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ABSTRACT:
Mutations of the PI3K, TOR, iNOS, and NF-κB genes increase lifespan of model 

organisms and reduce the risk of some aging-associated diseases. We studied the 
effects of inhibitors of PI3K (wortmannin), TOR (rapamycin), iNOS (1400W), NF-
κB (pyrrolidin dithiocarbamate and QNZ), and the combined effects of inhibitors: 
PI3K (wortmannin) and TOR (rapamycin), NF-κB (pyrrolidin dithiocarbamates) and 
PI3K (wortmannin), NF-κB (pyrrolidine dithiocarbamates) and TOR (rapamycin) on 
Drosophila melanogaster lifespan and quality of life (locomotor activity and fertility). 
Our data demonstrate that pharmacological inhibition of PI3K, TOR, NF-κB, and iNOS 
increases lifespan of Drosophila without decreasing quality of life. The greatest 
lifespan expanding effect was achieved by a combination of rapamycin (5 μM) and 
wortmannin (5 μM) (by 23.4%). The bioinformatic analysis (KEGG, REACTOME.PATH, 
DOLite, and GO.BP) showed the greatest aging-suppressor activity of rapamycin, 
consistent with experimental data.

INTRODUCTION

According to Build 16 of GenAge database (http://
genomics.senescence.info/genes/), it is known more 
than 1700 genes associated with longevity in model 
organisms, and their number is constantly increasing 
[1]. Among the most known evolutionarily conserved 
longevity genes are TOR (target of rapamycin) [2-4], 
PI3K (phosphatidylinositide 3-kinase) [5], NF-κB (nuclear 
factor-kappaB) [6, 7] and iNOS (inducible nitric oxide 
synthase) [8, 9]. Therefore, we selected the products of 
these genes as targets for pharmacological inhibition. 
Indeed, pharmacological inhibition of the activity TOR 
[10-19], PI3K [12, 20, 21], NF-κB [22] and iNOS 
[23] increases the lifespan in yeasts, worms, flies and 
mammals. 

However despite the significant progress the effects 
of low concentrations of inhibitors of longevity genes 
products, sex-specific effects, and combination effects 
of different inhibitors remain unclear. We suggest that 

application of compounds in low concentrations may 
reduce the risk of side effects. Another problem is that 
drugs may demonstrate gender-specific efficiencies 
and sex-dependent side effects [24, 25]. The aging is 
a complex process that involves many intracellular 
signaling pathways, we made the assumption that the 
most pronounced effect on lifespan will have a combined 
inhibition of aging-associated signaling pathways.

The aging process is associated with hyperactivation 
of TOR and PI3K [26], as well as NF-κB [27] and iNOS 
[28, 29], leading to cellular senescence, age-related 
pathologies, and oncogenesis. Therefore, many anticancer 
agents are inhibitors of the same enzymes as aging-
suppressors, including TOR [26, 30-32], PI3K [33], NF-
κB [34] and iNOS [35]. This is entirely consistent with the 
theory that considers cellular senescence as age-dependent 
hyperactivation of pro-aging signaling pathways [26, 36].

Thus, the molecular mechanisms of aging and 
carcinogenesis are interrelated. In particular, long-living 
mammals, such as the naked mole rat, mole rat and the 
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whale, have reduced cancer incidence [37-40]. Another 
long-living mammal - microbat Myotis brandtii, as 
we found out, has multiple extra copies of the onco-
suppressor gene FBXO31, and probably also resistant 
to tumorigenesis [41]. Bioinformatic analysis of the 
relationship between longevity- and cancer-associated 
genes/proteins revealed remarkable trend from yeast 
to humans: tumor suppressors orthologs are associated 
with lifespan extension, whereas the proto-oncogenes 
orthologs are associated with reduced lifespan [42]. For 
example, pro-longevity function is appropriate for tumor 
suppressors FOXO3a [43], PTEN [44], p53 [45], however 
gerontogenes PI3K and mTOR promote oncogenesis [46, 
47].

Most of the 9 age-related disorders (genomic 
instability, telomere attrition, epigenetic alterations, loss of 
proteostasis, deregulated nutrient sensing, mitochondrial 
dysfunction, cellular senescence, stem cell exhaustion, 
and altered intercellular communication), as well as one 
additional - chronic inflammation may be potentially 
corrected by pharmacological interventions [48].

Phenotypic screening of compounds that increase 
model organisms lifespan by regulating the activity of 

gerontogenes products and using of gerontogenes products 
as targets for molecular modeling techniques (computer-
aided drug design) could be the first steps for the 
development of new drugs for treating aging-associated 
diseases, including various cancers [49]. 

The purpose of this study was to examine aging-
suppressor properties of specific kinase inhibitors TOR 
(rapamycin), phosphoinositide 3-kinase (wortmannin) 
(PDTC and QNZ) and inducible NO synthase iNOS 
(1400W) on the lifespan, locomotor activity and fertility 
of Drosophila melanogaster.

RESULTS

Effects on the lifespan and life quality

In this paper, we conducted a comprehensive 
study of aging-suppressor properties of 5 inhibitors and 
their combinations in several nano and micro molar 
concentrations. The targets of studied inhibitors are the 
products of  gerontogenes  such as TOR, PI3K, NF-κB 

Table 1: Effect of the TOR, PI3K and NF-κB inhibitors on the lifespan, fertility and locomotor 
activity Drosophila melanogaster.

