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Integrative genomics reveals hypoxia inducible genes that are 
associated with a poor prognosis in neuroblastoma patients
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ABSTRACT
Neuroblastoma is notable for its broad spectrum of clinical behavior ranging 

from spontaneous regression to rapidly progressive disease. Hypoxia is well known 
to confer a more aggressive phenotype in neuroblastoma. We analyzed transcriptome 
data from diagnostic neuroblastoma tumors and hypoxic neuroblastoma cell lines 
to identify genes whose expression levels correlate with poor patient outcome and 
are involved in the hypoxia response. By integrating a diverse set of transcriptome 
datasets, including those from neuroblastoma patients and neuroblastoma derived 
cell lines, we identified nine genes (SLCO4A1, ENO1, HK2, PGK1, MTFP1, HILPDA, 
VKORC1, TPI1, and HIST1H1C) that are up-regulated in hypoxia and whose expression 
levels are correlated with poor patient outcome in three independent neuroblastoma 
cohorts. Analysis of 5-hydroxymethylcytosine and ENCODE data indicate that at least 
five of these nine genes have an increase in 5-hydroxymethylcytosine and a more open 
chromatin structure in hypoxia versus normoxia and are putative targets of hypoxia 
inducible factor (HIF) as they contain HIF binding sites in their regulatory regions. 
Four of these genes are key components of the glycolytic pathway and another 
three are directly involved in cellular metabolism. We experimentally validated our 
computational findings demonstrating that seven of the nine genes are significantly 
up-regulated in response to hypoxia in the four neuroblastoma cell lines tested.  
This compact and robustly validated group of genes, is associated with the hypoxia 
response in aggressive neuroblastoma and may represent a novel target for biomarker 
and therapeutic development.

INTRODUCTION

It is well recognized that more effective therapy 
is needed for children with high-risk neuroblastoma [1]. 
Although modern, multi-modality treatment strategies have 

led to improved outcome for these patients [2], fewer than 
half are cured. Further, current risk stratification criteria 
cannot distinguish those high-risk patients who will achieve 
long-term survival with standard treatment approaches 
from those who will relapse or develop progressive 
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disease. Thus, an improved understanding of the molecular 
mechanisms that contribute to the clinically aggressive 
neuroblastoma phenotype is critical for refining risk 
stratification and the development of novel therapeutics.

Aggressive solid tumors such as high-risk 
neuroblastoma, are known to contain regions of severe 
hypoxia, subsequently affecting numerous cellular 
pathways [3]. Hypoxia induces the stabilization of 
Hypoxia Inducible Factor (HIF), leading to activation 
of downstream targets in metabolism, angiogenesis, and 
cell division [4]. Neuroblastoma cell lines grown under 
hypoxic conditions have an undifferentiated, aggressive 
phenotype and altered gene expression in HIF-regulated 
genes [5]. In addition, hypoxia has been shown to 
increase the metastatic potential of neuroblastoma cells 
[6], enhance stem cell-like phenotype [7], and alter 
proliferation [8]. Activation of the hypoxia response 
pathways may have prognostic implications for survival in 
patients with neuroblastoma [9], although which aspects of 
the hypoxia response are driving the biology of aggressive 
neuroblastoma tumors remains unclear. 

Collaborative initiatives such as The Cancer Genome 
Atlas (TCGA) have been able to aggregate clinically 
annotated multidimensional tumor genomics data from 
large numbers of adult patients [10]. Efforts to achieve 
similar results through the Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) 
pediatric initiative remain difficult due to relative rarity 
of many pediatric cancers. In this study, we were able 
to utilize publically available transcriptome data from 
multiple cohorts of clinically annotated neuroblastoma 
tumors, together with transcriptome data from hypoxia-
treated neuroblastoma cell lines to identify genes with 
expression levels associated with both poor patient 
outcome and an aggressive hypoxia regulated phenotype. 
Using differential expression, 5-hydroxymethylcytosine 
quantification, Kaplan-Meier and Cox regression methods, 
we identified nine hypoxia-related candidate genes that 
play a role in neuroblastoma pathogenesis. These genes 
were experimentally validated to have increased expression 
in response to hypoxia in multiple neuroblastoma cell lines 
in vitro and may also impact the ability of neuroblastoma 
cells to thrive in hypoxia.

