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ABSTRACT

RAS proteins are the founding members of the RAS superfamily of GTPases. 
They are involved in key signaling pathways regulating essential cellular functions 
such as cell growth and differentiation. As a result, their deregulation by inactivating 
mutations often results in aberrant cell proliferation and cancer. With the exception 
of the relatively well-known KRAS, HRAS and NRAS proteins, little is known about 
how the interactions of the other RAS human paralogs affect cancer evolution and 
response to treatment. In this study we performed a comprehensive analysis of the 
relationship between the phylogeny of RAS proteins and their location in the protein 
interaction network. This analysis was integrated with the structural analysis of 
conserved positions in available 3D structures of RAS complexes. Our results show 
that many RAS proteins with divergent sequences are found close together in the 
human interactome. We found specific conserved amino acid positions in this group 
that map to the binding sites of RAS with many of their signaling effectors, suggesting 
that these pairs could share interacting partners. These results underscore the 
potential relevance of cross-talking in the RAS signaling network, which should be 
taken into account when considering the inhibitory activity of drugs targeting specific 
RAS oncoproteins. This study broadens our understanding of the human RAS signaling 
network and stresses the importance of considering its potential cross-talk in future 
therapies.

INTRODUCTION

The RAS protein family is a set of small GTPases 
that function as binary switches by alternating their 
activation state from GTP-bound (active) to GDP-bound 
(inactive). In higher eukaryotes these proteins are involved 
in signal transduction pathways controlling a diverse 
array of essential cellular functions, such as growth, 
differentiation and survival [1]. In the human genome, 
the RAS family includes a large number of related genes 
(paralogs). However, with the exception of a few well-
studied protein models, the precise functions of the thirty-

five human RAS paralogs and their relation in terms of 
sequence conservation, gene expression and protein-
protein interactions remain poorly understood [2].

Of clinical relevance, up to 30% of all human tumors 
present oncogenic mutations in members of the prototypical 
RAS family which often contribute to tumor pathogenesis 
by overactivating the Raf/MEK/ERK pathway [3, 4]. KRAS 
is the most frequently mutated RAS gene, accounting for up 
to 20% of all tumors. This is in marked contrast to NRAS 
and HRAS genes, found to be mutated in 5% and 3% of 
all tumors analyzed, respectively. In particular, KRAS 
mutations are predominant in pancreatic tumors, with 
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an incidence as high as 90% (all data obtained from the 
Catalog Of Somatic Mutations In Cancer, COSMIC, http://
cancer.sanger.ac.uk/cosmic [5]). Oncogenic RAS mutations 
are predominantly found in residues G12, G13 and Q61, 
impairing the intrinsic GTP hydrolysis and therefore, 
rendering RAS proteins in a permanent GTP-bound, active 
state [6]. In addition to cancer, mutations in HRAS and 
KRAS genes have been associated with the Costello and 
Noonan syndromes, respectively [7, 8]. Notably, other 
members of this gene family are not significantly mutated 
in cancer and only in some cases, overexpression of RAS-
related genes has been associated to certain types of tumors, 
i.e. RALA and RALB are overexpressed in melanoma and 
non-small cell lung cancer (NSCLC), with RALA having 
a predominant role in tumor growth and RALB in its 
metastatic potential [9, 10].

As shown in Figure 1, the human RAS protein 
network can change its topology through two basic 
mechanisms: i) changing the nodes present in the network 
(i.e. changes in gene expression); and ii) rewiring the 
connections between nodes (i.e. mutations in the protein-
protein binding interfaces). Although activated, wild-
type Ras GTPases bind their downstream effectors with 
high affinity, the switchable nature of their activation 
mechanism (GTP/GDP exchange) can result in relatively 
transient protein-protein interactions (PPIs), which are 
susceptible to rewiring [11–16].

While the three prototypical RAS proteins had 
been extensively characterized, much less is known 
about the remaning RAS paralogs in either healthy or 
tumor tissues. In this work, we study the relationship 
between phylogenetic distances of all RAS paralogs 
and their associations in the human protein interaction 
network. To this end, we implement a comparative 
sequence analysis to find conserved amino acid positions 
between divergent RAS-protein pairs that preserve protein 
interaction network proximities in the human interactome. 
We hypothesize that these positions may help maintain 
functionally important protein interactions common to 
both paralogs resulting in close network proximity. These 
positions are then mapped onto different RAS complexes 
using their 3D structural information in order to determine 
their connection to RAS protein binding sites.