Compound 
(concentration) Target

Lifespan LA F
♂ ♀

♂ ♀ ♀
М 90% n М 90% n

Rapa (0.005 µМ) TOR ↑ (+14%)** ↑(+4.7%) 344 ↑(+12%)** ↑(+4.8%) 363 ↑ ↑ =
Wm (0.005 µМ) PI3K ↑(+8%) ↑(+4.7%) 312 ↑(+8%) ↑(+4.8%) 355 ↑ = =
Wm (5 µМ) PI3K ↑ (+5%)* ↑ (+2%) 259 ↓ (-8.2%)* ↓ (-1.7%) 252 ↑ = =
PDTC (1.25 µМ) NF-κB ↑(+6%)* ↑(+2%) 437 ↓(-2%)* ↓(-5%)* 451 ↑ = =
PDTC (12.5 µМ) NF-κB ↑(+7%)** ↑(+6%)** 448 ↓(-2%)* = 433 = = ↑
PDTC (125 µМ) NF-κB ↑(+10%)* ↓(-3.1%)* 322 ↑(+12%)* ↑(+4.8%) 361 = = =
QNZ (0.03 µМ) NF-κB ↑(+2%) ↑(+4%) 297 ↓(-15%)** ↓(-4%)** 298 = ↑ ↑
QNZ (0.3 µМ) NF-κB = ↑(+8%) 279 ↓(-4%) ↓(-4%)** 290 ↓ = ↑
QNZ (3 µМ) NF-κB ↑(+2%) = 282 ↓(-4%)* ↓(-4%)** 312 ↑ = ↑
1400W (0.03 µМ) iNOS ↑(+3%)** ↑(+13%)** 396 ↓(-5%)** ↓(-5%)** 437 = ↓ ↑
1400W (0.3 µМ) iNOS = = 419 ↓(-2%)** ↓(-5%)** 453 ↑ ↑ ↑
1400W (3 µМ) iNOS ↑(+7%)** ↑(+5%)* 428 ↓(-2%)** ↓(-4%)** 449 ↑ ↓ =
Rapa (5 µМ) + Wm 
(5 µМ) TOR + PI3K ↑ (+2.4%)* ↑ (+8%) 372 ↑ (+14.6%)* ↑ (+23.4%)* 400 - - -

PDTC (125 µМ) + 
Rapa (0.005 µМ)

NF-κB +  
TOR ↑(+10%)** ↓(-3.1%) 305 ↑(+10%)* ↑(+11.3%)** 370 ↑ ↑ =

PDTC (125 µМ) + 
Wm (0.005 µМ)

NF-κB +  
PI3K ↑(+10%)* ↑(+4.7%) 304 ↑(+12%)* ↑(+8.1%)* 342 ↑ ↑ =

Legend: «↑» – increasing, «↓» - decreasing, "=" – no effect "-" – not studied, M - median lifespan, 90% - the age of  90% mortality, n 
- sample size, LA - locomotor activity, F – fertility, *p<0.05, **p<0.01 – Gehan–Breslow–Wilcoxon and Mantel–Cox tests for M, Wang-
Allison test for 90%.
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and iNOS.
Exposure to rapamycin (0.005 µМ) caused a 

statistically significant (p <0.01) increase in median 
lifespan in males (by 14%) and females (by 12%) (Table 
1, Fig. 1). Rapamycin in concentration of 0.005 µМ 
increased activity  in negative geotaxis test in males, and 
significantly increased fertility of females (Table 1, Fig. 
2 and S1).

Wortmannin in concentration of 5 µМ increased the 
median lifespan of males by 5% (p <0.05), but decreased 
in females by 8.2% (p <0.05). In concentration of 0.005 
µМ wortmannin had no statistically significant effect on 
lifespan (Table 1, Fig. S2). Treatment with wortmannin in 
a concentration of 5 µМ decreased spontaneous locomotor 
activity in females during the second half of life, however, 
however the end of life activity in treated females was 
higher than in the control. Wortmannin in concentrations 
of 0.005 and 5 µМ increased the reproductive period in 
females (Table 1, Fig. S3). Wortmannin in concentration 
of 0.005 µМ and 5 µМ in males and 5 µМ in females 
significantly increased activity in the test on negative 
geotaxis (Table 1, Fig. 3 and S4). 

In males treatment with PDTC in concentrations of 
1.25, 12.5 and 125 µМ resulted in increasing of median 
lifespan by 6-10% (p<0.01) and increasing of the age 
of 90% mortality by 2 and 6 %, respectively (Table 1). 

In females PDTC in concentration of 125 µМ increased 
median lifespan by 12% (Table 1, Fig. S5). PDTC in 
concentration of 12.5 µМ increased female fertility (Table 
1, Fig. S6). PDTC in a concentration of 1.25 µМ increased 
the locomotor activity of males (Table 1, Fig. S7). 
However in concentrations of 12.5 and 125 µМ PDTC did 
not affect the locomotor activity of males (Table 1, Fig. 4 
and S8).

Application of QNZ did not affect the lifespan of 
males in all studied concentrations (3, 0.3, 0.03 µМ). In 
females QNZ induced decreasing of lifespan (Table 1, Fig. 
S9). QNZ in concentrations of 3, 0.3, 0.03 µМ increased 
female fecundity (Table 1, Fig. 5). QNZ in concentration 
of 0.03 µМ increased the locomotor activity of females 
(Fig. 6) and in the concentration of 3 µМ activity of the 
males (Fig. 7). Treatnent with QNZ in concentration of 0.3 
µМ did not affect activity of males or females (Fig. S10) 

In males 1400W in concentrations of 0.03 and 3 
µМ and  significantly increased the median lifespan (by 
3 and 7%, respectively) and the age of 90% mortality 
(by 13 and 5%, respectively). In females we observed a 
decrease in median lifespan (by 2-5%) and the age of 90% 
mortality (by 4-5%) when exposed to 1400W at different 
concentrations (Table 1, Fig. S11). In concentrations 
of 0.3 and 3 0.03 µМ 1400W increased the locomotor 
activity of the males (Fig. 8, S12 and S13). In females 

Figure 1: Effect of rapamycin (0.005 µМ) on lifespan Drosophila melanogaster. * р< 0.001, ** р< 0.05 (Kolmogorov-
Smirnov test).

Figure 2: Effect of rapamycin (0.005 µМ) on fertility of females Drosophila melanogaster. * р< 0.001, ** р< 0.05 (χ2 test).
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locomotor activity increased only when exposed to 1400W 
in concentration of 0.3 µМ (Fig. 8, S12 and S13). 1400W 
in concentration of 0.3 µМ increased female fertility 
during the first half of life, and in concentration of 0.03 
µМ increased fertility throughout life (Table 1, Fig. 9).

PI3-kinase, TOR and NF-κB transcription factor 
– are the elements of different intracellular signaling 
pathways the impact of which may increase the lifespan 
of model organisms. We hypothesized that the combined 
application of substances that inhibit different targets will 

Figure 3: Effect of wortmannin (0.005 µМ) on locomotor activity Drosophila melanogaster. (А, B) spontaneous activity. (C, 
D) negative geotaksis test. * р< 0.001, ** р< 0.05 (χ2 test).

