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ABSTRACT
Clinicians routinely prescribe adjuvant chemotherapy (ACT) for resected non-

small cell lung cancer patients. However, ACT only improves five-year disease-free 
survival in stage I-III non-small cell lung cancer by 5-15%, with most patients 
deriving no benefit. Herein, deregulation of the E2F pathway was explored as a 
biomarker in lung adenocarcinoma patients. An E2F pathway scoring system, based 
on 74 E2F-regulated genes, was trained for RNA from two platforms: fresh-frozen 
(FF) or formalin-fixed paraffin-embedded (FFPE) tissues. The E2F score was tested 
as a prognostic biomarker in five FF-based cohorts and two FFPE-based cohorts. The 
E2F score was tested as a predictive biomarker in two randomized clinical trials; 
JBR10 and the NATCH (Neo-Adjuvant Taxol-Carboplatin Hope) trial. The E2F score was 
prognostic in untreated patients in all seven datasets examined (p < 0.05). Stage-
specific analysis of combined cohorts demonstrated that the E2F score was prognostic 
in stage I patients (p = 0.0495 to <0.001; hazard ratio, HR, =2.04- 2.22) with a similar 
trend in other stages. The E2F score was strongly predictive in stage II patients from 
the two combined randomized clinical trials with a significant differential treatment 
effect (p = 0.015). Specifically, ACT improved survival in stage II patients with 
high E2F (p = 0.01; HR= 0.21). The 5-year survival increased from 18% to 81%. In 
contrast, in patients with low E2F, 5-year survival was 57% in untreated patients and 
41% in ACT-treated patients with a HR of 1.55 (p = 0.47). In summary, the E2F score 
provides valuable prognostic information for Stage I and predictive information for 
Stage II lung adenocarcinoma patients and should be further explored as a decision 
support tool for their treatment.
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INTRODUCTION

Breast cancer patients have long received the benefit 
of prognostic gene expression-based classifiers such as 
Oncotype DX [1] (16 genes), Prosigna [2] (50 genes) and 
MammaPrint [3] (70 genes). The MammaPrint test, for 
example, divides early-stage breast cancer patients into 
two approximately equal groups; those patients that can 
forego ACT, without significant risk of decreased survival, 
and those that are likely to benefit from ACT. These tests 
save healthcare dollars, reduce the morbidity of ACT in 
low-risk patients, and assure high-risk patients that ACT 
is the right choice for them. In spite of the fact that lung 
cancer accounts for more deaths per year in the US, than 
breast, colon, prostate, and pancreatic cancer combined 
[4], lung cancer patients do not generally benefit from 
similar biomarkers [5]. Clinicians routinely prescribe 
adjuvant chemotherapy (ACT) for resected NSCLC 
patients; however, ACT only improves the proportion of 
five-year disease-free survivors in stage I-III non-small cell 
lung cancer by 5-15% when no markers are used to select 
patients for chemotherapy [6-12]. The remaining 85-95% 
of patients derive no measurable benefit and suffer the 
adverse effects and risks of treatment. While tumor stage 
[6] and histological subtype within adenocarcinomas [13] 
can guide the decision to treat with ACT, a robust, well-
validated marker that could clearly identify which patients 
should receive adjuvant chemotherapy and which should 
be targeted for other strategies (observation, clinical trials, 
novel agents) would be of significant clinical value. 

The majority of lung cancers (~85%) are classified 
as non-small cell lung cancer (NSCLC). The most common 
histological subtype of NSCLC is lung adenocarcinoma. 
We and others have demonstrated that proliferative 
capacity drives patient outcome and aggressiveness in 
lung adenocarcinomas, and gene expression signatures 
reflecting this capacity have been shown to be highly 
prognostic [14-17]. With proliferation tightly regulated 
by the E2F pathway [18], direct assessment of the E2F 
pathway deregulation in clinical samples should provide 
prognostic information. Furthermore, the E2F pathway is 
central to the cellular response to DNA damaging agents 
[19, 20] and other compounds [21] used in the treatment 
of lung adenocarcinoma. Based on these observations, 
we hypothesized that an accurate measurement of E2F 
pathway activation in lung adenocarcinoma could 
potentially serve as a prognostic biomarker as well as a 
predictive biomarker for the benefit of ACT. 

