molecular subtypes of breast cancer, namely: Luminal A, 
Luminal B, Her2-enriched, Basal-like and Normal-like, 
showed that while HELQ and FAM175A expression levels 
are decreased in Basal-like tumors (P = 1.3x10-18 and P 
= 3.5x10-36, respectively (Kruskal-Wallis test), MRPS18C 
and HPSE expression were found to be up regulated in 
Basal-like carcinomas (P = 1.2x10-5, P = 1.6x10-33) (Figure 
4). 

Expression quantitative trait locus analysis 
(eQTL) in breast tissue

In order to identify associations between candidate 
variants and expression levels of genes within the 4q21 
region, we analyzed all genotyped and imputed SNPs 
within a 1Mb region centered around the most significant 
SNP (rs11099601), in normal and breast cancer tissue. 
Significant eQTL associations were observed for numerous 
SNPs in the region in both normal breast and tumors 
(Figure 5). In the breast cancer tissue dataset BC241, the 
most strongly expression-associated SNP at this locus 
was our top risk SNP rs11099601, which was associated 
with expression levels of HELQ, (with P = 8.28x10-14 
and r2 = 0.20, where the r2 value indicates the percentage 
of variance in HELQ expression levels explained by 
rs11099601) (Figure 6A). A decrease in HELQ expression 
levels was observed with increasing copy number of the 
rs11099601 (C) allele (Figure 6A). Multiple SNPs within 
the 1 Mb region were also associated with expression 
of HELQ, all of which were correlated with rs11099601 
(r2 > 0.3). No significant eQTLs were observed between 
rs11099601 and other genes in this region, namely COQ2, 
HPSE, MRPS18C, FAM175A, or AGPAT9, using data from 
the BC241 sample set. 

In the TCGA BC765 breast cancer dataset, HELQ 

Figure 3: Boxplots representing differential expression of HELQ (A), MRPS18C (B), FAM175A (C) and HPSE (D) in 
breast tissues. Differential expression between normal breast and tumor tissue was determined by a Kruskal-Wallis rank sum test using 
TCGA breast cancer RNAseq data from primary tumor, metastasis and adjacent normal. Horizontal bars indicate mean expression levels.
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expression levels were not associated with rs11099601 (P 
= 0.34 and r2 = 0.00099) or with any other SNPs in this 
region. Weak associations were only observed between 
rs11099601 and expression levels for MRPS18C (P = 
1.25x10-4 and r2 = 0.02) (Figure 6D) and FAM175A (P = 
3.83x10-3 and r2 = 0.011) (Figure6F).

Further isoform-specific analysis was performed 
in the TCGA BC765 breast cancer dataset. In contrast 
to the expression data generated from the Norwegian 
sample sets, which were obtained using expression 
arrays, expression data from the TCGA datasets used in 
the current study were obtained by RNA-Sequencing, 
thus allowing further analysis of different gene isoforms. 
Thus, in the BC765 dataset, these analyses resulted in 
the identification of significant eQTLs for an isoform of 
HELQ (uc101ikb) (P = 2.71x10-11 and r2 = 0.056) (Figure 
6B), corresponding to a long isoform of the gene with 
one exon lacking. These analyses also further revealed 
highly significant associations for the MRPS18C isoform 
uc003hor (P = 1.94x10-27 and r2 = 0.143) (Figure 6E).

Similar to what is observed in the TCGA BC765 
breast cancer dataset, gene-normalized analysis in the 
TCGA normal breast tissue dataset NB93 did not reveal 
associations between HELQ expression levels and 
rs11099601 while isoform-normalized analysis showed 

associations with HELQ isoform uc101ikb (P = 9.90x10-

05 and r2 = 0.153) (Figure 6C).
In normal breast tissue from the NBCS (NB116), 

the strongest eQTLs were observed for HPSE, where 
rs11099601 was associated with a decrease in HPSE 
expression levels (P = 4.57x10-3, r2 = 0.0645) (Figure 6G). 
rs11099601 was not associated with the expression levels 
of any other genes in this region.