Figure 4: Effect of PDTC (125 µМ) on locomotor activity Drosophila melanogaster. (А, B) spontaneous activity. (C, D) 
negative geotaksis test. * р< 0.001, ** р< 0.05 (χ2 test).
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Figure 5: Effect of QNZ (0.03, 0.3, 3 µМ) on fertility of females Drosophila melanogaster. * р< 0.001, ** р< 0.05 (χ2 test).

Figure 6: Effect of QNZ (0.03 µМ) on locomotor activity Drosophila melanogaster. (А, B) spontaneous activity. (C, D) 
negative geotaksis test. * р< 0.001, ** р< 0.05 (χ2 test).
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Figure 7: Effect of QNZ (3 µМ) on locomotor activity Drosophila melanogaster. (А, B) spontaneous activity. (C, D) negative 
geotaksis test. * р< 0.001, ** р< 0.05 (χ2 test).

Figure 8: Effect of 1400W (0.3 µМ) on locomotor activity Drosophila melanogaster. (А, B) spontaneous activity. (C, D) 
negative geotaksis test. * р< 0.001, ** р< 0.05 (χ2 test).
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lead to a greater increase in lifespan than the application 
of each agent substance. 

We examined 2 types of mixtures with a high 
concentration of PDTC (125 µМ) and low concentrations 
of wortmannin and rapamycin (0.005 µМ) as well as 

mixture with the same concentrations of wortmannin and 
rapamycin (5 µМ).

As a result of combined application of wortmannin 
(5 µМ) and rapamycin (5 µМ) we observed the increase 
in the median lifespan by 14.6%, and the age of 90% 

Figure 10: Effect of combined use of rapamycin (5 µМ) and wortmannin (5 µМ) on lifespan Drosophila melanogaster. 
* р< 0.001, ** р< 0.05 (Kolmogorov-Smirnov test).

Figure 9: Effect of 1400W (0.03, 0.3, 3 µМ) on fertility of females Drosophila melanogaster. * р< 0.001, ** р< 0.05 (χ2 test).

Figure 11: Effect of combined use of PDTC (125 µМ) and rapamycin (0.005 µМ) on lifespan Drosophila melanogaster. 
* р< 0.001, ** р< 0.05 (Kolmogorov-Smirnov test).
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mortality by  23.4% in females. The median lifespan of 
males increased by 2.4% (Table 1, Fig. 10).

A mixture of PDTC (125 µМ) with wortmannin 
(0.005 µМ), and PDTC (125 µМ) with rapamycin (0.005 
µМ) increased the median lifespan in males (by 10%) and 
females (by 10 and 12%, respectively). We also observed 
an increase in the age of 90% mortality in females by 
11.3% and 8.1% respectively (Table 1, Fig. 11 and 12). 
The study of age-related dynamics of female fertility 
revealed no adverse effects of mixtures of PDTC (125 
µМ) with rapamycin (5 µМ) and PDTC (125 µМ) with 
wortmannin (5 µМ) (Table 1, Fig. S14). When flies were 
exposed to mixtures of PDTC (125 µМ) with wortmannin 
(5 µМ) and PDTC (125 µМ) with rapamycin (5 µМ) we 
observed a significant increase in locomotor activity of 
males and females in the test on negative geotaxis and 

increasing of spontaneous activity in females (Table 1, 
Fig. 13 and 14).

Bioinformatic analysis

Bioinformatic analysis of the target of rapamycin, 
wortmannin, PDTC and 1400W, retrieved from the 
ChEMBL database, is presented in Table. 2 and 3. 
According to KEGG, rapamycin affects the activity 
of largest number of targets (84) and aging-associated 
signaling pathways (10) if compare with other studied 
substances (Table 2). Wortmannin and PDTC activated  38 
and 32 targets, 6 and 4 signaling pathways, respectively. 
12 targets and 9 aging associated pathways were activated 
by 1400W (Table 2). The MAPK and PI3K-Akt signaling 

Figure 12: Effect of combined use of PDTC (125 µМ) and wortmannin (0.005 µМ) on lifespan Drosophila melanogaster. 
* р< 0.001, ** р< 0.05 (Kolmogorov-Smirnov test).

Figure 13: Effect of combined use of PDTC (125 µМ) and rapamycin (0.005 µМ) on locomotor activity Drosophila 
melanogaster. (А, B) spontaneous activity. (C, D) negative geotaksis test. * р< 0.001, ** р< 0.05 (χ2 test).
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pathways were activated by all substances. Caffeine 
metabolism pathway is activated after exposure to 
rapamycin, PDTC and 1400W. Signaling pathways Hippo, 
Hedgehog, Natural killer cell mediated cytotoxicity, 
and TGF-β are common to rapamycin and wortmannin, 
whereas Circadian rhythm - for rapamycin and PDTC.

According to REACTOME.PATH the strongest 
pharmacological activity was revealed for rapamycin, 
PDTC and W1400. It should be noted the effect of 
rapamycin, PDTC and 1400W on the activity of 
proteasome, NF-κB and ornithine decarboxylase,  as 
well as on the regulation of endocytosis, cell cycle and 
mitosis in humans (Table 3). Treatment of rapamycin and 
wortmannin affect the glyoxylate metabolism and cellular 
uptake of glucose in humans (Table 3). In Drosophila 
wortmannin affect the metabolism of DNA and RNA (the 
catabolism of purines and pyrimidines) (Table 3). DOLite 
identified associations between wortmannin, rapamycin 
and different tumor types, which characterizes them as 
antitumor drugs (Table 3). GO.BP shows the effect of 
rapamycin, PDTC and 1400W on cell metabolism, DNA 
damage response and cell cycle control (Table 3).

DISCUSSION

Effects on the lifespan and life quality

According to our analysis of the literature is being 
discovered more than 100 pharmaceutical substances that 

can prolong the lifespan of model organisms. However, 
the increase of lifespan with aging-suppressor substances 
rarely exceeds 40% [50, 51], which greatly less than 
effects (up to 1000% or more) caused by mutations in 
the regulatory genes, which are the  key switches of cell 
program to maintain growth or resist to stress, such as gene 
of PI3Ksubunit  [52]. We proceeded on the assumption 
that a more effective aging-suppressor drugs may be 
substances with specificity to the products of genes that 
control the evolutionarily conserved mechanisms of aging, 
mutations in which have the greatest effect on lifespan 
and the aging rate. In this regard, we investigated the 
aging-suppressive properties of specific pharmacological 
inhibitors of  aging associated gene products TOR, PI3K, 
NF-κB and iNOS. To date, in Drosophila melanogaster 
described homologs of TOR [53], PI3K [54] and NF-κB 
orthologs Relish [55] and Dorsal [56]. Drosophila NO 
synthase gene dNOS encodes a protein that bears a strong 
resemblance to all three NOS isoforms of mammalshas 
[57]. The presence of target proteins in Drosophila make 
possible to use it as a model for pharmacological screening 
of substances with the proposed aging-suppressor activity.