To explore this hypothesis, a 74-gene E2F signature 
was developed and trained for application with RNA 
from both fresh-frozen (FF) and formalin-fixed paraffin-
embedded (FFPE) tissues. This 74-gene E2F signature was 
cross-validated as prognostic in seven different survival 
datasets. Most importantly, data from two independent 
phase III, randomized clinical trials were used to validate 
the signature as predictive of benefit of ACT: the JBR10 

trial [22] and the (Neo)Adjuvant Taxol/Carboplatin Hope 
(NATCH) trial [7]. 

RESULTS

E2F Signature development and optimization

The overall schema used to develop an E2F pathway 
scoring system is highlighted in Figure 1. Multiple 
datasets (Tables S1-S3) were used to develop and validate 
the final 74 gene E2F signature (Tables S4-5) as described 
in the Materials and Methods and in greater detail in the 
Supplementary Materials. Specifically, siRNAs were 
used to knock down E2F pathway components (E2F1, 
E2F3A, E2F3B, both 3A and 3B, E2F4, and Rb) in model 
cell lines. Gene-specific knock down was confirmed by 
Western blotting (see Figure S1). Microarray analysis 
compared siRNA-treated knockdown versus control A549 
and H1299 cell lines and applied a number of filters to 
identify 119 coding genes (145 probesets). Biologically 
these were highly correlated with cell cycle and DNA 
damage response by GeneGo analysis (see Table S6). 
Among the 119 genes, 106 genes were found well-
annotated and thus incorporated into a NanoString assay. 
Comparison of individual gene expression between FF and 
FFPE in the “MLTO” cohort revealed 32 genes with poor 
individual correlation (r < 0.5; Table S7 and Figure S2), 
and led to a 74-gene signature. The PC1 scores derived 
from the 74 gene signature and the original 106 genes had 
strong correlations (FF: r = 0·99, p < 0·001; FFPE: r = 
0·98-0.99, p < 0·001; Figure S3; with a similar percentage 
of total variation; 29-30%; Figure S4), suggesting that the 
remaining 74 genes reflected the original biology of the 
larger list. Further correlation analysis (Figure S5) among 
FF in microarray and FF and FFPE in NanoString showed 
a weak to moderate reproducibility in PC1 score of the 
74-gene signature (r = 0.3-0.78), indicating non-negligible 
variation by tissue type.

To adjust for variation due to tissue types, and 
therefore allow comparison of data from diverse cohorts, 
the E2F scoring system was developed in two platforms 
based on either FF or FFPE tissue. Both platforms used 
the PC1 loading coefficients (gene weights) to calculate 
the E2F score. The gene weights were derived using the 
MLOS cohort for the FF platform while the MLCom 
cohort was used to obtain the gene weights for the FFPE 
platform. The percentage of total variation for PC1 
between the two platforms was comparable (24-26%; 
Figure S6). While the correlation of the two platforms 
was weak (r = 0.25-0.28; Figure S7 and Table S8), both 
platforms gave a similar range of gene weights (-0.165 to 
0.223 in FF and -0.165 to 0.210 in FFPE). 