RESULTS

Genes associated with outcome in neuroblastoma 

We initially sought to define a set of genes whose 
transcription levels are correlated with survival in patients 
with neuroblastoma, as they may play a biological role in 
tumor growth, with the potential to be clinically actionable. 
To do this, we first analyzed microarray expression data 
from 478 diagnostic neuroblastoma tumors (Cohort 1: 
EMBL accession E-MTAB-179) [11]. The tumor samples 
are clinically annotated, and the cohort includes stage 1  

(n = 119), stage 2 (n = 80), stage 3 (n = 69), stage 4 (n = 148), 
and stage 4S (n = 62) neuroblastoma patients. Ninety-one 
of the patients died, and 74 patients had MYCN-amplified 
tumors. Using a linear regression model comparing patients 
who survived to those who did not (see Methods), we 
identified 6664 differentially expressed genes (DEGs) with 
a False Discovery Rate of less than 5% (FDR < 0.05) after 
controlling for MYCN-amplification. After restricting this 
set to only those within the top 10% of fold change and 
a FDR less than 1% (FDR < 0.01), 2270 genes remained 
(Figure 1A). A Gene Ontology GO analysis [12] revealed 
that top biological processes that were significantly enriched 
for the 1169 up-regulated DEGs in deceased patients 
were associated with regulation of cell cycle and mitosis 
(Supplementary Table S2), while there was no significant 
pathway enrichment for the 1101 down-regulated DEGs. 

In order to validate these findings, we analyzed 
transcriptome data from a second and independent cohort 
(Cohort 2: GEO accession GSE16254) containing 88 
patients with neuroblastoma [13]. This cohort included 
patients with stage 1 (n = 8), stage 2 (n = 15), stage 3 
(n = 13), stage 4 (n = 40), and stage 4S (n = 12) tumors. 
Thirty-three of the patients died, and 16 patients had 
MYCN-amplified tumors. Using identical linear models 
and criteria for fold change and FDR, we identified 
1402 DEGs in this validation cohort (Figure 1A). In this 
analysis, the 591 up-regulated DEGs in deceased patients 
were also enriched for genes involved in cell cycle 
processes (Supplementary Table S3), and again there was 
no pathway enrichment for the 811 down-regulated DEGs. 

A total of 674 genes were differentially expressed 
in both patient cohorts (Figure 1A), nearly all (671/674) 
with consistent changes in directionality of expression 
between survivors and deceased patients in both cohorts 
(Figure 1B). A permutation test showed that this degree of 
overlap of genes between the two cohorts is significantly 
greater than that expected by random chance (P < 1 × 10−6, 
Supplementary Figure S1A). Similar to the DEG of each 
individual patient cohort, the top GO terms for the 271 
overlapping up-regulated DEG from both cohorts were 
related to cell cycle and mitosis (Figure 1C, Supplementary 
Table S4) while there were no significantly enriched GO 
terms in the group of 400 overlapping down-regulated 
DEGs. Our findings are consistent with prior reports as 
cell cycle genes are well established as being up-regulated 
in more aggressive neuroblastoma [14, 15] and the number 
of dividing cells seen by pathologic examination has long 
been an indicator of higher-risk disease and poor outcome 
in patients [1]. However, it is impractical to determine 
which of these 271 genes are functionally most important 
for accelerating neuroblastoma cells through the cell cycle. 
Thus, we sought to identify a subset of these genes that are 
correlated not just with patient outcome, but also with the 
hypoxia response itself, as it has been previously shown that 
hypoxia increases the aggressive phenotype of neuroblastoma 
and affects progression through the cell cycle [16, 17].
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Gene expression patterns from neuroblastoma 
cells grown in hypoxia

In order to identify genes that are hypoxia-
regulated in neuroblastoma, we analyzed two independent 
transcriptome datasets of neuroblastoma cell lines that 
were exposed to laboratory hypoxia. In the first dataset, 
SK-N-BE2 cells were grown in 1% oxygen and compared 
to those that were grown in normoxia [18]. RNA-seq 
analyses of expression differences between these groups 
identified 1248 DEGs (FDR < 1% and top or bottom 10% 
log2 fold change, Figure 1D). The 753 up-regulated DEGs 
were enriched for several biological processes, including 
the NCI HIF-1α transcription factor network (P = 3.8 
× 10−16), and the GO terms canonical glycolysis (P = 3.6 
× 10−14), and synthesis of cholesterol (P = 6.7 × 10−14; 
Supplementary Table S5) while the 496 down-regulated 
genes had no significantly enriched terms [12].