In this study, we revealed the aging-suppressive 
effect of rapamycin in nanomolar concentrations (0.005 
µМ), in which it significantly increases the median 
lifespan of females (by 14%) and females (by 12%) and 
improves quality of life in test on locomotor activity. 
Previously it was shown that pharmacological inhibition 
of TOR prolongs lifespan in yeast [58], fruit flies [11, 12] 
and mice [16, 18]. It  has been shown the aging-suppressor 

Figure 14: Effect of combined use of PDTC (125 µМ) and wortmannin (0.005 µМ) on locomotor activity Drosophila 
melanogaster. (А, B) spontaneous activity. (C, D) negative geotaksis test. * р< 0.001, ** р< 0.05 (χ2 test).
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activity of rapamycin in concentrations of 10, 20 and 40 
nM in yeast [58]. In Drosophila the lifespan increasing 
effect of rapamycin was accompanied by resistance to 
oxidative stress and starvation [11], and mice observed 
increase in locomotor activity aging males [18]. However, 
in Drosophila the lifespan increasing effect of rapamycin 
in concentrations of 50, 200 and 400 μM was accompanied 
by a significant reduction in fertility [11]. This data 
demonstrate that lifespan increasing effect of rapamycin 
in micromolar concentrations may be due to redistribution 
of resources from reproduction to longevity and stress 
resistance. We found out that in nanomolar concentrations 
rapamycin increase lifespan without negative effect on 
fertility. 

Specific inhibition of PI3K by wortmannin in 

concentration of 0.005 µМ do not lead to a statistically 
significant effect on lifespan. Wortmannin at a 
concentration of 5 µМ increased the median lifespan of 
males (by 5%), but decreaseв it in females (by 8.2%). 
At the same time wortmannin in concentrations of 0.005 
µМ and resulted in increased locomotor activity in males. 
The wortmannin toxicity that was observed in females in 
a relatively high concentration 5 µМ may be related to 
its irreversible binding of the drug to essential proteins 
other than PI 3-kinase (wortmannin is known to bind 
irreversibly to its target [59]).

We have previously shown that wortmannin (0.5 
µМ) as well as another PI3K inhibitor  LY294002 (5 µМ) 
increased the median and maximal lifespan in Drosophila 
males and females [12, 21]. Additionally, treatment with 

Table 2: Genes and aging-associated intracellular signaling pathways, that are activated by the 
study drugs in Homo sapiens.
Drug Genes* Longevity pathway IDs**

Rapamycin

GMNN RORC SMAD3 CYP3A4 CYP2D6 
CYP2C9 CYP2C19 CYP1A2 DRD2 NR3C1 
OPRM1 ESR1 carbonic anhydrase II/ CA 
II PTGS2 ACHE MC4R ESR2 PTSG1 
ADRB2 DRD3 SLC6A3 CHRM1 GSK3B 
NET ABCB1 CHRM3 FLT1 DRD4 CHRM2 
CHEK1 ADRB3 ADRB1 CCR5 CCR2 
MAOA HRH1 MAPKAPK2 MC3R TBXAS1 
MC5R NPY1R CHRM4 ROCK2 PLK1 
ACHE AVPR1A NOS2 CHRM5 AKR1B1 
MAP2K1 MAP2K1 CHEK2 CYSLTR1 
HRH2 NPY2R CCR4 PTPRC MAPKAPK5 
CTSG USP1 CYP2A6 ALOX15 ACE 
MAPKAPK3 MELK PAK4 CALCR VIPR1 
LTC4S CSK BCHE SGK1 HIPK2 MYLK 
HIPK3 SLCO1B1 MAPK15 ROCK2 AKT1 
PDCD4

Circadian rhythm
Caffeine metabolism
Hippo signaling pathway
Hedgehog signaling pathway
TGF-beta signaling pathway
PI3K-Akt signaling pathway
MAPK signaling pathway
Natural killer cell mediated cytotoxicity
mTOR signaling pathway
Jak-STAT signaling pathway

Wortmannin

GMNN POLI MAPT NFE2L2 SMAD3 PIN1 
VDR IMPA1 GLS RGS4 APOBEC3G WRN 
GSK3B ERG RECQL CHEK1 MAPKAPK2 
ROCK2 PLK1 ACHE MAP2K1 CHEK2 
MAPKAPK5 MAPKAPK3 MELK PAK4 
CSK BCHE SGK1 HSP90AA1 PLK3 HIPK2 
MYLK PLK2 HIPK3 MAPK15 MYLK 
ROCK2

MAPK signaling pathway
TGF-beta signaling pathway
Hippo signaling pathway
PI3K-Akt signaling pathway
Hedgehog signaling pathway
Natural killer cell mediated cytotoxicity 

PDTC

GMNN ATAD5 POLI MAPT CBX1 
NFE2L2 RORC TP53 TXNRD1 CYP3A4 
LMNA SMN2 CYP2D6 CYP2C9 VDR 
CYP2C19 CYP1A2 NPSR1 APOBEC3F 
RGS4 APOBEC3G carbonic anhydrase II/ 
CA II ALOX15 CHRM1 NFKB1 PMP22 
MPHOSPH8 RELA

MAPK signaling pathway
Circadian rhythm
PI3K-Akt signaling pathway
Caffeine metabolism

1400W
FTL CYP3A4 SMN2 CYP2D6 CYP2C9 
CYP2C19 CYP1A2 POLK CHRM1 NOS2 
NFKB1 NOS2

Caffeine metabolism
PI3K-Akt signaling pathway
MAPK signaling pathway
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Table 3: The pharmacological effects of drugs.
IDs Rapamycin Wortmannin PDTC 1400W

REACTOME.PATH

Homo sapiens: Activation of NF-κB in B Cells 4 (1.12e-05) 0 (1) 3 (2.43e-05) 3 (8.73e-06)
Homo sapiens: Cross-presentation of soluble exogenous 
antigens (endosomes) 3 (0.000144) 0 (1) 3 (9.27e-06) 3 (3.32e-06)