Evaluation of the median threshold was performed 
in the two training cohorts: the MLOS cohort for the FF 
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platform and the MLCom cohort for the FFPE platform. 
In the FF platform, the classification by the median E2F 
score was significantly associated with OS in non-ACT 
patients of the MLOS cohort with poor OS in high E2F 
group (p < 0.001). Interestingly, other cutoffs (25th-75th 
percentiles) also had a significant association, indicating 
that the E2F score is generally robust in prognosis (Figure 
S8). Similarly, in the FFPE platform, the median-cutoff 
classification was able to significantly separate the low 
and high E2F groups in non-ACT patients of the MLCom 
cohort in terms of OS and PFS (p = 0.041 for OS and 
p = 0.044 for PFS). In comparison, other cutoffs were 
significant only in the range of 40th-60th percentiles for OS 
and in the range of 25th-75th percentiles for PFS (Figure 
S9). While the median-cutoff did not give the smallest p 
value, the median-cutoff E2F classification was associated 
with OS or PFS in both platforms, justifying the median 
threshold for risk classification. The post-hoc evaluation 
of training and validation cohorts also support the validity 
of a median-cutoff classification for the E2F score (Figure 
S8-9 and Table S9-12).

The E2F Score is a prognostic marker

The derived E2F score was first tested as a 
prognostic marker in seven cohorts of resected lung 
adenocarcinoma patients who did not receive adjuvant 
chemotherapy. These data, summarized in Table 1, reveal 
the prognostic value of the E2F score by the log-rank 
test (Table S13 presents detailed analysis within each 
cohort, including PFS). Specifically, in the FF platform, 
each of the five cohorts showed a significant prognostic 
effect with poor OS in all non-ACT patients with a high 
E2F score. For stage-specific analysis, the combined FF 
cohorts (MLOS, MCLA, TCGA, JBR10.AD and LCBRN) 
demonstrated a strong association between OS and E2F 
scores in all non-ACT patients and in Stage I non-ACT 
patients (p < 0.001; HR = 2.38 for all stages and HR = 
2.22 for stage I; Table 1) and this significance continued 
even with covariate adjustment (p < 0.001; HR = 1.88 and 
2.16 for all stages and stage I, respectively; Table S14). 
The median survival time (MST) was 42.9 months in high 
E2F group and never reached within the study in low E2F 
group for all stage. MST was never reached for stage I 
due to longer survival in this subpopulation. For this 

Table 1: Prognostic effects of the E2F score in resected lung adenocarcinoma patients who did not receive adjuvant 
chemotherapy

NR*: median survival time not reached within the study
HR**: hazard ratio
*** indicates 3-year survival cutoff since 5-year survival rate was not estimated due to short follow-up
Significant P values are in bold text



Oncotarget82257www.impactjournals.com/oncotarget

reason, we used the 5-year survival rate for comparison. 
The 5-year survival rate increased at least 20% in low-
E2F patients (all stages: low E2F: 64% (95% CI: 57% - 
71%) versus high E2F: 41% (95% CI: 35% - 48%); stage 
I: low E2F: 75% (95% CI: 68% - 82%) versus high E2F: 
54% (95% CI: 46% - 63%); Table I, Figure 2A and B). 
A similar prognostic trend was observed in stage II and 
combined stage III/IV patients, but the results were not 
statistically significant. 

Both FFPE-based cohorts (MLCom and NATCH) 
had a significant association of the E2F score with OS (p 
= 0.01-0.04; HR = 1.87-3.26; Table 1) and PFS (p = 0.03-
0.04; HR = 1.75-2.57; Table S13) in all non-ACT patients 

(stages I-IV). The combined cohort (MLCom + NATCH) 
also exhibited statistically significant association with OS 
(p < 0.001; HR = 2.29; Table 1) and PFS (p < 0.001; HR 
= 2.14; Table S13) in all patients. Patients with low E2F 
had a longer survival than the high E2F patients (MST = 
81.5 months versus 33 months). For stage I patients, the 
significance level was borderline for OS (p = 0.0495; HR 
= 2.04; Table 1) and PFS (p = 0.046; HR = 1.84; Table 
S13). Covariate-adjusted association was significant (OS 
or PFS) in the NATCH cohort (p = 0.03-0.04; HR = 2.59-
2.94; Table S14) and the combined cohort (p = 0.01-0.03; 
HR = 1.80-1.81; Table S14) in all stage patients. In terms 
of 5-year survival rate, it increased at least 15% in low-