Although associations were detected between 
several genes and our top risk SNP in the different 
sample sets, a lack of consistency in eQTL associations 
between the two breast cancer sample sets was observed. 
It should be noted that expression data were obtained 
trough different approaches as previously mentioned, 
i.e expression array (44K Agilent array) for BC241 
and RNA-Sequencing for BC765 (Illumina RNAseq). 
Moreover, there are differences in the overall PAM50 
subtype distributions between these two sample sets. As 
depicted in S3 Figure, differences are noted mainly in the 
distribution of Luminal A (28.22% in BC241 compared to 
49.33% for BC765), Her2 (15.35% in BC241 compared 
to 8.16% for BC765) and Normal-like (14.52% in BC241 
compared to 2.41% for BC765) subtypes. Expression 
levels of HELQ, and other candidate genes, were shown 
to vary significantly between these molecular subtypes 

Figure 4: Boxplots representing expression levels of HELQ (A), MRPS18C (B), FAM175A (C) and HPSE (D) in the 5 
molecular subtypes (PAM50 classifier) of breast primary tumors. Differential expression between normal breast and tumor tissue 
was determined by a Kruskal-Wallis rank sum test. Analysis was performed using TCGA breast cancer RNAseq data from five molecular 
subtypes of breast primary tumors : Luminal A (LumA), Luminal B (LumB), Human epidermal growth factor receptor 2-enriched (Her2), 
Basal-like (Basal) and Normal-like (Normal). Horizontal bars indicate mean expression levels.
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(Figure 4) and thus a different distribution of these 
subtypes between the two sample sets could explain the 
underlying lack of replication in the eQTL analyses. 

DISCUSSION

It is well recognized that genetic variants located in 
genomic regions that regulate gene expression are major 
causes of human diversity and may also be important 
susceptibility factors for complex diseases and traits. 
Indeed, it has been shown that approximately 30% of 
expressed genes show evidence of cis-regulation by 
common polymorphic alleles [47]. Moreover, in recent 
years, GWAS have identified thousands of variants 
associated with various diseases/traits, ~90% of which 
localize outside of known protein-coding regions [42, 43], 
implicating a regulatory role for these variants. 

In the present study, we have assessed the 
association with breast cancer risk of 313 regulatory SNPs 
in genes involved in the etiology of cancer (see S1 Table 
for complete list of SNPs and genes), in 46,451 breast 
cancer cases and 42,599 controls of European ancestry. 
Using this approach, we identified rs11099601 (OR = 1.05, 

P = 5.6x10-6), a novel breast cancer susceptibility locus 
on chromosome 4q21. Analysis of imputed SNPs across a 
500Kb region surrounding rs11099601 revealed that this 
variant remained one of the strongest risk signals, tagging 
a set of 76 strongly correlated SNPs across a 135Kb LD 
block containing several genes, including COQ2, HPSE, 
HELQ, MRPS18C, FAM175A (ABRAXAS) and AGPAT9.

Functional annotation of the 4q21 locus with 
ENCODE biofeatures in mammary cell lines pointed 
toward rs11099601 as one of the most likely functional 
variants in this region. eQTL analysis showed significant 
eQTLs in normal and breast cancer tissue for several 
variants in the 4q21 region, including rs11099601. The 
strongest associations for rs11099601 and expression 
were observed in breast carcinomas for MRPS18C and 
HELQ and explain approximately 14% and 20% of their 
expression variance, respectively (Figure 6). Other genes 
whose expression correlated with this eQTL included 
HPSE and FAM175A.

These genes represent interesting candidates for 
further analyses related to breast cancer susceptibility. 
Indeed, analysis of TCGA breast cancer RNAseq data 
showed that HELQ, FAM175A and HPSE were found to 
be differentially expressed between normal breast and 

Figure 5: Manhattan plots of association for the eQTL results at the 4q21 locus in normal breast and breast cancer 
tissue. Y-axis shows -log10(P-value) while x-axis shows physical position. Circles of various shades of blue represent breast cancer risk 
associations for all breast cancer tumors, ER+ and ER- tumors. Other colored circles represent eQTL results in the following datasets: 
normal breast (NB93, NB116) in various shades of green, breast carcinomas in pink (BC241) and red (BC765). Risk association results as 
well as eQTL results are for both imputed and genotyped SNPs for all datasets.
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tumor tissue and further analysis showed that HELQ and 
FAM175A expression levels are significantly decreased in 
basal-like tumors. 