Homo sapiens: Regulation of activated PAK-2p34 by 
proteasome mediated degradation 3 (0.000144) 0 (1) 3 (9.27e-06) 3 (3.32e-06)

Homo sapiens: Regulation of ornithine decarboxylase (ODC) 3 (0.000153) 0 (1) 3 (9.87e-06) 3 (3.53e-06)
Homo sapiens: Ubiquitin-dependent degradation of Cyclin D 3 (0.000153) 0 (1) 3 (9.87e-06) 3 (3.53e-06)
Homo sapiens: Ubiquitin-dependent degradation of Cyclin D1 3 (0.000153) 0 (1) 3 (9.87e-06) 3 (3.53e-06)
Homo sapiens: CDK-mediated phosphorylation and removal 
of Cdc6 3 (0.000153) 0 (1) 3 (9.87e-06) 3 (3.53e-06)

Homo sapiens: Vpu mediated degradation of CD4 3 (0.000162) 0 (1) 3 (1.05e-05) 3 (3.76e-06)
Human immunodeficiency virus 1: Vpu mediated degradation 
of CD4 3 (0.000183) 0 (1) 3 (1.18e-05) 3 (4.23e-06)

Homo sapiens: p53-Independent G1/S DNA damage 
checkpoint 3 (0.000183) 0 (1) 3 (1.18e-05) 3 (4.23e-06)

Homo sapiens: p53-Independent DNA Damage Response 1 (p > 0.05) 2 (0.00166) 0 (1) 0 (1)
Homo sapiens: Translocation of GLUT4 to the Plasma 
Membrane 1 (0.0107) 1 (0.00439) 0 (1) 0 (1)

Homo sapiens: Glyoxylate metabolism 1 (0.0128) 1 (0.00527) 0 (1) 0 (1)
Danio rerio: Interleukin receptor SHC signaling 1 (0.017) 1 (0.00702) 0 (1) 0 (1)
Drosophila melanogaster: Purine catabolism 0 (1) 1 (0.00877) 0 (1) 0 (1)
Homo sapiens: GP1b-IX-V activation signalling 1 (0.0212) 1 (0.00877) 0 (1) 0 (1)
Danio rerio: Interleukin-6 signaling 1 (0.0233) 1 (0.00964) 0 (1) 0 (1)
Drosophila melanogaster: Pyrimidine catabolism 1 (p > 0.05) 2 (0.0129) 0 (1) 0 (1)
Homo sapiens: Membrane Trafficking 1 (0.0317) 1 (0.0131) 0 (1) 0 (1)
Danio rerio: Prolactin receptor signaling 0 (1) 1 (0.014) 1 (0.0147) 0 (1)
Mus musculus: N-Glycan antennae elongation 4 (0.000214) 0 (1) 4 (4.89e-06) 3 (8.37e-05)
Homo sapiens: Mitotic G1-G1/S phases 3 (0.000183) 0 (1) 3 (1.18e-05) 3 (4.23e-06)
DOLite
Skin disease 2 (0.00295) 1 (0.025) 0 (1) 0 (1)
Skin tumor 1 (0.0172) 1 (0.00518) 0 (1) 0 (1)
Histiocytosis 1 (0.022) 0 (1) 0 (1) 0 (1)
Conduct disorder 1 (0.0244) 0 (1) 0 (1) 0 (1)
Dermatitis 2 (0.034) 0 (1) 0 (1) 0 (1)
Infiltrating cancer 1 (0.0341) 0 (1) 0 (1) 0 (1)
Pervasive development disorder 1 (0.0365) 0 (1) 0 (1) 0 (1)
Sarcoma 1 (0.0412) 1 (0.0125) 0 (1) 0 (1)
Skin cancer 1 (0.046) 1 (0.014) 0 (1) 0 (1)
Testicular dysfunction 1 (p > 0.05) 0 (1) 1 (0.0121) 0 (1)
Spondylarthropathies 0 (1) 0 (1) 0 (1) 1 (0.00222)
Arthritis 0 (1) 0 (1) 0 (1) 1 (0.016)
GO.BP
Regulation of cellular amino acid metabolic process 3 (0.000158) 0 (1) 3 (3.19e-06) 3 (2e-06)
DNA damage response, signal transduction by p53 class 
mediator resulting in cell cycle arrest 3 (0.000232) 0 (1) 3 (4.72e-06) 3 (2.96e-06)

Signal transduction involved in mitotic cell cycle checkpoint 3 (0.000232) 0 (1) 3 (4.72e-06) 3 (2.96e-06)
Signal transduction involved in mitotic cell cycle G1/S 
transition DNA damage checkpoint 3 (0.000232) 0 (1) 3 (4.72e-06) 3 (2.96e-06)

Signal transduction involved in mitotic cell cycle G1/S 
checkpoint 3 (0.000232) 0 (1) 3 (4.72e-06) 3 (2.96e-06)

Negative regulation of ubiquitin-protein ligase activity 
involved in mitotic cell cycle 3 (0.000242) 0 (1) 3 (4.94e-06) 3 (3.1e-06)
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wortmannin (5 µМ) and LY294002 (5, 100 µМ) resulted 
in an increase in survival of Drosophila male and female 
after acute exposure to ionizing radiation in a dose of 30 
Gy [60]. Thus, the lifespan effect of the PI3K inhibitors 
is concentration dependent and is apparently determined 
by involvement of this enzyme in maintaining of delicate 
balance between the development/reproduction on the one 
hand and stress/longevity on the other. In addition to the 
concentration dependence we observed the differences of 
PI3K inhibition effects in different sexes.

According to literature data, specific inhibition of 
PI3K by  LY294002 leads to increasing of lifespan in 
rotifers [61], induces dauer formation, thermotolerance 
and longevity  in nematodes [20]. Caenorhabditis elegans 
strains bearing homozygous nonsense mutations in the 
age-1 gene, which encodes the catalytic subunit of PI3K 
(PI3KCS), produce extremely long-lived progeny with 
nearly 10-fold extension of both median and maximum 
adult lifespan relative to N2DRM, a long-lived wild-
type stock into which the null mutant was outcrossed 
[52]. At the same time PI3K-null worms have prolonged 
developmental times, increased resistance to oxidative 
and electrophilic stresses [52]. The ablation of insulin-
like peptide-producing median neurosecretory cells in 
Drosophila brain leads to reduced fecundity, and reduced 
tolerance of heat and cold  [62]. However, ablated flies 
show an extension of median and maximal lifespan and 
increased resistance to oxidative stress and starvation [62].