Figure 1: Study Overview. This figure highlights the discovery steps used to define the 74 genes in the E2F scoring system and the 
subsequent steps and datasets used to validate the prognostic and predictive effects of the E2F score. Experiments that highlight the ability 
of the E2F assay to predict the benefit of ACT in lung adenocarcinoma surgical patients are in bold. Abbreviations: FF: Fresh Frozen; FFPE: 
Formalin-Fixed Paraffin-Embedded; MA: Microarray; RS: RNA sequencing; NS: NanoStringTM; ACT: Adjuvant chemotherapy; MCLA: 
Molecular Classification of Lung Adenocarcinoma; TCGA: The Cancer Genome Atlas; JBR10: National Cancer Institute of Canada, Cancer 
Center Therapeutics Group; JBR10.AD: the adenocarcinoma subset of JBR10; LCBRN: Lung Cancer Bio-specimen Resource Network; 
NATCH: (Neo)Adjuvant Taxol/Carboplatin Hope.
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E2F patients (all stages: low E2F: 64% (95% CI: 53% - 
78%) versus high E2F: 38% (95% CI: 28% - 52%); stage 
I: low E2F: 75% (95% CI: 62% - 89%) versus high E2F: 
57% (95% CI: 43% - 77%); Table 1, Figure 2C and 2D). 
Additional analysis in the combined FF and FFPE cohorts 
(JBR10.AD + NATCH) from the two randomized clinical 
trials again exhibited statistically significant association 
with OS (with or without covariate adjustment) in all 
stages (p = 0.004 to < 0.001; HR = 2.87-3.75) and stage 
I (p = 0.01-0.008; HR = 4.29-4.41) for non-ACT patients 
(Table S15-16). 

The E2F score predicts benefit of ACT 

The E2F score was next tested as a predictive marker 
using two cohorts of lung adenocarcinoma patients, 
the JBR10 and NATCH trials, that were randomized to 
either surgery only or surgery followed by ACT. The 
predictive findings, summarized in Table 2, reveal the 
predictive value of the E2F score (see Tables S17-18 for 
additional details for each individual cohort and for PFS 
outcomes, as well as after adjustment for the effect of 
tissue type). Specifically, the combined cohort (JBR10.
AD and NATCH) exhibited a significant differential ACT 
treatment effect in all stage patients (with or without 

covariate adjustment: p = 0.016-0.02 for the interaction 
effect; Table 2, Table S19, and Figure 3A). Subgroup 
analysis in the high E2F score group also showed a longer 
survival in patients with ACT (HR = 0.51 with p = 0.023-
0.028; Table 2, Table S19, and Figure 3A). Moreover, the 
predictive effect was even stronger when considering only 
stage II patients (with or without covariate adjustment: p 
= 0.015-0.02 for the interaction effect and HR = 0.21-0.22 
with p = 0.012-0.028 in the high E2F score group; Table 2, 
Table S19, and Figure 3B). Specifically, high-E2F patients 
demonstrated an increase in MST and 5-year survival 
(non-ACT: MST = 18 months and a 5-year survival rate 
of 18% (95% CI: 5% - 64%); ACT: MST = never reached 
and 5-year survival rate of 81% (95% CI: 60% - 100%); 
Table 2 and Figure 3B). In contrast, low-E2F patients 
demonstrated an opposite pattern: patients without ACT 
had a MST of 73.2 months and a 5-year survival rate of 
57% (95% CI of 30% - 100%) while patients with ACT 
had a MST of 57.8 months and a 5-year survival rate 
of 41% (95% CI: 20% - 83%) (Table 2 and Figure 3D). 
Although the ACT treatment effect in stage I patients did 
not reach statistical significance, stage I patients with high 
E2F, 5-year survival increased from 31% without ACT to 
61% with ACT. In contrast, in stage I patients with low 
E2F, 5-year survival was 83% in untreated patients and 
77% in ACT-treated patients. 