HELQ is a single-stranded DNA-dependent 
ATPase and DNA helicase involved in DNA repair and 
signaling in response to ICL. Genetic disruption of 
HELQ in human cells enhances cellular sensitivity and 

chromosome radial formation by the ICL-inducing agent 
mitomycin C (MMC). After treatment with MMC, reduced 
phosphorylation of CHK1 occurs in knockout cells and 
accumulation of G2/M cells is reduced [51]. Furthermore, 
it was recently shown that Helq helicase-deficient mice 
exhibit subfertility, germ cell attrition, ICL sensitivity, and 
tumor predisposition [52]. A meta-analysis of 22 GWAS, 

Figure 6: Boxplots representing the most significant eQTL results for variant rs11099601 in normal breast tissue and 
breast tumor datasets. Box plots represent the expression levels of the indicated transcripts with respect to the rs11099601 genotypes. 
Expression levels are shown for A. HELQ in breast carcinoma BC241 dataset, B. HELQ in breast carcinoma BC765 dataset normalized 
per isoform, C. HELQ in normal breast NB93 dataset normalized by gene isoform, D. MRPS18C in breast carcinoma BC765 dataset, E. 
MRPS18C in breast carcinoma BC765 dataset normalized per isoform, F. FAM175A in breast carcinoma BC765 dataset and G. HSPE in 
normal breast NB116 dataset. Horizontal bars indicate mean expression level per genotype. r2 values indicate the percentage of variance in 
respective gene expression levels explained by rs11099601.
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as well as a recent GWAS involving ~70,000 women 
performed in the BCAC, have both identified rs4693089, 
located in an intron of HELQ and perfectly correlated 
with rs11099601, as associated with age at natural 
menopause (p = 2.4x10-19 and p = 9.2x10-23, respectively) 
[53, 54]. Moreover, a GWAS of upper aero-digestive tract 
cancers conducted by the International Head and Neck 
Cancer Epidemiology Consortium identified rs1494961, 
a missense mutation V306I in the second exon of HELQ 
gene perfectly correlated with rs11099601 (r2 = 1), to be 
associated with increased risk of upper aero-digestive 
tract cancers in their combined analysis (P = 1x10-8) [55]. 
Another study by the same group analyzed the role of 
DNA repair pathways in upper aero-digestive tract cancers 
[56]. This study showed that the polymerase pathway, 
to which the HELQ gene belongs, is the only pathway 
significant for all upper aero-digestive tract cancer sites 
combined and that this association is entirely explained 
by the association with rs1494961 (P = 2.65×10-4) [56]. 
Finally, a recent study reported the mutation screening of 
HELQ in 185 Finnish breast or ovarian cancer families 
[57]. This study did not provide evidence for a role of 
HELQ in breast cancer susceptibility in the Finnish 
population, but analyses in other populations and larger 
datasets are needed to further assess its role in breast 
cancer predisposition [57], especially with regard to the 
involvement of rare variants. In the current study, we 
have shown HELQ to be differentially expressed between 
normal breast and tumor tissue and to be significantly 
down regulated in basal-like breast tumors compared 
to ER positive tumors, suggesting that altered gene 
expression levels, potentially mediated through the effect 
of regulatory variants, could be one of the mechanisms 
contributing to breast cancer susceptibility. Previous 
studies have provided some evidence, in known breast 
cancer susceptibility genes BRCA1 [58] and BRCA2 [59], 
of genetic variants associated with allelic expression 
differences which could affect the risk of breast cancer in 
mutation carriers through altering expression levels of the 
wild-type allele. Also, a recent study showed suggestive 
associations between DAE associated variants located in 
breast cancer susceptibility chromosomal regions, and 
prognosis (ZNF331 and CHRAC1) [60]. 

Another gene in this locus, FAM175A, is involved 
in DNA damage response and double-strand break (DSB) 
repair. It is a component of the BRCA1-A complex, acting 
as a central scaffold protein that assembles the various 
components of the complex and mediates the recruitment 
of BRCA1 [61-63]. Further evidence rendering FAM175A/
ABRAXAS an interesting candidate gene is a recent report 
showing that both homozygous and heterozygous Abraxas 
knockout mice exhibited decreased survival and increased 
tumor incidence [64]. This study also showed that somatic 
deletion of the ABRAXAS locus on chromosome 4q21 is 
found in human ovarian and breast cancers (especially 
basal subtype), and this loss is well correlated with reduced 

ABRAXAS expression in these cancers [64]. Moreover, 
Solyom et al. reported a novel germline ABRAXAS 
mutation (p.Arg361Gln) in Northern Finnish breast cancer 
families which affects the nuclear localization of the 
protein and consequently reduces the formation of BRCA1 
and Rap80 foci at DNA damage sites, leading to ionizing 
radiation hypersensitivity of cells and partially impairing 
the G2/M checkpoint [65]. Our group has also, in parallel 
to the present study, conducted a population-based case-
control mutation screening study of the coding exons 
and exon/intron boundaries of ABRAXAS in 1250 breast 
cancer cases and 1250 controls from the Breast Cancer 
Family Registry, including individuals from different 
ethnic groups such as Caucasian, Latino, East Asian and 
African-American ancestry. Although this study did not 
reveal evidence of association of the identified variants 
with breast cancer risk, two variants were identified and 
were shown to diminish the phosphorylation of γ-H2AX, 
an important biomarker of DNA double-strand breaks 
[66].