In all variants of our experiments treatment by NF-
κB inhibitor PDTC (1.25, 12.5 and 125 µМ) increased 
the median lifespan of males (by 6-10%). PDTC in 
concentrations of 1.25 and 12.5 µМ decreased median 
lifespan of females by 2%, but in 125 µМ increased by 

12%. Treatment with QNZ (0.03, 0.3, 3 µM) did not 
affect the lifespan of males. In females, treatment with 
0.03, 0.3 and 3 µM of QNZ reduced median lifespan by 
4-15%. The differences in the effects of PDTC and QNZ 
may be associated with different molecular mechanisms 
of action of these compounds. While PDTC inhibits NF-
κB activation by preventing degradation I-κB [63, 64], 
QNZ inhibits the NF-κB at the transcriptional activity 
level [65]. Furthermore, PDTC has antioxidant and metal 
chelating properties [63, 64], which may enhance its 
aging-suppressive action.

Recent studies suggest that the NF-κB transcription 
factor controls age-dependent changes in inflammation 
genes expression. For example the increase of NF-κB 
dependent genes expression in human blood vessel 
endothelium with age is primarily linked to decreased 
IκB-mediated NF-κB inhibition [66]. With age expression 
of NF-κB dependent genes contributing to progression of 
atherosclerosis in rat glomeruli increases [67]. However, 
selective inhibition of NF-κB activity in blood vessel 
endothelial cells prevents atherosclerosis progression [68]. 
Genetic blockade of NF-κB in the skin of chronologically 
aged mice reverses the global gene expression program 
and tissue characteristics to those of young mice [69, 
70]. Chronic NF-κB mediated immune system activation 
enhanced pathogen resistance, however significantly 
reduced lifespan [71]. Extensive evidence has now 
emerged indicating a critical role for NF-κB in promoting 
oncogenic conversion and in facilitating later stage tumor 
properties such as metastasis [34]. Pharmacological 
inhibitors of NF-κB pathways often, but not always, 
suppress cancer growth [34]. Decrease of NF-κB activity 
level impedes progression of degenerative phenotype in 

Signal transduction involved in DNA integrity checkpoint 3 (0.000242) 0 (1) 3 (4.94e-06) 3 (3.1e-06)

Signal transduction involved in G1/S transition checkpoint 3 (0.000242) 0 (1) 3 (4.94e-06) 3 (3.1e-06)

Signal transduction involved in DNA damage checkpoint 3 (0.000242) 0 (1) 3 (4.94e-06) 3 (3.1e-06)

Regulation of cellular ketone metabolic process 4 (0.000249) 0 (1) 3 (8.22e-05) 3 (5.18e-05)

Establishment of protein localization to organelle 2 (p > 0.05) 3 (2.87e-05) 0 (1) 0 (1)
Cellular protein localization 3 (p > 0.05) 4 (8.85e-05) 0 (1) 0 (1)
Cellular macromolecule localization 3 (p > 0.05) 4 (9e-05) 0 (1) 0 (1)
Protein targeting to mitochondrion 1 (p > 0.05) 2 (0.000131) 0 (1) 0 (1)
Establishment of protein localization to mitochondrion 1 (p > 0.05) 2 (0.000156) 0 (1) 0 (1)
Protein localization to mitochondrion 1 (p > 0.05) 2 (0.000162) 0 (1) 0 (1)
Protein targeting 2 (p > 0.05) 3 (0.000334) 0 (1) 0 (1)

Oxalic acid secretion 1 (0.00183) 1 (0.000339) 0 (1) 0 (1)
Protein localization to organelle 2 (p > 0.05) 3 (0.000404) 0 (1) 0 (1)

Protein localization 3 (p > 0.05) 4 (0.000642) 1 (p > 0.05) 0 (1)

Signal transduction involved in cell cycle checkpoint 3 (0.000253) 0 (1) 3 (5.17e-06) 3 (3.24e-06)
Number of genes 75 35 26 11

Legend: «↑» - increasing, «↓» - decreasing, “=” – no effect, “-” - not studied, M - median lifespanl, 90% - age of 90% mortality; LA - locomotor activity; 
F - fertility; * p <0.05, ** p <0.01, Gehan–Breslow–Wilcoxon test and Mantel–Cox test for M and Wang-Allison test for 90%.
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mice with knocked out Sirt6 sirtuin gene that is involved 
in the base excision repair [72]. It is suggested that the 
most important homeostatic function of SIRT6 is in the 
prevention of NF-κB dependent gene overactivation via 
deacetylation of lysine 9 of the H3 histone (H3K9) on the 
promoters of NF-κB target genes, whereas overactivation 
of NF-κB promotes normal and accelerated aging [72]. 
Pharmacological inhibition of IκB kinase (IKK) leads to 
a delay of the development of age-related pathologies in 
mice with progeria, reduces the level of oxidative DNA 
damage and prevents stress-induced cellular senescence 
[73]. Recently it was revealed that IKK-β and NF-κB 
inhibit gonadotropin-releasing hormone (GnRH) to 
mediate ageing-related hypothalamic GnRH decline [27]. 
After age-dependent inhibition of IKK-β activation and 
NF-κB in the hypothalamus or in the brain of mice  delay 
the aging process and increase the lifespan (by 20%) [27]. 
Thus IKK-β and NF-κB mediate the programmatic role 
of hypothalamus in ageing development via immune-
neuroendocrine integration [27]. Overactivation of innate 
immune-response pathways in the brain is responsible for 
neurodegeneration [74]. In Drosophila neurodegeneration 
is dependent on the NF-κB transcription factor, Relish 
[74]. In our earlier studies it has been shown the lifespan 
increasing in Drosophila when exposed to PDTC in a 
concentration of 125 µМ [22].