NR*: median survival time not reached within the study
HR**: hazard ratio
Int-P***: P value of interaction effect
Significant P values are in bold text

Table 2: Predictive effects of the E2F score in resected lung adenocarcinoma patients
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DISCUSSION

We have explored the possibility that a measurement 
of E2F deregulation, an E2F score, could identify 
“under-treated” stage I patients likely to benefit from 
ACT and “over-treated” stage II patients unlikely to 
benefit from ACT. The resulting E2F score is based on 

74 E2F-regulated genes and contains 18 internal control 
genes. The pathway-based E2F score originated using a 
targeted siRNA approach in cell lines and was validated 
using multiple cohorts and platforms. GeneGO analysis 
(Table S6) demonstrates that the predominant biological 
pathways downstream of E2F are proliferation and 
apoptosis, as expected. However, two of the genes in 

Figure 2: The E2F score is prognostic in multiple lung adenocarcinoma datasets. K-M analysis of OS in the indicated 
combined cohorts was performed comparing patients with high (red line) or low E2F score (black line). Results for 5-year survival and the 
log-rank test p value are included in each panel. Numbers at the bottom of the graph indicate the number of patients in each group at risk 
at 12-month intervals. MS represents median survival time and NR means the MS was never reached. Graphs are truncated at 60 months. 
A. and B. represent combined FF cohorts. C. and D. represent FFPE cohorts. A and C include patients of all stages. B and D include only 
stage I patients. 
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the E2F signature with high loading coefficients and 
independent predictive power are LAMC2 (laminin C2) 
and PLAUR (plasminogen activator urokinase receptor), 
which are not directly tied to cell cycle or apoptosis. 
Serum levels of LAMC2 have previously been shown to 
be prognostic in NSCLC [23] and LAMC2 has been shown 
to drive metastatic potential of lung adenocarcinoma [24] 
in support of our findings. Likewise, components of the 
plasminogen activator pathway are thought to contribute 
to tissue remodeling in the context of tumorigenesis and 

PLAUR has specifically been implicated as a prognostic 
biomarker in NSCLC [25]. 

We have tested the E2F signature in two contexts, 
1) as a prognostic biomarker in large number of patients 
and 2) as a predictive biomarker in patients randomized 
to surgery only or surgery plus ACT, in two clinical trials. 
As a prognostic biomarker, E2F-high patients demonstrate 
a significantly shorter survival than the low E2F-group 
when considering all patients, and more importantly when 
considering only stage I patients. Current clinical standard 

Figure 3: The E2F score predicts benefit of ACT in two randomized clinical trials. K-M analysis of OS in the indicated 
combined cohorts was performed comparing patients with high E2F A. and B. with ACT (red line) or without ACT (black line) or low 
E2F C. and D. with ACT (red line) or without ACT (black line). Results for 5-year survival and the log-rank test p value are included in 
each panel. Numbers at the bottom of the graph indicate the number of patients in each group at risk at 12-month intervals. MS represents 
median survival time and NR means the MS was never reached. Graphs are truncated at 60 months. A and C represent patients of all stages. 
B and D represent stage II patients only. 
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of care does not offer ACT treatment for the majority of 
stage I patients because this group is considered low-risk. 
However, the E2F signature was able to identify a subset 
of stage I patients with poor survival who may benefit 
from traditional ACT or from a therapy, such as treatment 
with a cyclin-dependent kinase inhibitor [26], that might 
counteract the aggressiveness of this E2F-driven disease. 
Although we cannot directly compare our findings to 
many other biomarkers [27, 28] in lung adenocarcinoma, 
such as histological subtype [13], our results indirectly 
support other investigations that have addressed the 
potential of proliferation-related genes as prognostic 
biomarkers. In particular, two products (PervenioTM from 
Life Technologies and MyPlanTM from Myriad Genetics) 
have been described for estimating an early-stage NSCLC 
patient’s likelihood of survival (prognosis) based upon 
gene expression signatures [16, 17]. Together these studies 
support the central role that E2F-driven proliferation plays 
in patient outcome and demonstrate that the E2F pathway 
is a relevant target to promote patient survival in lung 
adenocarcinomas. 

