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ABSTRACT
We investigated the ability of support vector machines (SVM) to analyze minimal 

residual disease (MRD) in flow cytometry data from patients with acute myeloid 
leukemia (AML) automatically, objectively and standardly. The initial disease data and 
MRD review data in the form of 159 flow cytometry standard 3.0 files from 36 CD7-
positive AML patients in whom MRD was detected more than once were exported. SVM 
was used for training with setting the initial disease data to 1 as the flag and setting 
15 healthy persons to set 0 as the flag. Based on the two training groups, parameters 
were optimized, and a predictive model was built to analyze MRD data from each 
patient. The automated analysis results from the SVM model were compared to those 
obtained through conventional analysis to determine reliability. Automated analysis 
results based on the model did not differ from and were correlated with results 
obtained through conventional analysis (correlation coefficient c = 0.986, P > 0.05). 
Thus the SVM model could potentially be used to analyze flow cytometry-based AML 
MRD data automatically, objectively, and in a standardized manner.

INTRODUCTION

Acute myeloid leukemia (AML) is the most 
common form of leukemia in adults. Moreover, it has the 
lowest survival rate of any type of leukemia [1]. During 
AML treatment, detection of minimal residual disease 
(MRD) using real-time quantitative polymerase chain 
reaction (RQ-PCR) and flow cytometry (FCM) provide a 
powerful basis for adjusting the diagnosis and treatment 
[2–8]. The presence of MRD is also strongly associated 
with risk of relapse and prognosis [9, 10]. RQ-PCR-
based MRD detection is highly sensitive, but it depends 
on AML patients expressing specific fusion genes (e.g. 
AML1/ETO) or mutant genes (e.g. c-kit mutant), or 
overexpressing certain genes (e.g. Wilm’s oncogene) 
[11–14]. Consequently, detection is limited. FCM can 

detect leukemia associated immunophenotyping (LAIP) 
in 70%–75% of AML patients’ at an initial stage. The 
sensitivity of FCM is about 10−4 for MRD in AML whose 
immunophenotyping is obviously different from the 
normal cells, whereas the sensitivity is only 10−3 when 
immunophenotyping is partially overlapped with normal 
cells [15, 16].

Conventional FCM-based MRD detection has 
several disadvantages. (1) It requires LAIP, so more 
antibodies are consumed, though the detection schemes 
can be standardized [16]. (2) Because it requires the 
analysts to have enough experience with the antigen 
differentiation regularity to rule out reactive hyperplasia 
of normal cells, different analysts may draw different 
conclusions from the same data, making the results 
subjective. (3) It mainly uses a scatter diagram in two-
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dimensional space, so multidimensional FCM data are 
not completely utilized, and multidimensional space 
recognition cannot be carried out.

Support vector machines (SVMs) are supervised 
learning algorithms used with neural networks, and 
have been widely used for analysis of DNA microarray 
data [17, 18] and facial recognition [19, 20], among 
other applications. An SVM can simultaneously learn 
all of the features derived from definitively classified 
training data in multidimensional space, build a 
recognition model for these data, and then recognize 
and classify unknown data using this model. With 
multidimensional recognition, the SVM model has 
greater accuracy and precision than one- or two-
dimensional recognition. In recent years, SVMs have 
been gradually applied to FCM data analysis [21–27] 
– e.g. it can distinguish malignant lymphocytes from 
benign lymphocytes. Toedling et al. employed an 
SVM to detect residual disease in acute B lymphocytic 
leukemia with 99.78% sensitivity and 98.87% 
specificity [28]. The small and rapid LIBSVM library 
developed by Chang et al. is a mature and perfect class 
library for all SVM algorithms [29].

In the present study, the LIBSVM was introduced 
into the data analysis to overcome the disadvantages 
of FCM-based MRD detection. By combining SVM 
multidimensional training and recognition characteristics 
with the multidimensional advantages of FCM, MRD 
can be quantified more precisely, objectively and 
economically.