The observed increase in lifespan in males and its 
decrease in females inhibiting iNOS with  (0.03, 0.3, 3 
µМ) may be due to the ambiguous role of this enzyme in 
aging and longevity. For example, iNOS gene knockout 
mice have reduced lifespan, but the increased activity of 
this gene leads to increased risk of cardiovascular diseases 
[75]. Pharmacological inhibition of iNOS leads to reduced 
risk of cardiovascular disease in rats [76]. Consequently, 
as overactivation well as complete suppression of iNOS 
lead to negative effects. Since females consume more 
food than males, they get more substance during lifetime 
[77]. This can lead to excessive inactivation of dNOS and 
negative effects on lifespan and locomotor activity. The 
lifespan decreasing in females may be caused by an up-
regulation of reproduction. Thus, it can be assumed that 
the lifespan effect of 1400W in different concentration 
was gender specific and associated with the amount of 
consumed substance and rate of reproduction.

Nitrosative stress is now considered as an important 
cause of physiological decline that characterizes the 
aging of many tissues [29, 78]. Age related changes in 
nitric oxide synthase activity and/or expression and the 
consequent changes in NO production and biological 
activity, apparently contribute to this reduction [29, 78]. 
Several recent studies suggest that NO and iNOS could 
be involved in aging-induced insulin resistance [79] as 
well as in cardiovascular, pulmonary, musculoskeletal 
neurological dysfunction, and cancer [78, 80]. It has 
been shown that iNOS activation can inhibit DNA 
repair pathways including direct DNA repair, base and 

nucleotide excision repair [80]. As it is well known DNA 
repair pathways play the crucial role in aging process 
and development of age-related pathologies [81]. Thus, 
genetic, pharmacological, and physiological iNOS 
inhibition may contribute to the combat against age-
related diseases and lifespan increasing. 

Since the aging is a complex process that involves 
many intracellular signaling pathways, we made the 
assumption that the most pronounced effect on longevity 
may be achieved by simultaneous inhibition of several 
aging-associated signaling pathways. According to our 
data, the combined effects on longevity of rapamycin 
(5 µМ) and wortmannin (5 µМ) and the combination 
of PDTC (125 µМ) with rapamycin (0.005 µМ) and 
wortmannin (0.005 µМ) is female-biased. In males, the 
combined application of substances increase lifespan no 
greater than each of the inhibitors tested separately. The 
gender difference of the observed effects may be due to 
the initially existing sex differences in drug metabolisms 
[25], stress resistanse [82] reproductive strategies [83].  
It is shown that combined treatment of nematodes by 
curcumin and thioflavin T did not demonstrate additive 
effect on the lifespan [84].

Bioinformatic analysis

Analysis of targets that are affected by drugs 
according KEGG shows, that compounds  affect MAPK 
and PI3K-Akt signaling pathway (all compounds), 
Caffeine metabolism (rapamycin, PDTC and 1400W) 
and Circadian rhythm pathways (rapamycin and PDTC) 
that are involved in lifespan control [5, 85, 86] and 
cancer development [87-89]. Rapamycin and wortmannin 
affected Hippo and Hedgehog that are tumor suppression 
and longevity associated pathways [90, 91].

REACTOME.PATH analysis showed that 
rapamycin, PDTC and 1400W influence such aging-
related processes such as activation of NF-κB, regulation 
of endocytosis, cell cycle and mitosis. Furthermore 
rapamycin, PDTC and 1400W affect regulation of 
ornithine decarboxylase, associated with aging and 
Alzheimer’s disease [92], lymphoma [93] and breast 
cancer [94]. Rapamycin and wortmannin affect the 
regulation of the cellular uptake of glucose and glyoxylate 
metabolism. Expression of the main glyoxylate enzyme is 
up-regulated in daf-2 and age-1 long-lived Caenorhabditis 
elegans mutants [95, 96]. Wortmannin affects the 
catabolism of purines and pyrimidines involved in the 
processes of aging through DNA and RNA metabolism, 
maintaining energy balance [97].

Analysis of gene-associated diseases by DOLite also 
reveals an association of rapamycin and wortmannin with 
genes involved in the molecular mechanisms of different 
types of cancer. Wortmannin is associated with skin tumor, 
while rapamycin with skin tumor, histiocytosis, infiltrating 
cancer, sarcoma. These data confirm the anti-cancer 
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properties of these aging-suppressor drugs and a close 
relationship between aging and carcinogenesis.

According to GO.BP analysis rapamycin activates 
the DNA damage response that triggers p53-dependent 
cell cycle arrest. While arresting cell cycle, p53 may 
simultaneously suppress the senescence program, 
thus causing quiescence. p53 suppresses senescence 
presumably by inhibition of mTOR [98, 99]. Senescence 
occurs when p53 fails to inhibit mTOR. In addition it 
was shown that rapamycin extended the mean lifespan of 
p53+/‐ mice and decreased the incidence of spontaneous 
tumors [17]. Thus, rapamycin may compensate decreasing 
of р53 function, that prevents senescence, extends lifespan 
and decreases the rate of tumors via TOR-dependent 
mechanism. Recently, we found that overexpression of 
the GADD45 gene  leads to an increase in longevity and 
stress resistance of Drosophila [100, 101]. GADD45A in 
mammals is a p53-activated gene [102]. In this context the 
p53-dependent activation of GADD45 may complete the 
anti-aging and stress resistance effects of p53.

The bioinformatic analysis of data obtained from 
KEGG, REACTOME.PATH, DOLite and GO.BP revealed 
the highest activity of rapamycincin in comparison with 
wortmannin, PDTC and 1400W.

The promising strategy to slow down ageing and 
prevent or delay the onset of age-related diseases is that 
of mild stress-induced hormesis by using hormetins 
[103]. Previously we observed lifespan expanding effect 
of radiation hormesis [104], that may be mediated by 
FOXO, SIRT1, JNK, ATM, ATR, and p53 genes [105] as 
well as heat shock proteins and heat shock factor [106]. 
The results of bioinformatics analyses demonstrate that 
rapamycin, wortmannin, PDTC, QNZ and 1400W induce 
aging suppressive effects as hormetins that inhibit the 
aging-associated pathways [107]. Obviously that studied 
drugs inhibit the hyperactivity of pro-aging signaling. 
Thus our data fully agree with hyperfunction theory of 
Mikhail Blagosklonny [26, 36]. 