As a predictive biomarker, the E2F score 
demonstrated a favorable ACT treatment effect in patients 
with high E2F when patients of all stages are considered. 
Further subgroup analysis indicates that the signature 
retains its predictive power in stage II patients. The 
benefit from cisplatin-based ACT in resected stage II lung 
adenocarcinoma patients as a whole has been established 
by several randomized clinical trials [6-12]. However, 
these studies also suggest that only a subset of these 
patients truly benefit from ACT [13]. Our data suggest that 
stage II patients can be classified as high-E2F patients who 
are likely to benefit from ACT and low-E2F patients who 
are unlikely to benefit. Although other gene signatures in 
lung cancer [15, 22, 29, 30] have been developed for this 
purpose, none have been validated in two independent 
randomized trials. 

Given that the number of randomized clinical trials 
in early-staged lung cancer is limited, it was necessary for 
us to adapt the E2F signature for application to FF tissue 
to allow the use of the many available datasets, especially 
JBR10. However, in the future we foresee applying the 
E2F signature only to FFPE tissues. Informal surveys 
with practice groups in which we explain the usefulness 
our test suggest that the test is most likely to be utilized 
in high-risk stage I patients wishing to improve outcome. 
While we have not proven that the test is predictive 
in stage I patients at this point. We suggest that our 
prognostic data in stage I and predictive data in stage II 
justify a prospective clinical trial in which stage I lung 
adenocarcinoma patients with high-E2F scores would 
be randomized to surgery only or surgery plus ACT. 
Such a trial should also include other potential predictive 
markers [13, 27, 28]. Given that the number of patients 
examined in FFPE format is relatively small, we foresee 

further optimizing the data analysis component of the 
assay in a manner that will allow training on new data 
to be obtained in the future. In the NanoString format, 
the E2F assay is technically similar to the FDA-approved 
ProsignaTM assay [2] for prognosis in breast cancer which 
is being adopted by many CLIA facilities where the assay 
is performed locally and the data analyzed centrally with 
fast turnaround.

In conclusion, we have identified and validated an 
E2F pathway-based scoring system that is a prognostic 
biomarker in stage I and a predictive biomarker in stage 
II lung adenocarcinoma patients. The NanoString-based 
E2F assay described herein represents a potential decision-
support tool that would provide valuable information in 
the choice of ACT in early-stage lung adenocarcinoma 
patients. 