RESULTS

Patient characteristics

In this study, 159 AML data sets were selected 
from 36 patients, including 22 men and 14 women with 
an average age 42 years (range, 17 to 72 years). The 
distribution of AML subtypes included 10 M0, 3 M1, 15 
M2, 6 M5, and 2 M6. The M3, M4, M7 and other subtypes 
seldom expressed CD7, so few cases were selected. 

The effect of training cell number

Combing the data from the patients’ initial 
immunophenotyping with the data from the 15 healthy 
individuals generated a training data file with more than 
2 × 105 events. However, because with LIBSVM the 
length of the training time was proportional to size of 
the training data file, using the complete training data 
set it took 24–36 h to finish the parameter optimization 
and model building with low efficiency. Therefore, to 
optimize parameters and model building more quickly, 
104 events were selected from the training data through 
stratified random sampling, which only took 5–10 min. In 
the patient group, the residual leukemic cell fractions in 
10 AML MRD data sets were analyzed using the SVM. 
Notably, sets containing the 104 sampled events did not 
significantly differ from the complete data sets (Paired 
t-test P = 0.0792) (Table 1 and Figure 1). Therefore, 
to improve the training efficiency, 104 events selected 

Figure 1: Comparison between different event numbers for training and calculating AML MRD. (104 events vs. 2 × 105 
events, P > 0.05)
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through stratified random sampling were applied for 
training and model building.

Optimization of training parameters C and γ

The grid.py script in LIBSVM was used to optimize 
parameters C and γ for each patient, based on the 104 
sampled event groups. Through optimization training for 
the 36 patients, 36 groups of C = 0.50–32768 (median, 
8.00), γ = 0.13–8.00 (median, 8.00), and a corresponding 
optimized cross-validation accuracy of 98.25%–99.95% 
(median, 99.46%) were obtained, which meant that the 
accuracy of the individual-specific predictive models for 
the 36 patients could reach 98.25%–d99.95% when they 
were used in the MRD SVM analysis.

Correlation between SVM group and manual 
group

The 36 predictive models were used in the 
automated SVM analysis of MRD data, and the MRD data 
was also analyzed conventionally, yielding 159 groups 

of paired data. The MRD cell fraction was determined 
be 0.006%–82.180% using conventional analysis and 
0.006%–77.200% using the automated analysis. The 
correlation coefficient was 0.986, and a two-tailed paired 
t-tests showed the correlation to be significant (P < 0.05) 
and without a significant statistical difference between the 
results (P = 0.134). Using the Bland-Altman comparison 
method, only 11 of the 159 data pairs were out of 95% 
limits of agreement (Figure 2). From the scatter diagrams, 
it was apparent that the distribution of leukemia cells 
determined using SVM analysis was similar to that 
obtained using manual analysis (Figure 3).

DISCUSSION

An SVM is a supervised learning algorithm that 
can learn the characteristics of known objects in multiple 
dimensions then build predictive models with which to 
classify data of unknown classification [26]. LIBSVM is 
an excellent, easy and mature library. For FCM data, SVM 
has the advantage of being capable of multidimensional 
analysis, especially for 4 or more colors, and avoids the 

Table 1: Comparison between different event numbers for training and calculating AML MRD
Case No. 104 events 2 × 105 events

case 1 0.747 1.037
case 2 0.108 0.101
case 3 0.047 0.024
case 4 0.305 0.304
case 5 0.013 0.012
case 6 1.974 1.986
case 7 0.956 0.965
case 8 1.222 1.621
case 9 1.640 2.230
case 10 1.174 1.253

Figure 2: Bland-Altman comparison of SVM and manual analysis results. Of the 159 pairs of data, only 11 were outside the 
95% limits of agreement, which was from −4.4 to 3.9. 
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artificial misjudgment and experience requirements of 
an analyst. In this study, when LIBSVM was applied for 
automated MRD analysis, the results did not significantly 
differ from those obtained conventionally, and the results 
of the analysis could be displayed in different colors on 
scatter diagrams [29]. 