Thus, we conducted a comprehensive study of 
rapamycin, wortmannin, PDTC, QNZ and 1400W effects 
in different concentrations and combinations on the life 
span and quality of Drosophila. Our data demonstrates 
that inhibiton of PI3K, TOR, NF-κB and iNOS  may 
increase life span without decreasing of the life quality 
(fertility and locomotor activity). The low concentrations 
of inhibitors are less likely induce negative effects on 
the quality of life. Also, we found significant differences 
in the effects of inhibitors treatment between males and 
females. In females, we observed a more negative effects 
on longevity without reducing the locomotor activity or 
fertility. In all experimental variants treatment of males 
increased life span and locomotor activity was not lower 
than in the control group. It has been found that the 
combined effect of drugs has the largest positive effect on 
the life span of females. The differences observed between 
males and females may be due to the functional features 

of the sexes at the level of the genome, transcriptome and 
metabolome.

MATERIALS AND METHODS

Drosophila strains

We used wild-type Canton-S flies for the 
experimental procedures (provided by the Bloomington 
Drosophila Stock Center at Indiana University, 
Bloomington, Indiana, USA). 

Treatment with inhibitors

We greased fly medium by paste of hydrolyzed 
yeast containing one of the substances. Control untreated 
animals were fed by yeast past without substances.  To 
make the hydrolyzat yeast were boiled in water bath for 30 
minutes. To prepare the 100 ml  of paste 50 g of dry yeast 
per 60 mL of water were used.

The following compounds were fed to imago flies 
through yeast paste in a throughout the lifetime:

- rapamycin (Sigma-Aldrich, USA) (Rapa) – TOR 
inhibitor [108], 0.005 µМ;

- wortmannin (Sigma-Aldrich, USA) (Wm) – PI3K 
inhibitor [109], 0.005 and 5 µМ;

- pyrrolidine dithiocarbamate (Sigma-Aldrich, USA) 
(PDTC)  – NF-κB inhibitor [63, 64], 125 µМ; 12.5 µМ; 
1.25 µМ;

-N4-[2-(4-phenoxyphenyl)ethyl]-4,6-
quinazolinediamine (Merck KGaA, Germany) (QNZ) – 
ингибитор NF-κB inhibitor [65], 3 µМ, 0.3 µМ, 0.03 µМ;

- N-(3-(Aminomethyl)benzyl)acetamidine (Merck 
KGaA, Germany) (1400W) – iNOS inhibitor [110], 3 µМ, 
0.3 µМ, 0.03 µМ;

- mix 5 µМ Rapa + 5 µМ Wm;
- mix 125µМ PDTC  + 0.005 µМ Rapa;
- mix 125µМ PDTC  + 0.005 µМ Wm.

Lifespan analysis

Control and experimental flies were maintained 
at 25±0.5°C in a 12 h-12 h light/dark cycle on a sugar-
yeast medium covered with the yeast paste. To estimate 
the longevity 250-450 flies were collected during 24 h 
since the onset of eclosion (about 30 adult flies per 120 ml 
vial) for each experimental variant. Males and non-virgin 
females were kept separately. Flies were transferred to a 
fresh medium two times a week. Dead flies were counted 
daily. For each experimental variant 2 biological replicates 
were pooled. 

Survival functions were estimated using the 
Kaplan–Meier procedure and plotted as survival curves 
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[111]. Median lifespan and the age of 90% mortality 
were calculated. The statistical analysis of survival 
data was conducted using nonparametric methods. 
Comparison of survival functions was done using the 
modified Kolmogorov–Smirnov test [112]. The statistical 
significance of differences between the mean life spans 
for the experimental and control variants was determined 
using the Gehan–Breslow–Wilcoxon [113] and Mantel–
Cox tests [114]. To test the statistical significance of 
differences in maximum lifespan (age of 90% mortality), 
the Wang–Allison test was used [115]. The Kaplan-Meier 
curves were plotted using STATISTICA, version 6.1 
(StatSoft Inc, USA). Calculation of lifespan parameters 
and their statistical analysis were performed in the R 
software environment for statistical computing and 
graphics (http://www.r-project.org/).

Fertility assay

Fertility by number of laid eggs and number of 
pupae was estimated. The flies were kept under the 
same conditions (10 females and 10 males per vial) and 
transferred to a fresh medium twice a week. Daily egg 
production by females was calculated once a week. After 
10 days, formed pupae were counted. The significance of 
differences between fertility of control and treated flies at 
different ages was evaluated using the χ2-test.

Locomotor activity assay

To estimate the locomotor activity parameters, 90 
flies were collected (30 flies per vial) for each experiment. 
Flies were kept under identical conditions and transferred 
to a fresh medium twice a week. Males and females were 
studied separately. Measurements of locomotor activity 
were carried out using the Drosophila Population Monitor 
(TriKinetics Inc, USA). For the evaluation of spontaneous 
activity the total activity of the 30 flies for 3 minutes was 
taken into account. To test negative geotaksis flies were 
flicked on the bottom of the vial and the movement was 
measured during 20 seconds. The arithmetic mean of three 
replicates was considered. The significance of differences 
between locomotor activity (a total number of infrared 
beam crossings) in sample groups at different ages was 
evaluated using the χ2-test [116].

Bioinformatic analysis

Also, we carried out the  bioinformatic analysis 
of rapamycin, wortmannin, PDTC and 1400W effects. 
Identification of drug targets were performed using the 
ChEMBL resource (https://www.ebi.ac.uk/chembldb/
compound) [117]. To analyze the functional characteristics 
of the targets a comparisons of the KEGG were performed. 

KEGG - is a method of molecular pathways annotations 
where particular gene is involved in, that provided by 
the Kyoto Encyclopedia of Genes and Genome (www.
genome.jp/kegg) [118]. Also the information from 
REACTOME.PATH, DOLite и GO.BP databases were 
used. The basic unit of the REACTOME.PATH database 
is  reaction. The reactions are grouped in the causal chain 
in the form of a path (http://www.reactome.org) [119]. 
DOLite - is a database of gene-disease associations, 
which allows to track the relationship between genes and 
pathologies (http://fundo.nubic.northwestern.edu/) [120]. 
GO - is a project to unify the representation of gene and 
gene product attributes across all species (http://www.
geneontology.org/) [121]. The objectives of the GO project 
are to compile annotations to the genes and products, 
maintaining and updating a clearly defined list of  gene 
attributes and their products in the domains «biological 
process», «molecular function», «cellular component». 
Obtaining of gene ontologies for lists of considered genes 
was performed in the R package BioMart [122, 123]. 
Analysis and comparison of the investigated substances 
were performed in the R package GeneAnswers for 
annotation of the molecular mechanisms proposed by 
REACTOME.PATH, DOLite and GO.BP [124].
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