The results we show here add a new perspective to 
the generally accepted idea that the interactions between 
paralogous proteins diverge with their sequence [17–
19] and shed some light on the largely unknown role 
of the human RAS interaction network. Furthermore, 
our findings broaden the current perspective on the 
putative role of paralogous genes in the development and 
adaptation of functional and pathological RAS signaling 
networks. In addition, important conclusions can be drawn 
out of the conserved positions in Divergent but Interacting 
RAS Pairs (DIRP) regarding their potential functional 

Figure 1: Examples of different biological mechanisms for changing interactions network topology. The graphic on the 
top, where black nodes represent expressed proteins and solid lines active interactions, shows the effect of changing gene expression. 
Meanwhile, the graphic on the bottom represents the effect of a rewiring process induced by mutations (triangle) in protein binding 
interfaces.
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relevance for the design and development of new Ras 
inhibitors.

RESULTS

Phylogenetic and network distance relationships 
of human RAS paralogs

To analyze the relationship between the phylogeny 
of RAS proteins and their location in the protein-protein 
interaction (PPI) network, we compared the network and 
phylogenetic distances for human RAS paralogous pairs 
(see Figure 2 and Methods). RAS paralogs tended to be 
closely associated in the interactome when they were 
phylogenetically close and to increase their distance as 
they diverged. We observed the same pattern regardless 
of the PPI dataset and the network distance measure 
used (Figure 3). This pattern was absent in the random 
model (see Methods). As seen in Figure 3A-3D, network 
distances of the most divergent pairs resembled a random 
distribution, while phylogenetically close pairs had a very 
distinct network distance distribution.

The inverse correlation between sequence similarity 
and the phylogenetic distance of Ras protein pairs is 
consistent with an evolutionary model by which recently 
duplicated genes share the same context of interactions. 
Thus, as sequences diverge by accumulation of mutations, 
they move away from each other in the interactome. 
However, our results show that some of the distant 
duplicated genes keep the same protein-protein interaction 
context, suggesting that there is more to this model.

Identification of divergent Ras paralog pairs 
located close in the PPI network

There is an inverse correlation between sequence 
conservation and the phylogenetic distance of Ras 
protein pairs. From this we can also conclude an inverse 
relationship between sequence conservation and network 
distance based on the results shown in Figure 3A-3D. An 
observation that suggests that conservation or variation 
of amino-acid positions would determine whether a pair 
of RAS proteins has the same or different neighbors in 
a PPI network. With the aim to identify amino-acid 
positions determinant of Ras proteins’ location in the PPI 
network, we closely examined the relationship between 
the phylogenetic and network distance distributions of 
all Ras pairs. We distinguished four main panels in the 
phylogenetic vs. network distance plots based on two 
values used as boundaries, one for the network distance 
measures and another for the phylogenetic distances 
(panels I-IV in Figure 4): Panel I) Ras pairs close in the 
phylogenetic tree and in the PPI network graph, in this 
panel the general high conservation between sequences 
makes it difficult to distinguish those conserved positions 
responsible for the close network location observed in 

this set of pairs; Panel III) Ras pairs close in the tree and 
distant in the PPI network, this panel is empty, suggesting 
that a few mutations in recently duplicated RAS genes 
cannot produce a substantial change in their protein 
interaction contexts; Panel IV) Ras pairs distant in the 
tree and in the PPI network, in this panel IV the high 
divergence between sequences again makes it difficult to 
identify those variable positions directly responsible of 
the divergence in the interaction contexts of these pairs; 
finally, Panel II) Ras pairs distant in the tree but close in 
the PPI network, in this panel we find a set of divergent 
sequence pairs where it would be feasible to identify 
specific conserved positions related to their close location 
in the network. We refer to this set of pairs of paralogs as 
DIRP (Divergent but Interacting RAS Pairs).

In order to distinguish from meaningless random 
behavior, the DIRP dataset was selected out of all RAS 
pairs based on two statistical thresholds of significance: 
i) significant sequence divergence between proteins in the 
pair and ii) significant closeness in the protein interactome 
(Methods). The number of protein pairs that were finally 
included as DIRP is shown in Table 1, for each PPI 
network model and each network distance metric used.