While the SVM is learning the known classification 
data and model building, parameter optimization can 
affect the ability of the model to accurately analyze 

unclassified data. C and γ are both important parameters 
for optimization [30]. C is the penalty coefficient, which 
controls the model’s ability to generalize. If C is too 
large or too small, the ability of values to float will be 
poor [31]. Parameter γ controls the degrees of freedom 
in the nonlinear model – i.e. the number of support 
vectors. Only when C and γ are optimum does the 
model have the highest prediction accuracy (CV rate). 
Each patient expressed different levels of CD7, CD117, 

Figure 3: Comparison of the automatic SVM and manual analyses of typical AML patient results. For clarity, each scatter 
diagram shows 104 events. (A) The leukemic cell fraction was 24.672%, according to the SVM predictive model building of this MRD. 
The leukemia cell events are in red and the normal cells are in blue. (B) According to the manual analysis, the leukemia cell fraction was 
24.466%, based on initial immunophenotyping of the patients. The gate was set by each step, and the MRD ratio was calculated as “P1 and 
P2 and P3”. The scatter diagrams were CD7/CD117, SSC/CD45, and CD117/HLA-DR, from top to bottom.
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CD45, and HLA-DR, so the distributions differed in the 
multidimensional space. Consequently, when leukemia 
cells were mixed with normal cells to form the training 
data file, the dividing plane between the leukemic and 
normal cells differed in the multidimensional space. Thus, 
finding the corresponding optimal dividing plane for the 
patient, which would identify the optimal parameters of 
the individual-specific C and γ, was the key to establishing 
the SVM model [32]. The grid.py script in the LIBSVM 
class library was therefore used to optimize the parameters. 
However, all the data required cross-validation 5 times, 
and C and γ was tested step by step, so the optimization 
time and data volume were closely related. We found that 
if parameter optimization and model building were done 
using the complete training data (derived from patients 
with initial leukemia cells and 15 cases of normal data, 
including more than 20 million events), it would take 
24–36 h to complete, which is not suitable for practical 
application. We therefore used a stratified random method 
to extract 104 data as training data. Comparison with the 
automatic analysis results obtained with MRD models 
using two different size data sets revealed no significant 
difference between the models (P > 0.05).

When the optimized parameters were used to 
establish a predictive model, the results of the SVM 
automated MRD analysis did not differ from those 
obtained using the manual method (P > 0.05), with 
a correlation coefficient of 0.986. By comparing the 
results obtained using the SVM with those obtained 
manually from scatter diagrams, we found that the SVM 
properly studied the distribution characteristics of the 
patient’s initial leukemia cells in multiple dimensions and 
accurately identified the residual leukemia cells.

In conclusion, automated SVM and manual 
analyses showed good consistency, which could reduce 
the experience requirements for MRD analysis. However, 
the sample size of AML patients involved was not large 
enough, and additional data from CD7-positive AML 
patients is needed. Moreover, AML patients exhibiting 
other expression patterns (e.g. CD19 expression without 
CD7 expression or abnormal CD33 and CD13 expression 
patterns without CD7 expression) should also be analyzed 
using an SVM in order to determine the scope of its 
utility. In short, the introduction of LIBSVM and other 
SVM algorithm libraries can be completely applied to 
the multidimensional features of FCM data, which would 
make interpretation of FCM data more objective and 
would provide a basis for achieving automated FCM data 
analysis. 

MATERIALS AND METHODS

Patients

Immunophenotypes vary among AML patients, and 
there is no consensus on the LAIP for MRD detection. 

We studied one specific LAIP containing CD7, CD117, 
CD45 and HLA-DR. Information with the features 
listed below for patients treated from 2010 to 2012 were 
selected from the FCM database in our division. (1) Initial 
immunophenotyping schemes contained CD7, CD117, 
CD45 and HLA-DR, and these four antigens were 
detected in the same tube. (2) Leukemia residual disease 
lesion detection was carried out no less than twice. (3) The 
specimens were bone marrow. (4) The cell counts in the 
data file were at least 105. Using these criteria, 159 data 
files from 36 patients were selected. An individual-specific 
predictive model was built for each patient.