To validate these findings further, we analyzed an 
independent dataset in which 11 neuroblastoma cell lines 
were grown in 21% or 1% O2 [9]. From this dataset, we 
identified 647 DEGs between normoxia and hypoxia 
(Figure 1D). Consistent with our findings using the RNA-
seq data from the SK-N-BE2 cell line, we also found that 
324 up-regulated DEGs in this dataset were also enriched 
for genes in HIF-1α transcription factor network (P = 1.6 
× 10−10), canonical glycolysis (P = 5.4x10−9) and glucose 
metabolism (P = 8.8x10−9; Supplementary Table S6), while 
the 323 down regulated genes demonstrated no consistently 
enriched processes. A total of 151 genes were regulated by 

hypoxia in both datasets (Figure 1D), and a permutation 
test revealed such an overlap between the two datasets was 
highly significant (P < 1 × 10−6; Supplementary Figure 
S1B). Furthermore, all but five of 151 DEGs showed 
consistent directionality of expression change from 
normoxia to hypoxia in both datasets (Figure 1E) and GO 
analysis of these 146 hypoxia regulated genes also showed 
the 119 consistently up-regulated genes were highly 
enriched for metabolic and hypoxia related processes 
(Figure 1F, Supplementary Table S7).

Next we compared the 151 hypoxia regulated 
genes identified from neuroblastoma cell lines exposed 
to hypoxia to the 841 DEG associated with survival in 
the patient cohorts and identified 14 genes common to 
all four datasets (Figure 2A). Among these 14 genes, 
nine (SLCO4A1, ENO1, HK2, PGK1, MTFP1, HILPDA, 
VKORC1, TPI1, and HIST1H1C) showed consistent 
directionality of expression changes in both cell line 
experiments and patient cohorts (Figure 2B), suggesting 
a similar effect in both cell lines and aggressive tumors. 
A permutation test revealed that the degree of overlap, 
nine shared genes in all four datasets differs significantly 
from random expectation (P = 8 × 10−5; Supplementary 
Figure S2). We considered these nine genes as genes of 
interest for further analyses.

In order to evaluate the link between hypoxia 
and our identified genes further, we analyzed hMe-Seal 
data from hypoxia exposed cells [18] and integrated 
several genomics datasets from ENCODE to test 
whether the candidate genes are HIF regulated. Our 

Figure 1: Differentially expressed gene sets show commonalities in both patient and cell line cohorts. (A) Unique and 
shared genes between patient cohorts 1 and 2. (B) The direction of expression change between common DEGs in survivors and deceased 
patients is consistent between cohorts for all but five genes. (C) Gene Ontology analysis of differentially expressed genes in both patient 
cohorts. (D) Unique and shared genes between cell line experiments. (E) The direction of expression change between common DEGs in 
normoxic and hypoxic cell lines is consistent between cohorts for all but five genes. (F) Gene Ontology analysis of differentially expressed 
genes in both cell line datasets.
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analysis demonstrated that five of these nine genes, 
ENO1, PGK1, SLCO4A1, HK2, and HILPDA, have 
increased 5-hydroxymethylcytosine levels in their 
regulatory regions in hypoxia compared to normoxia 
(Figure 3A–3C, Supplementary Table S8). Additionally, 
ENO1, PGK1, HK2, MTFP1, and HILDPA have putative 
HIF-1α and HIF-2α binding sites in their regulatory 
regions (Figure 3A–3C, Supplementary Figure S3A–S3F). 
Collectively these data suggest that many of our candidate 
genes have an open chromatin structure in hypoxia and are 
accessible to transcription factors including the hypoxia 
inducible factors. These observations provide additional 
support for the role of these genes in hypoxia response in 
neuroblastoma.