We studied the relationship between network 
closeness and the similarity of interaction interfaces 
in the DIRP dataset by retrieving all the directly shared 
interacting partners for all pairs in the DIRP dataset, and 
comparing against an equivalent No-DIRP dataset (see 
Supplementary Figure S2). The DIRP pairs show a median 
of 3 shared interacting proteins per pair while in the No-
DIRP dataset the median is zero. The results are practically 
the same if using Commute Time (CT) or Diffusion (DK) 
kernel similarity metrics. These results support a positive 
relationship between the number of shared interacting 
proteins (which bind to similar interfaces in Ras paralogs) 
and network closeness measured with kernel metrics. 
A detailed analysis of some DIRP pairs and their direct 
interactors (see section 3 in Supplementary material) shows 
that the majority of these shared physical interactions are 
cited in literature or annotated in functionally curated 
databases, although many of these interactions remain yet 
unpublished waiting for a functional study (Supplementary 
Table S5). The set of published shared interactions 
constitute a positive validation that support the cross-talk 
hypothesis between DIRP Ras paralogs.

Searching for conserved positions in divergent 
but interacting RAS pairs (DIRPs)

In order to find the specific conserved positions 
within the DIRP set, all RAS protein sequences were 
aligned using a general multiple sequence alignment 
(MSA). Then, for each amino acid position, we normalized 
their conservation value in the positive (DIRP) and 
negative (random model) datasets by comparing it with 
the conservation of these same positions in the whole 
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Figure 2: General pipeline of the Ras protein pairs phylogenetic and network distance measurements and comparison. 
A. Pairwise distance calculation in the PPI graph, expressed as a matrix. B. Pairwise phylogenetic distance calculation in the tree, expressed 
as a matrix. C. Logarithmical transformation to normalize network distances between proteins. D. Exponential transformation to normalize 
phylogenetic distances between proteins. E. Graphical representation of both the proteins phylogenetic and network distances. As we can 
see in the left side of E, distance measures based on kernels (e.g. DK or CT), compared to shortest path calculation (minimum number of 
edges connecting two given nodes), are able to distinguish the level of association between two Ras nodes connected through different 
topologies: 1) highly connected nodes; 2) low connected; 3) nonspecifically connected. This result demonstrates that kernel similarity 
metric is one of the better measures to deal with the kind of artifacts produced by highly connected network hubs (see section 1 in 
Supplementary material).
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Figure 3: Distributions of network distance values between protein pairs in different phylogenetic distance bins. Real 
(white boxes) and random (dark boxes) normalized distributions of the network distances between Ras protein pairs (y-axis), divided into bins 
corresponding to rising ranges of normalized phylogenetic distances (x-axis). Network distances were calculated applying CT (panels A and B) 
and DK (panels C and D) algorithms for the STRING Experimental (panels A and C) and the PINA (panels B and D) PPI graph datasets.

Figure 4: Distribution of the network vs. phylogenetic distance values and established thresholds. Example of the 
comparison between normalized phylogenetic distances and normalized network distances between protein pairs, applying DK algorithm 
to STRING Experimental dataset for obtaining network distances. The phylogenetic distance threshold corresponds to pairs with 45% 
sequence identity (dashed line) and network closeness threshold is established according to a p-value of 0.05 (solid line).
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MSA background dataset (see Figure 5 and Methods). 
This normalization allowed us to identify positions 
significantly and specifically conserved in the DIRP 
dataset compared against both datasets (the random and 
the whole background MSA). With this approach we 
selected a total of twenty-two positions (p-value < 0.01, 
upper and lower thresholds in Figure 6) specific to the 
DIRP dataset. Twenty-one of these positions show a higher 
conservation in the DIRP dataset, while only one out of 
the twenty-two positions shows a higher variability (lower 
conservation) in the DIRP dataset (position R139 using 
HRas as reference in the alignment, see Supplementary 
Table S1). The absence of Ras protein pairs that are 
similar in sequence but separated from each other in 
the interactome (Panel III in Figure 4) contrasts with 
the abundance of highly divergent Ras pairs close in the 
network (Panel II in Figure 4). This suggests that a protein 
needs to accumulate many neutral and adaptive point 
mutations in order to get new interacting partners, whilst 
it can maintain it interaction context through a few key 
conserved positions.

Relationship between the DIRP conserved 
positions and the Ras protein binding regions

In order to investigate the relationship between the 
DIRP specific positions and Ras protein binding sites, we 
collected twenty-eight RAS human complexes from the 
Protein Data Bank (PDB) [20] and clustered them into six 
structural groups (Methods). We then defined the binding 
regions between Ras and its partners based on the analysis 
of these structural groups (Table 2). Out of the 22 DIRP 
specific positions identified in the previous step, 15 (68%) 
are directly involved in one or more binding regions and 
are located in some of the functional regions identified in 
Ras proteins (Table 3, Table 4 and Figure 7). Another four 
are surrounded by two consecutive interacting positions 
in the amino acid sequence. Considering that these last 
positions may also be involved in Ras protein-protein 
interactions, we can conclude that 86% of the DIRP 

specific positions participate in the interactions of Ras 
with other proteins (Table 3). The remaining three were 
not related to any known interaction site in this analysis. 
These results indicate that DIRP specific positions are 
important to establish interactions between Ras and 
its partners and therefore their conservation can be an 
important factor in maintaining these phylogenetically 
distant Ras paralogs close in the interactome.