Lastly, MRPS18C encodes a protein that belongs 
to the ribosomal protein S18P family, which includes 
three proteins (MRPS18A, MRPS18B, MRPS18C) 
having significant sequence similarity to bacterial S18 
proteins. MRPS18C is part of the small subunit (28S) 
of the mitochondrial ribosome involved in oxidative 
phosphorylation and thus the role of this protein in 
breast cancer susceptibility is unclear. It was reported 
that MRPS18B (MRPS18-2) binds to RB [67] and 
prevents the formation of the E2F1-RB complex that 
leads to elevated levels of free E2F1 protein in the 
nucleus and the subsequent promotion of S phase entry 
[68]. Overexpression of human MRPS18B caused 
transformation of terminally differentiated rat skin 
fibroblasts and transformed cells became tumorigenic in 
SCID (severe combined immunodeficiency) mice [69]. 
These transformed cells showed anchorage-independent 
growth and loss of contact inhibition; they expressed 
epithelial markers, showed increased telomerase activity, 
disturbance of the cell cycle, and chromosomal instability, 
leading the authors to suggest that MRPS18B is a newly 
identified oncoprotein [69]. Although these results suggest 
that MRPS18B may be involved in carcinogenesis, there is 
currently no evidence showing that MRPS18C is involved 
in processes other than oxidative phosphorylation.

CONCLUSION

Phenotypic differences among cell types, 
individuals, and populations are determined by variation 
in gene expression, a substantial proportion of which is 
driven by genetic variants residing in regulatory elements 
near the affected genes. Analysis of variants associated 
with differential allelic expression has allowed us to 
identify a novel locus on chromosome 4q21 associated 
with breast cancer risk. Subsequent tissue specific eQTL 
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analyses have confirmed significant eQTLs for this locus 
in both normal and breast cancer tissue. 

At the time of study design, data on differential 
allelic expression was not available in breast tissue, 
leading us to perform the selection of candidate variants 
in other cell types such as lymphoblastoid cell lines, 
fibroblasts and monocytes. This constitutes a limitation 
of our study which may explain why some of the 
associations observed between the selected variants and 
DAE in these cells types were not replicated in the eQTL 
analyses performed in normal breast and/or breast cancer 
cells. Indeed, SNPs associated with variation in gene 
expression have now been mapped for a variety of tissues, 
highlighting their tissue dependent properties and the need 
for expression profiling of a diverse panel of cell types.

Hence, further functional characterization of the 
4q21 locus, and replication in a larger dataset, would 
be relevant to provide more robust evidence of the 
involvement of this region in breast cancer susceptibility 
as well as identify the gene(s) and biological mechanism(s) 
underlying this susceptibility. 

MATERIALS AND METHODS

Sample selection

A total of 46,451 breast cancer cases and 42,599 
controls of European ancestry were included from 41 
studies participating in the Breast Cancer Association 
Consortium (BCAC). Studies were population-based 
or hospital-based case-control studies, including nested 
case-control studies within cohorts. Some studies selected 
cases by age, or oversampled cases with a family history 
(S5 Table). Studies provided ~2% of samples in duplicate 
for quality control purposes (see below). Study subjects 
were recruited on protocols approved by the Institutional 
Review Boards at each participating institution, and all 
subjects provided written informed consent.

SNP selection

SNP selection was performed by first identifying 
a list of genes of interest, which was determined by the 
involvement of these genes in cancer related pathways 
and/or mechanisms. The list of genes was established by 
researching published results and/or by using available 
public databases such as the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (http://www.genome.jp/
kegg/). Thereafter, DEA SNPs falling within these gene 
regions were identified using previously reported data on 
allelic expression cis-associations, derived using: 1) the 
llumina Human1M-duo BeadChip for lymphoblastoid cell 
lines from Caucasians (CEU population) (n = 53) [47], 
the Illumina Human 1M Omni-quad for primary skin 