Validation of hypoxia-regulated gene expression 
of the candidate genes in neuroblastoma 
cell lines

To verify that the candidate genes are differentially 
expressed in hypoxia, we performed qRT-PCR assays 
using cDNA isolated from the SK-N-BE2, SK-N-DZ, 
LAN-5, and LA1-55n cell lines. Of these cell lines, the 
SK-N-BE2 line was among the transcriptomic datasets 
that we analyzed initially, while the SK-N-DZ, LAN-5, 
and LA1-55n lines were not evaluated in the publically 
available expression data. Eight of the nine candidate 
genes were reliably up-regulated in hypoxia (P < 0.05) in 
each of the cell lines. This is consistent with up-regulation 
of these genes in hypoxia previously established in the 
dataset of 12 cell lines (Figure 4, Supplementary Figure 
S4A–S4C). More importantly, these genes were also 
upregulated in aggressive tumors in the two patient 
cohorts, suggesting the role of hypoxia in maintaining 
aggressive neuroblastoma. Additionally, VKORC1 
was significantly up-regulated in all cell lines except 

LAN-5 (P = 0.08), while SLCO4A1 was only significantly 
elevated in SK-N-BE2 cells. 

Candidate genes are associated with poor 
prognosis

Having demonstrated that our identified genes 
are truly up-regulated in neuroblastoma cell lines, we 
sought to fully define their role in predicting poor patient 
outcomes. Higher expression of each candidate gene was 
also associated with patient survival as demonstrated 
by the Kaplan-Meier survival analysis in each patient 
cohort (Figure 5A and 5B, Supplementary Figure S5A 
and S5B), with the exception of the TPI1 gene, which 
was significantly correlated with survival only in Cohort  
2. We also performed a regression analysis for each gene 
to evaluate whether the changes in their expression are 
associated with poor prognosis. Consistent with the Kaplan-
Meyer analyses, Cox regression analysis also showed that 
the expression differences in all of the nine candidate genes 
were associated with poor patient survival both in univariate 
and multivariate analysis controlling for MYCN status, 
stage, and age at diagnosis (Supplementary Table S9). 

In order to verify the association between candidate 
genes and survival, we performed two additional analyses. 
First, we performed a permutation-based test to evaluate 
whether associations between DEGs and survival could 
be obtained by chance alone. To do so, we randomly 
selected eight DEGs from Cohort 1 and nine DEGs from 
Cohort 2, counted how many of these were associated with 
poor prognosis (FDR <1%) in both cohorts, and repeated 
this process 100,000 times. Our analyses showed that 
the associations between candidate genes and survival 
could not be observed by chance alone (P = 0.039 and 
P = 0.0087 for Cohorts I and 2, respectively). Second, 
we analyzed transcriptome data from a third independent 

Figure 2: Nine genes are differentially expressed in all datasets and are significant on multiple analyses. (A) Unique and 
shared genes between patient Cohort 1, patient Cohort 2, and both cell line experiments. (B) The direction of expression change between 
common DEGs in all datasets is consistent for nine genes.
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cohort (Cohort 3), consisting of 233 neuroblastoma 
patients extracted from the larger group in E-MTAB-1781 
who were not included in Patient Cohort 1 [19]. This 
cohort included patients with stage 1 (n = 41), stage 2 
(n = 40), stage 3 (n = 22), stage 4 (n = 111), and stage 
4S (n = 19) tumors. With the exception of HIST1H1C 
in Kaplan-Meier analysis, we again show that our 
identified genes are truly associated with poor outcome in 
neuroblastoma patients (Table 1).

DISCUSSION 

In this study, we utilized diverse genomics data 
sources to identify a set of candidate genes computationally 
that appear to be both clinically and biologically important 
in neuroblastoma. By combining these diverse biologic 
datasets, we were able to confirm prior findings and 
demonstrate the clinical relevance of high expression of 
cell cycle genes. More importantly, using experimental 
data from neuroblastoma cell lines exposed to hypoxia, we 
were able to identify a small number of candidate genes 
that are not only important in hypoxia response but may 
also be important in patient survival.

Hypoxia has been shown to affect cell cycle and 
lead to aggressive phenotype in numerous types of cancer 
[20]. This effect is mediated by both HIF-1α and HIF-2α. 
Depending on the cancer type, high levels of one or both 
of these proteins has been associated with worse patient 
outcomes [21]. Additionally, the HIFs have also been 
shown to interact directly with the MYCN/MAX complex 
in neuroblastoma, which has a complex effect on cellular 
phenotype [22]. Previous work has shown that hypoxia 
signatures are correlated with outcome in patients with 
neuroblastoma [9, 23], but there have been few efforts to 
identify the subset of genes driving this finding. 