DIRP specific positions constitute a large percentage 
(~ 38%) of the binding region of Ras with Guanine 
Exchange Factor (GEF) effectors (Table 2), such as SOS 
(Ras GEF), Epac2 (Rap GEF), RalGDS (Ras GEF) and 
the GTPase Activating Protein (GAP). The selected DIRP 
positions are also important for the tumor suppressor 
interaction regions in Ras recognized by selected 
antibodies (~35%) and, to a lesser extent, with the Ras 
Binding Domain (RBD) of different Ras triggered signal 
effectors (~19%), such as phosphoinositide 3-kinase, Raf, 
Byr2 or c-Raf1. In addition, several DIRPs map to residues 
frequently mutated in cancer (Figure 8 and Supplementary 
Table S6). This is particularly evident for residues such as 
G12, which together with G13 and Q61 account for 97% 
of RAS oncogenic mutations [21].

Other Ras complexes show a very low involvement 
of these DIRP specific positions in their Ras binding 
regions. For instance, the Ras binding region of the PLC 
epsilon Ras association domain only matches one position 
out of a total of 17 (Table 2). Results in this case suggest a 
low influence of the DIRP specific positions in the signal 
mediated by this domain. Only two complexes do not 
show any match to DIRP positions, the Ras complex with 
a mutated Raf protein and the interaction of Rheb (Ras 
like protein) with the PDEδ protein, a putative solubilizing 
factor for several prenylated Ras-subfamily proteins [22].

As mentioned, three DIRP positions (G77, E153 
and C186) did not match any binding region, something 
that could be due to missing Ras complexes not yet 
registered in the PDB. Specifically, position 186 is 
known to be a conserved Cys residue located in a highly 
variable and unstructured carboxyl-terminal region of 

Table 1: Number of protein pairs through all the selection process for obtaining the DIRP

 DK STRING Exp CT STRING Exp DK PINA CT PINA

# initial pairs 351 351 435 435

#pairs after 
phylogenetic boundary 323 323 396 396

# DIRP 106 82 113 86

% pairs 30 23 26 20

The first row indicates the number of protein pairs that were initially analyzed in each system (algorithm and dataset 
used). The second row shows the number of pairs after applying the phylogenetic threshold for distant pairs (normalized 
phylogenetic distance ≥ 1.7). The third row contains the number of DIRP finally selected, after filtering by the normalized 
network distance threshold (p-value ≤ 0.05) established by means of random models and specified in Table S2 in 
Supplementary material. The last row indicates the percentages of DIRP over the total number of Ras pairs initially found.
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Figure 5: General pipeline for obtaining the set of DIRP specific positions and mapping them into Ras 3D complexes. 
A. Position conservation measurement using the BLOSUM 45 matrix for the pairs selected as DIRP and for the randomly selected pairs 
(negative control). B. Position conservation measurement within the whole MSA. C. Differential position conservation (normalization) 
between both (the DIRP and random datasets) versus the MSA background. D. Selection of the significant DIRP specific positions and 
mapping on the different human Ras 3D binding complexes.

Figure 6: Differential amino acid conservation. Differential position conservation between the DIRP dataset sequences and the 
general MSA (y-axis). Residues used as template correspond to the human HRas amino acid sequence (x-axis). A positive value in the 
difference of conservation indicates a position with higher level of conservation in the DIRP dataset than in the background dataset and a 
negative value indicates a position with a higher variability. Horizontal dark lines correspond to thresholds associated to p-values < 0.01.
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Table 2: DIRP specific positions mapping to binding sites in the human Ras complexes

Functional 
Group Complexes Description Positions Num Ratio

RasGef 1LFD Interaction of Ras with RalGDS G12, Y32, D33, P34, I36, E37, D38, 
S39, Y40, Q61, E62, E63, Y64, S65, 
A66, M67

7/16 43.7%

 1NVU
1NVX
1NVW
1NVV

Feedback activation by Ras. GTP of 
the Ras-specific nucleotide exchange 
factor SOS