fibroblasts derived from Caucasian donors (n = 62) [49, 
70], and the Illumina Infinium II assay with Human 1.2 M 
Duo custom BeadChips v1 for human primary monocytes 
(n = 188) [71]. Briefly, 1000 Genomes project data was 
used as a reference set (release 1000G Phase I v3) for 
the imputation of genotypes from HapMap individuals. 
Untyped markers were inferred using algorithms 
implemented in IMPUTE2. The unrelated fibroblast panel 
consisted of 31 parent-offspring trios, where the genotypes 
of offspring were used to allow for accurate phasing. 
Mapping of each allelic expression trait was carried out 
by first normalizing allelic expression ratios at each SNP 
using a polynomial method [72] and then calculating 
averaged phased allelic expression scores across annotated 
transcripts, followed by correlation of these scores to local 
(transcript +/-500 kb) SNP genotypes in fibroblasts as 
described earlier [70].

Three hundred fifty-five genetic variants were 
selected on the basis of evidence of association with 
DAE in 175 genes involved in cancer-related pathways as 
described above (see S1 Table for complete list of SNPs 
and genes). Following selection, SNPs were submitted for 
design and inclusion on a custom Illumina Infinium array 
(iCOGS), as part of a BCAC genotyping initiative (see 
Genotyping and Quality Control section below). After 
undergoing design and post-genotyping quality control, 
313 SNPs remained for analysis.

Genotyping and quality control

Genotyping was carried out as part of a 
collaboration between BCAC and three other consortia 
(the Collaborative Oncological Gene-environment Study, 
COGS). Full details of SNP selection, array design, 
genotyping and post-genotyping quality control (QC) 
have been published [35]. Briefly, three categories of 
SNPs were chosen for inclusion on the array: (i) SNPs 
selected on the basis of pooled GWAS data, (ii) SNPs 
selected for the fine-mapping of published risk loci and 
(iii) candidate SNPs selected on the basis of previous 
analyses or specific hypotheses. The 313 SNPs described 
in the current study were candidate SNPs selected on 
the basis of the hypothesis that regulatory variants are 
involved in breast cancer susceptibility. In general, only 
SNPs with an Illumina design score of 0.8 or greater were 
considered. SNPs were preferentially accepted if they had 
a design score of 1.1 (i.e. had previously been genotyped 
on an Illumina platform). If not, we sought SNPs with 
r2 = 1 with the selected SNP, and selected the SNP with 
the best design score. If no such SNP was available, we 
selected SNPs with r2 > 0.8 with the chosen SNP, and 
selected the SNP with the best design score. For the 
COGS project overall, genotyping of 211,155 SNPs in 
samples was conducted using a custom Illumina Infinium 
array (iCOGS) in four centers. Genotypes were called 
using Illumina’s proprietary GenCall algorithm. Standard 
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quality control measures were applied across all SNPs and 
all samples genotyped as part of the COGS project [35]. 
After quality control, genotype data were available for 48 
155 breast cancer cases and 43 612 controls, and call rates 
for all SNPs were > 95%.

Statistical analysis

Per-allele log-odds ratios (ORs) were estimated 
using logistic regression, adjusted for principal 
components and study, as described previously [35]. 
P-values were estimated using Wald test. For imputation, 
genotype data from 48,155 breast cancer cases and 
43,612 controls were used to estimate genotypes for other 
common variants across a 500 kb region on chromosome 4 
(chr4: 84,132,763-84,632,763 - NCBI build 37 assembly), 
with IMPUTE v.2.2 and the March 2012 release of the 
1,000 Genomes Project as reference panel. In all analyses, 
only SNPs with imputation information/accuracy r2 > 0.30 
were considered [40]. 

Linkage disequilibrium

LD values were computed using 118 independent 
individuals from the CEU population of the 1,000 
Genome dataset (v3, release 20110521, downloaded from 
1000genomes.ebi.ac.uk on April 2013) [73]. The relevant 
subset was extracted from the raw data using VCFtools 
(v0.1.7) [74] and the paired r2 statistics were obtained for 
all target loci using PLINK! (v1.07) [75]. The linkage 
heatmaps and the association plots were produced on the 
R platform (v3.0) using the package LDheatmap [76].

Breast cancer association analyses performed in 
BRCA1 and BRCA2 mutation carriers

Associations with breast cancer risk were evaluated 
within a retrospective cohort framework, by modelling 
the retrospective likelihood of the observed genotypes 
conditional on the disease phenotype. These analyses are 
described in detail elsewhere [77, 78].

Functional annotation

Two publicly available tools, RegulomeDB [79] and 
HaploReg V4 [80], were also used to evaluate candidate 
variants. For a full description of the RegulomeDB scoring 
scheme refer to (http://www.regulomedb.org). 