Though further efforts are needed to confirm the 
full predictive potential of the genes we have identified, 
there are several lines of evidence to suggest that they 
are involved in aggressive disease and may guide efforts 
towards novel therapeutic approaches. Among the nine 
genes, seven were directly involved in metabolism 
and four, PGK1, HK2, TPI1, and ENO1 are part of the 
glycolytic pathway and have previously been shown to 
be up-regulated in response to hypoxia, thus rendering 
them potential drug targets [24]. Glycolysis has been 
long associated with the cellular response to hypoxia and 

Figure 3: hMe-Seal and ENCODE data demonstrate an open chromatin structure and HIF binding at the promotor sites 
of identified genes. Dnase-Seq (blue) and H3K4me3 (red) peaks are indicative of open chromatin regions. Chip-seq for HIF-1α (red) and 
HIF-2α (pink) show these transcription factors bind to these open promoter regions. hMe-Seal shows increased 5-hydroxymethylcytosine, 
another marker of open chromatin, in hypoxia (green) compared to normoxia (yellow) at each of these sites for the (A) PGK1, (B) ENO1, 
and (C) HILPDA genes.
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cellular proliferation [25]. In response to mitochondrial 
dysfunction and the loss of oxidative phosphorylation, 
HIF stabilization leads to up-regulation of the glycolytic 
pathway to allow for anaerobic metabolism. This effect is 
well documented in neuroblastoma cell lines [17]. Recent 
efforts have also demonstrated that high expression of 
HK2, one of our identified genes and the first enzymatic 

step in glycolysis, confers a malignant phenotype and 
chemotherapy resistance in vitro. Additionally, it was also 
shown that decreasing expression of HK2 using shRNA 
both in vitro and in vivo slows the growth and metastatic 
potential of this tumor [26]. Furthermore, multiple drugs 
have been developed which inhibit HK2 function and have 
been shown to be effective at decreasing tumor growth 

Figure 4: qRT-PCR shows regulation of each identified gene in neuroblastoma cell lines. Log2 transformed expression 
values compared to actin for nine genes in hypoxia compared to normoxia in the SK-N-BE2 cell line. All genes were significantly up 
regulated in hypoxia (P < 0.05).

Figure 5: Kaplan-Meier analysis of all genes shows a significant association with outcome for eight of nine identified 
genes in both cohorts. All genes on the array are ranked by most significant FDR of patients with high vs. low expression of each gene. 
Statistically significant genes are located to the left of the dashed lines. Our nine identified genes are in red. Rank of each identified gene 
for (A) Cohort 1 and (B) Cohort 2.
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in preclinical testing [27]. These findings highlight 
the strength of our approach to go beyond expression 
signatures which have been difficult to implement in 
the clinic [28–30] and identify genes which may be 
functionally relevant. This emphasizes the need for further 
functional characterization of these genes specifically 
in the context of neuroblastoma, and potentially more 
generally in solid tumors as well. 

We also identified five genes not in the glycolytic 
pathway which likely play an important role in the hypoxia 
response of neuroblastoma. SLCO4A1 is a membrane 
transporter of which the only currently known solute is 
thyroid hormone. Interestingly, in lymphoblastoid cell 
lines, increased expression of this gene is associated with 
resistance to cisplatin, a backbone of neuroblastoma therapy 
(http://www.pacdb.org). MTFP1 is a downstream target 
of PI3KCA and is involved in mitochondrial homeostasis 
[31]. HILPDA is a direct target of HIF-1α and PPARα, 
and elevated expression in hypoxia increases the number 
of lipid droplets in tumor cells [32]. Although VKORC1 
has been studied extensively in warfarin dosing [33], it 
has an unclear role in cancer biology. In hepatocellular 
carcinoma, HIST1H1C a gene involved in regulating higher 
order chromatin structures, may serve to maintain DNA 
methylation patterns.[34] Because our identified genes are 
part of the hypoxia response, and hypoxia is associated 
with aggressiveness in cancer [6, 35], these genes may 
play a role in increasing resistance to chemotherapy and/or 
promoting primary tumor growth and metastasis. 