S17, T20, I21, Q22, I24, N26, H27, 
D30, E31, Y32, D33, P34, I36, E37, 
D38, Y40, K42, Q43, V44, D54, I55, 
D57, A59, G60, Q61, E63, Y64, S65, 
A66, M67, D69, Q70, Y71, R73, 
R102, R149

12/36 33.3%

 1XD2 Autoinhibition in the Ras 
activator Son of sevenless: ternary 
Ras:SOS:Ras*GDP complex

Q22, I24, N26, H27, D33, P34, I36, 
E37, D38, K42, Q43, V44, L56, E63, 
Y64, A66, M67, Q70, Y71, R149

7/20 35.0%

 1BKD The structural basis of the activation 
of Ras by Sos: H-Ras with SOS-1

S17, I21, Y32, P34, Y40, D54, I55, 
D57, A59, G60, Q61, E63, Y64, S65, 
A66, M67, D69, Q70, Y71, R73, 
R102

8/21 38.1%

RapGef 3CF6 Epac2 in complex with a cyclic AMP 
analogue and RAP1B

S17, T20, I21, H27, Y32, P34, E37, 
Y40, D54, I55, L56, D57, A59, G60, 
Q61, Y64, A66, M67, D69, Q70, 
Y71, Q99

9/22 40.9%

RasGap 1WQ1 The Ras-RasGAP complex: structural 
basis for GTPase activation and its 
loss in oncogenic Ras mutants

A11, G12, G13, I21, Y32, D33, P34, 
I36, E37, D38, S39, Y40, G60, Q61, 
E62, E63, Y64, K88, D92

7/19 36.8%

Antobodies 
(Cancer 
supressors)

2UZI Tumour prevention by a single 
antibody domain targeting the 
interaction of signal transduction 
proteins with RAS

I21, V29, D33, P34, I36, E37, D38, 
Y40, Q61, Y64

4/10 40.0%

 2VH5 HRAS(G12V) - ANTI-RAS FV 
(DISULFIDE FREE MUTANT) 
COMPLEX

I21, V29, D33, P34, I36, E37, D38, 
Y40, D57, Q 61, Y64

4/11 36.4%

 3DDC Ras effector interaction between 
tumour suppressor NORE1A and Ras 
switch II

I24, Q25, I36, D38, Y40, Y64, M67 2/7 28.6%

Ras 
Binding 
Domain & 
PI3K

1HE8 Ras binding to its effector 
phosphoinositide 3-kinase gamma

I21, D33, I36, E37, D38, S39, Y40 2/7 28.6%

 3KUC
1GUA

Complex of Rap1A(E30D/K31E) 
GDP with RafRBD(A85K/N71R) 
Ras/Rap effector specificity 
determined by charge reversal

I21, D33, I36, E37, D38, S39, Y40, 
R41

2/8 25.0%

 3KUD What makes Ras an efficient 
molecular switch: Ras-GDP 
interactions with mutants of Raf

I21, E37, D38, S39, Y40, R41 0/6 0.0%

 1K8R Ras-Byr2RBD complex: structural 
basis for Ras effector recognition

I36, E37, D38, S39, Y40, R41, D54 2/7 28.6%

(Continued )
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the Ras protein. Functionally, this residue is involved in 
the sorting and binding of Ras to the inner surface of the 
plasma membrane without which the protein is inactive 
[23–25]. The high degree of conservation in this position 
may suggest a co-localization of the DIRP in the inner 
membrane.

DISCUSSION

In this work we carried out a comprehensive 
analysis of the relationship between the phylogeny of 
RAS proteins and their location in the interaction network. 
This was followed by sequence and structural analyses of 
DIRP conserved positions in the binding sites of RAS with 
its effectors. Our sequence analysis of these divergent 
but interacting proteins identified these key positions, 
which mapped to 3D binding regions in Ras that mediate 
the interaction with many of its effectors. These results 
support the idea that these conserved positions determine 
which DIRP lie close in the interactome, i.e sharing similar 
interaction contexts.

The prominent relationship of DIRP specific 
positions with Ras binding sites suggests that point 
mutations of these positions in somatic cells might result 
in rewiring of the Ras network, leading to pathological 
states [26], particularly for mutations that affect the on/

off switch regulation. Mutations in Ras proteins can lead 
to a permanently activated cell proliferation state or an 
alteration of the Ras interaction network driving tumor 
development [27]. Furthermore, the change of just a 
couple of key residues between Ras and Ral paralogous 
proteins produces the interchange of specificity between 
their natural effectors [28, 29]. One of these interchanged 
residues is I36 of HRas, which corresponds to the DIRP 
specific position involved in the largest number of Ras 
complex binding sites (Table 3). Other DIRP positions 
match known tumor suppressor binding regions in Ras, 
suggesting that further investigation of DIRP positions 
could inspire novel anti-tumoral approaches. The 
methodology described in this work could be extended 
to the study of other protein families, applying the same 
pipeline.