Reagents and instruments

CD7 (Becton Dickinson Biosciences, USA) was 
labeled with fluorescein isothiocyanate (FITC) using 
clone No. 4H9. CD117 (Beckman Coulter, Inc. USA) was 
labeled with phycoerythrin (PE) using clone No. 95C3. 
HLA-DR (Becton Dickinson Biosciences, USA) was 
labeled with allophycocyamin (APC) using clone No. 
G46-6. CD45 (Becton Dickinson Biosciences, USA) was 
labeled with phycoerythrin cyanin 7 (PE-cy7) using clone 
No. J33.

A BD FACS Calibur equipped with two lasers and 
four colors was applied for the MRD study. LIBSVM 
version 3.16 was used for model building, parameter 
optimization and data prediction for automated analysis. 
ACEA NovoExpressTM, which was developed by ACEA 
Bioscience Inc. to have a humanization design interface 
and functions, was used for manual analysis.

Automated MRD analysis using LIBSVM

The individual model for each patient was built 
through the processes of training data file derivation, 
parameter optimization, and individual model building.

ACEA NovoExpressTM was used to open the flow 
cytometry standard (FCS) data files for patients’ initial 
immunophenotyping. The leukemia cells at diagnosis 
were selected and set as P1, after which P1 were exported 
in the comma separated value (CSV) file format. 
Thereafter, CSV files were imported into MATLAB 
R2011a and saved as matrices in which the columns were 
fluorescence, rows were cells, and the matrix values were 
fluorescence intensities. The matrix data were written 
into training data files named [patientname.train.txt] in 
the form required for LIBSVM, and the data flag was 
set as 1. FCS data from 15 healthy individuals were 
read in the same way, and the data were added to the 
aforementioned [patientname.train.txt] file. That data flag 
was set as 0. To normalize the data and speed up model 
building, ‘svm-scale.exe’ was used to adjust the data in 
the [patientname.train.txt] file following the LIBSVM 
requirements so as to construct the [patientname.train.
scale] file. At the same time, the [patientname.train.
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range] file was formed to enable adjustment of the data 
in the prediction stage.

After the data were ready, the LIBSVM default 
kernel (radial basis function) was employed to build 
individual-specific models. In addition, using the penalty 
coefficient C and core parameter γ, model prediction 
was optimized to form the optimized model. For this 
purpose, grid.py in LIBSVM was called to carry out 
the cross-validation of the training data file formed 
above. The default parameter values were set through 
5-time cross-validation with the command ‘grid.py –
svmtrain “svmtrain.exe” -log2c -gnuplot “gnuplot.exe” 
“[patientname.train.scale]”’. The optimized C and γ 
were obtained to build the patients’ individual-specific 
training model with the command ‘svm-train.exe–c–g 
“[patientname.train.scale]” “[patientname.train.model]”’.

For the automated MRD analysis, the original 
data for a patient’s MRD were processed in the standard 
LIBSVM form and a data flag was set to 1, as mentioned 
above. To recognize MRD data with different detection 
times, the file was named [patientname+detectiontime.
test], and the aforementioned [patientname.train.range] 
file was used to scale [patientname+detectiontime.
test] into [patientname+detectiontime.test.scale]. The 
svm-predict.exe program in the LIBSVM software 
package was then combined with the individual 
patient’s specific training model to automatically 
analyze the [patientname+detectiontime.test.scale] file 
and predict the accuracy of flag 1; that is, the accuracy 
of the patient’s residual leukemic cell fraction. Finally, 
the predicted leukemic cells (in red) and normal cells 
(in blue) were plotted using the “scatter” function in 
MATLAB.

Conventional manual analysis of MRD

The three scatter diagrams CD7/CD117, SSC/
CD45 and FSC/HLA-DR were plotted for patients’ initial 
immunophenotyping. The P1, P2 and P3 gates were set 
for leukemia cells in the scatter diagrams. Finally, the 
leukemic cell fraction was obtained through the logical 
combination “P1 AND P2 AND P3”.

Statistics

The data groups in the automated SVM analysis 
were compared to the corresponding data in the 
conventional manual analysis, one by one, using two-
tailed paired t tests. Values of P < 0.05 were considered 
significant.
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