We analyzed a wide variety of transcriptomic and 
clinical data sets in order to identify genes of importance 
across 12 cell lines and over 500 patients for the biology 
and clinical phenotype of neuroblastoma. In doing so, we 
have elucidated a potential molecular mechanism driving 
hypoxia response in aggressive neuroblastoma. These 
results emphasize that neuroblastoma tumors rely on the 
glycolytic pathway for survival in the hypoxic conditions 
seen in patients and highlight a potential novel therapeutic 
strategy for this disease.

MATERIALS AND METHODS

Microarray expression data

Publically available microarray gene expression data 
from primary tumor samples and neuroblastoma cell lines 
were downloaded from GEO or EMBL. Patient Cohort 1 
(n = 478) was characterized on the Agilent custom array 
(EMBL identification: E-MTAB-179) [11]. Patient Cohort 2 
(n = 88) was characterized on the Affymetrix U133 Plus 2.0 
Array (GEO identification: GSE16254) [13]. Patient Cohort 
3 consisted of 233 neuroblastoma patients extracted from 
the larger group in E-MTAB-1781 who were not included 
in Patient Cohort 1. E-MTAB-1781 is an expansion of 
E-MTAB-179, and was generated using the same Agilent 
custom array. Eleven neuroblastoma cell lines (GI-LI-N, GI-
ME-N, ACN, SHEP-2, SK-N-F1, SK-N-SH, SK-N-BE2c, 
IMR-32, LAN-1, SHEP-21N over-expressing MYCN, and 
SHEP-21N not over-expressing MYCN) grown in normoxia 
or 1% hypoxia were characterized on the Affymetrix U133 
Plus 2.0 Array (Cell line experiment 2; GEO identification: 
GSE17714) [9]. Raw microarray expression data were 
normalized using the robust multi-array analysis algorithm 
to account for batch effects.[36] Normalized expression 
values of each probe were evaluated for DEGs between 
survivors and patients who died using linear models 
accounting for MYCN status as a fixed effect (y ~ status 
+ MYCN). Differential expression in neuroblastoma cells 
lines grown in hypoxia or normoxia was evaluated using a 
generalized linear mixed effects model (GLMM) to account 
for the fixed effects of MYCN status, N or S type growth 
pattern [37], and specific cell line as the mixed effect (y ~ 
hypoxia + MYCN + (1|line) + growth pattern). Probes with 
the most significant p-value for each gene were selected 
for further analysis. FDRs were calculated from p-values 
by q-value method [38]. Genes with an FDR less than 0.01 
and in the top or bottom 10% of log2 fold changes values 
between groups were considered significantly differentially 
expressed. It is a common practice to use log2 fold-change 

Table 1: Validation of the association between nine identified genes and survival in patient  
Cohort 3 (n = 233)

Gene Kaplan-Meier q value Cox Regression Univariate q value Cox Regression Multivariate q value
HILPDA 2.65E-03 1.69E-07 1.71E-04
HK2 2.65E-03 8.21E-08 5.95E-05
SLCO4A1 2.65E-03 1.59E-08 5.61E-06
MTFP1 9.56E-03 1.69E-07 1.98E-05
PGK1 1.94E-02 2.12E-03 2.18E-02
ENO1 1.94E-02 8.70E-03 1.93E-02
VKORC1 4.20E-02 1.59E-08 5.09E-04
TPI1 4.20E-02 2.45E-02 3.54E-02
HIST1H1C 2.70E-01 4.04E-06 2.07E-03
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of 1.5 to identify differentially expressed genes. However, 
this threshold is arbitrary and several studies have shown 
that small changes in gene expression can be biologically 
relevant, especially in cancer [39]. An alternative approach 
is to use FDR, which can identify genes that consistently 
differ in expression between the two groups even if the 
magnitude of differences is small. By combining both, we 
are first identifying genes that are consistently differentially 
expressed between the two neuroblastoma groups and 
then selecting those genes that have changed with the 
largest magnitude. Due to the inherent heterogeneity of 
tumor samples, these thresholds were used to determine 
the candidate genes that are most likely to be biologically 
relevant in neuroblastoma.