MATERIALS AND METHODS

Study cohorts

Multiple datasets were used to develop and validate 
the E2F gene signature in this study (Figure 1 and Table 
S1). In particular, cells lines and RNAi were used to 
identify E2F regulated genes, and then two GEO datasets 
GSE18842 [31] (45 adjacent normal tissues and 46 
tumors) and GSE19188 [32] (58 adjacent normal tissues 
and 87 tumors) were used to identify E2F-regulated 
genes that were measurably different between tumor and 
adjacent normal lung tissue. Four published datasets, 
that reported OS (overall survival) as primary outcome, 
were used to test the prognostic and/or predictive effects 
of the E2F signature. The MLOS dataset (Moffitt Lung 
Adenocarcinoma, Overall Survival) [33] includes 
398 patients with available OS from the original 442 
Moffitt lung adenocarcinoma patients with microarray 
gene expression data from fresh frozen (FF) RNA 
(Accession# GSE72094). The MCLA dataset (Molecular 
Classification of Lung Adenocarcinoma) [34] includes 
442 lung adenocarcinoma patients with microarray gene 
expression data from FF RNA (Accession# GSE68465). 
The TCGA dataset (the Cancer Genome Atlas project, 
lung adenocarcinoma) [35, 36] includes 436 patients. 
TCGA utilized FF tissue and RNASeq was used to 
measure gene expression. The JBR10 dataset (National 
Cancer Institute of Canada Clinical Trials Group) [22] 
is a subset of the original JBR10 study representing 133 
stage IB-II NSCLCs patients for which microarray data 
from FF tissue is available (Accession# GSE14814). 
Since this cohort is a mixture of lung adenocarcinomas 
and squamous cell carcinomas, we analyzed the data in 
two ways: JBR10 (adenocarcinomas and squamous) and 
JBR10.AD (adenocarcinoma only).
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Three novel patient cohorts were used to test the 
prognostic/predictive potential of the E2F NanoString 
assay using OS and PFS (progression-free survival, 
reported only in the Supplementary Material). Detailed 
clinical characteristics of all seven cohorts are provided 
in Table S2 and S3. The LCBRN cohort (Lung Cancer 
Biospecimen Resource Network) includes 99 lung 
adenocarcinoma patients with RNA from FF tissue and 
was used to explore the prognostic effect. The MLCom 
cohort (Moffitt Lung Adenocarcinoma, Complete) [37] 
was used to test the prognostic effect and as the training 
dataset for RNA from FFPE. This cohort includes 150 lung 
adenocarcinoma patients and is referred to as “complete” 
since NanoString results were acquired and detailed 
medical chart review was performed. Although previously 
reported [37] this is the first time this cohort has been 
explored with respect to survival. The NATCH cohort 
[(Neo)-Adjuvant Taxol/Carboplatin Hope] [7] was used for 
both prognostic and predictive effects. The NATCH trial 
was a randomized trial including three arms: 1) surgery 
only, 2) surgery followed by paclitaxel-carboplatin ACT 
and 3) paclitaxel-carboplatin followed by surgery. Herein, 
NATCH includes a 74-patient lung adenocarcinoma subset 
from Arms 1 and 2 for which FFPE blocks were available. 
An additional cohort, referred to as MLTO (Moffitt Lung 
Adenocarcinoma Technical Optimization) consisted of 
36 lung adenocarcinoma patients for which we obtained 
matching FF and FFPE tissue for direct comparison. It 
does not overlap with any other cohorts and was used only 
for methods optimization. 

RNA preparation from tissue samples

RNA from Moffitt patients was acquired through 
Moffitt’s Tissue Core Facility, an established honest 
broker system under the supervision of USF’s Institutional 
Review Board and Moffitt’s Scientific Review Committee. 
Tissue blocks were reviewed by a certified staff pathologist 
for confirmation of a diagnosis of adenocarcinoma, and 
percent malignancy, cellularity, stroma, and immune 
infiltration. Three 10-μm and one 5-μm sections of each 
FFPE block were cut. The 5-μm section was stained with 
hematoxylin and eosin (H&E) and the staff pathologist 
marked approximate tumor margins using the H&E stained 
slide. The tumor regions of the three 10-μm slides were 
excised and subjected to RNA extraction using Qiagen’s 
RNeasy FFPE kit (as previously reported) [38, 39]. 

NanoString experiments

NanoString Assays were performed with 150-
ng aliquots of RNA using the NanoString nCounter 
Analysis system (NanoString Technologies, Seattle, 
WA). Generic codesets (Table S4) were obtained directly 
from NanoString Technologies and gene-specific 

oligonucleotides were obtained from IDT (Integrated 
DNA Technologies, Coralville, Iowa). After codeset 
hybridization overnight, the samples were washed and 
immobilized to a cartridge using the NanoString nCounter 
Prep Station. Cartridges were scanned in the nCounter 
Digital Analyzer at 555 fields of view for the maximum 
level of sensitivity. Ultimately, 18 highly invariant 
genes were selected to serve as internal controls for 
normalization between samples and 74 genes represented 
the E2F pathway (Table S5). 