Publicly available genomic data was also used to 
annotate each SNP most strongly associated with breast 
cancer risk at locus 4q21 (for data sources refer to S6 
Table). The following regulatory features were obtained 
for breast cell types from ENCODE and NIH Roadmap 
Epigenomics data through the UCSC Genome Browser: 

DNase I hypersensitivity sites, Chromatin Hidden Markov 
Modelling (ChromHMM) states, histone modifications 
of epigenetic markers more specifically commonly 
used marks associated with enhancers (H3K4Me1 and 
H3K27Ac) and promoters (H3K4Me3 and H3K9Ac), and 
transcription factor ChiP-seq data.

To identify putative target genes, we examined 
potential functional chromatin interactions between distal 
and proximal regulatory transcription-factor binding sites 
and the promoters at the risk loci, using the Chromatin 
Interaction Analysis by Paired End Tag (ChiA-PET) 
and Genome conformation capture (Hi-C, 3C and 5C) 
datasets downloaded from GEO (for data sources refer to 
S6 Table). 

Maps of active mammary super-enhancer regions 
in HMEC cells were obtained from Hnisz et al. [81]. 
Predicted enhancer-promoter determined interactions 
were obtained from the integrated method for predicting 
enhancer targets (IM-PET) described in He et al. [82].

RNA-Seq data from ENCODE was used to evaluate 
the expression of exons across the 4q21 locus in HMEC 
and MCF7 cell lines. For HMEC and MCF7, alignment 
files from 4 and 19 expression datasets respectively were 
downloaded from ENCODE using a rest API wrapper 
(ENCODExplorer R package) [83] in the bam format and 
processed using metagene R packages [84] to normalize in 
Reads per Millions aligned, and to convert in coverages. 

eQTL analyses

The influence of germline genetic variations on 
gene expression was assessed using a linear regression 
model, as implemented in the R library eMAP (http://
www.bios.unc.edu/~weisun/software.htm). An additive 
effect was assumed by modeling subjects’ copy number 
of the rare allele, i.e. 0, 1 or 2 for a given genotype. Only 
relationships in cis (defined as those in which the SNP 
resided less than 1 MB up or down from the center of 
the transcript) were investigated. eQTL analyses were 
performed on both normal breast and tumor tissues, and 
included the following materials: Normal Breast: NB116 
(n = 116) consists of samples from women of Caucasian 
ancestry recruited in Oslo, comprising expression data 
from normal breast biopsies (n = 73), reduction plastic 
surgery (n = 34) and adjacent normal (n = 9) (adjacent 
to tumour). Genotyping was performed using the iCOGS 
SNP array, and gene expression levels were measured 
with Agilent 44K [85, 86]. NB93 is the Caucasian 
fraction of the TCGA dataset for which adjacent normal 
breast expression data were available, n = 93 for the data 
normalized per gene, and n = 94 for the data normalized 
per isoform. Birdseed processed germline genotype 
data from the Affy6 SNP array were obtained from the 
TCGA dbGAP data portal [87]. Gene expression levels 
were assayed by RNA sequencing, RSEM (RNAseq by 
Expectation-Maximization, [88] normalized both per gene 
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and per isoform, as obtained from the TCGA consortium 
[87]. The data was log2 transformed, and unexpressed 
genes were excluded prior to eQTL analysis. Breast 
carcinomas: BC241, is a Caucasian sample set recruited 
from Oslo, n = 241. The sample set includes all stages 
of breast cancer, and genotypes were obtained with the 
iCOGS SNP array, and mRNA expression data was from 
the Agilent 44K array [86, 89]. BC765 comprises samples 
from the TCGA breast cancer sample set of Caucasian 
origin [87], n = 765 for the data normalized per gene, and 
n = 766 for the data normalized per isoform. Genotyping 
platform was Affy6, and gene expression was measured 
using RNA sequencing. See NB93 for a more detailed 
description. For all sample sets, the genotyping data 
was processed as follows: SNPs with call rates < 0.95 or 
minor allele frequencies < 0.05 were excluded, as were 
SNPs out of Hardy Weinberg equilibrium with P < 10-13. 
All samples with a call rate below 80% were excluded. 
Identity by state was computed using the R GenABEL 
package [90], and closely related samples with IBS > 
0.95 were removed. The SNP and sample filtration criteria 
were applied iteratively until all samples and SNPs met the 
stated thresholds.
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