RNA-seq expression data

50 base pair, single stranded RNA-seq data were 
obtained from the SK-N-BE2 neuroblastoma cell line 
grown in 21% or 1% O2 (Cell line experiment 1; GEO 
accession GSE55391) [18]. Sequence quality was assessed 
with FASTQC v0.10.1 [40]. Reads were aligned to the hg19 
reference genome with Tophat2 v2.0.13 [41]. Default settings 
in CuffDiff v2.2.1 [42] were used to identify DEGs in 
hypoxia compared to normoxia. Significance of differential 
expression between oxygen conditions was determined using 
thresholds identical to those used for microarray data.

Survival analysis

Patients were categorized as having high or low 
expression of each gene using a sliding window to include 
at least two percent of patients. The log-rank test was used 
to calculate the p-value of the survival difference between 
high and low expression groups in each window. Multiple 
testing correction was done using the q-value method to 
account for both the number of genes in the dataset and the 
number of sliding windows per gene. The most significant 
q-value for each gene is reported. Cox proportional hazard 
models [43] were used to evaluate the effect of gene 
expression on overall survival. Both a univariate and a 
multivariate model accounting for MYCN status, stage, 
and age at diagnosis were utilized. 

Gene ontology enrichment, pathway analysis, 
and permutation testing

All GO pathway enrichment analyses were 
performed using the Lynx Platform [12]. Analysis was 
limited to the genes from each platform that passed 
quality control and were expressed. This included 14,386 
genes from Patient Cohort 1, 16,219 genes from Patient 
Cohort 2, 14,688 genes from Cell line experiment 1, and 
15,940 genes from Cell line experiment 2. A FDR of less 
than 5% was used to determine statistical significance. 
In order to determine if the number of identical DEG in 

each set was greater than would be expected by chance, 
we performed permutation testing. For each dataset in an 
analysis, genes were randomly selected corresponding 
to the number of DEGs identified. We then counted the 
number of genes common in each randomly generated 
gene set and repeated the procedure 100,000 times per 
analysis. P-values were calculated by dividing the number 
of occurrences of randomly overlapping genes equal or 
greater to the number of genes in our experimentally 
derived lists by 100,000. 

Chromatin structure and HIF-binding

hMe-Seal experiments to quantify a marker of 
open chromatin 5-hydroxymethylcytosine, from two 
biologic replicates of SK-N-BE2 cells grown in normoxia 
or hypoxia were conducted as previously described 
[18]. 5-hydroxymethylcytosine peaks were quantified 
from BAM files using MACS2 v2.1.0 using default 
settings [44]. Diffbind [45] was used to determine both 
the p-values and FDR of called peaks between hypoxic 
and normoxic conditions. An FDR of less than 5% was 
considered significant.

Cell culture 

Neuroblastoma cell lines SK-N-BE2, SK-N-DZ, 
LAN-5, and LA1-55n were maintained in RPMI 1640 
media (ThermoFisher Scientific) supplemented with 
10% heat-inactivated fetal bovine serum. SK-N-DZ was 
purchased from ATCC. All cell lines were authenticated 
within six months of all experiments by short tandem 
repeat (STR) profiling and profiles were found to be 
identical to known profiles for the cell lines. All cell lines 
tested negative for Mycoplasma contamination using the 
MycoAlert detection assay (Lonza). Cells were seeded 
18–24 hours prior to hypoxia exposure. For hypoxic 
conditions, cells were incubated in 1% O2 and 5% CO2. 
For normoxic conditions cells were incubated at 21% O2 
and 5% CO2. All experiments were performed in triplicate. 

RNA extraction and qRT-PCR

RNA was isolated from cell lines using Trizol 
reagent (ThermoFisher Scientific). First-strand cDNA 
synthesis was performed using the SuperScript III First-
Strand Synthesis System (ThermoFisher Scientific). Gene-
specific primers were obtained for each gene (Integrated 
DNA Technologies Coralville, IA) and were normalized 
to the housekeeping gene beta-Actin (Supplementary 
Table S1). The real-time quantitative PCR was conducted 
using the 7500 Fast Real-Time PCR System (ThermoFisher 
Scientific) according to manufacturer’s protocol. The 
calculation of the gene expression levels followed the  
2−ΔΔCT rule.
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Statistics

All statistical analyses were performed in R version 3.2.1.
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