Derivation and validation of an E2F scoring 
system

The overall E2F scoring system was generated by 
principal component analysis (PCA) [15] with the first 
principal component (PC1) of the E2F-regulated genes 
representing the E2F score. First, PCA was performed to 
derive PC1 in the FF and FFPE training cohorts. Next, 
PC1 from the training cohort was used to calculate an E2F 
score in the validation cohorts. Utilization of the median 
E2F score as the cutoff was justified by systematically 
comparing various cutoffs. To validate the prognostic 
and predictive effects of the E2F signature, each platform 
used the corresponding training cohort to classify patients 
into low or high E2F groups. The high and low groups 
in each cohort (or combined cohort) were then used for 
subsequent analyses. For validation of the prognostic 
effect, the E2F signature was analyzed to identify survival 
differences between the high and low E2F groups using 
the log-rank test or by Cox proportional hazards model 
for covariate adjustment. For validation of the predictive 
E2F signature, the Cox proportional hazards model was 
used to identify any differential treatment effect by testing 
interaction effect while the log-rank test was used to test 
the treatment effect (ACT versus non-ACT) in each risk 
group (low or high E2F). 

Statistical analysis

Microarray data processing in patient samples 
included IRON [40] and COMBAT [41] methods for 
normalization. NanoStringNorm R package [42] was used 
to NanoString data. For optimization of the E2F signature 
in NanoString, Spearman and Pearson correlation analysis 
was used to remove poorly correlated genes (between FF 
and FFPE) and to evaluate effects by platforms (microarray 
and NanoString) and by tissue type (FF and FFPE) using 
the MLTO cohort. To validate the E2F signature, we 
employed a training and validation scheme. Specifically, 
we used the MLOS cohort and the MLCom cohort as the 
training set for FF and FFPE tissues, respectively. The 
validation cohorts were MCLA, TCGA, LCBRN and 
JBR10.AD for the FF platform and the NATCH cohort 
for the FFPE platform. PCA was used to derive the E2F 
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scoring system as described previously. Log-rank test and 
Cox proportional hazards model were used for survival 
analysis. Proportional hazards assumption was performed 
for the Cox model analyses. OS was defined as from date 
of surgery (or randomization for JBR10 and NATCH) to 
date of death or last date of follow-up for those patients 
still alive. PFS was defined as from date of surgery to 
date of recurrence, progression, or death. Those alive with 
no evidence of disease at last follow-up were censored. 
When information was unknown or unavailable, analyses 
were performed on the largest possible subset. Sample size 
justification: For the prognostic effect, we used non-ACT 
patients from the 5 combined cohorts (MLOS, MCLA, 
TCGA, JBR10.AD, and LCBRN: 1065 non-ACT patients 
with 287 events) in fresh frozen platform and 2 cohorts 
(MLCom and NATCH: N = 141 non-ACT patients with 
68 events) in FFPE platform. Assuming 50% prevalence 
of high E2F in each combined cohort, the sample size of 
1065 non-ACT patients with 287 events will have 80% 
power to detect a hazard ratio of 1.4 (HR: high vs. low 
E2F) with two-sided 5% type I error. The power for the 
sample size of 141 non-ACT patients with 68 events 
will be 80% to detect a HR of 2.03. For the predictive 
effect, we combined two randomized trials (JBR10.AD 
and NATCH: N = 145 with 77 events, an overall 5-year 
survival rate of 53%, and 50% patients in ACT). With this 
information and assumption of 50% prevalence of high 
E2F in the ACT and non-ACT, this sample size will have 
80% power to detect a hazard ratio of 0.26 (HR in high 
E2F/HR in low E2F, assuming a 5-year survival rate of 
66% and 20% for low and high E2F, respectively, in the 
control group, and 66% for both low and high E2F in the 
treatment group) with a two-sided 5% type I error. Power 
calculation is based on the functions, powerCT.default0 
(for the prognostic effect) by R package powerSurvEpi 
[43] and PowerPredictiveBiomarker.shiny (for the 
predictive effect) by R package PowerPredictiveBiomarker 
[44] (github.com/dungtsa/PowerPredictiveBiomarker).
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