The fact that many distant Ras paralogs share their 
context of interacting partners linked to the conservation 
of a few key positions supports the hypothesis of 
convergent evolution as highly probable in the Ras 
interaction network. Nevertheless, the phylogenetic 
model, observed in this work, shows that moving away in 
the Ras interactome involves the accumulation of many 
neutral and adaptive point mutations in a large process of 
sequence divergence, since there is no Ras paralogs close 
in the phylogenetic tree and distant in the interactome. 

Functional 
Group Complexes Description Positions Num Ratio

 1C1Y c-Raf1 in complex with Rap1A and a 
GTP analogue

I21, I36, E37, D38, S39, Y40, R41 1/7 14.3%

Other 
cases

1ZC3
1ZC4

Ral-binding domain of Exo84 in 
complex with the active RalA

D47, G48, E49, T50, C51, L52, M67, 
G75, F78, V81, F82

1/11 9.1%

 2A9K
2A78

C3bot-NAD-RalA complex: Ral-A 
and Mono-ADP-ribosyltransferase 
C3 C3bot-RalA complex

T20, I21, Q22, L23, D69, Y71, M72, 
G75, L79, A83, V103, S106, D107, 
P110

4/14 28.6%

 2C5L PLC epsilon Ras association domain 
with HRas

I24, Q25, I36, D38, S39, Y40, D47, 
S127, Q131, A134, Y141, I142, 
E143, D154, R161, R164, Q165

1/17 5.9%

 4DXA Rap1 in complex with KRIT1 Q25, H27, I36, E37, D38, S39, Y40, 
Q43, M67

1/9 11.1%

 3T5G Rheb in complex with PDE6D T2, D57, G178, P179, G180 0/5 0.0%

 2BOV recognition of an ADP-ribosylating 
Clostridium botulinum C3 
exoenzyme by RalA GTPase

I139, P140, E143 1/3 33.3%

 1UAD Interaction between RalA and Sec5, a 
subunit of the sec6/8 complex

I36, G48, E49, T50, C51 1/5 20.0%

From left to right: Functional group labels for clustered complexes; PDB Id codes of the Ras 3D complexes clustered 
with r.m.s. < 1.0; description of the Ras 3D complexes; positions involved in the binding site of the Ras complexes (those 
matching the DIRP specific positions are in bold); Number (Num.) and percentage (Ratio) of DIRP specific positions over 
all binding site positions. Positions numbering follows the human HRas protein sequence as reference.
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Table 3: Ranked list of the DIRP specific positions based on their level of implication in Ras binding sites

Position Number of matches Complexes

I36 14 1NVU, 1XD2, 1LFD, 1WQ1, 2UZI, 2VHS, 3DDC, 1H8E, 3KUC, 1K8R, 
1C1Y, 2C5L, 4DXA, 1UAD

Y64 9 1NVU, 1XD2, 1BKD, 1LFD, 3CF6, 1WQ1, ZUZI, 2VHS, 3DDC

D33 8 1LFD, 1NVU, 2UZI, 2VH5, 1HE8, 1XD2, 1WQ1, 3KUC

P34 8 1LFD, 1NVU, 2UZI, 2VH5, 1XD2, 1WQ1, 1BKD, 3CF6

Y32 5 1NVU, 1BKD, 1LFD, 3CF6, 1WQ1

A66 5 1NVU, 1XD2, 1BKD, 1LFD, 3CF6

Y71 5 1NVU, 1XD2, 1BKD, 3CF6, 1ZC3

D54 4 1NVU, 1BKD, 3CF6, 1K8R

G60 4 1NVU, 1BKD, 3CF6, 1WQ1

T20 3 1NVU, 3CF6, 2A9K

A59 3 1NVU, 1BKD, 3CF6

Q22 3 1NVU, 1XD2, 2A9K

G12 2 1LFD, 1WQ1

V103 1 2A9K

I139 1 2BOV

T35 0 Between interacting positions 34 & 36 in several complexes

R68 0 Between interacting positions 67 & 69 in several complexes

T58 0 Between interacting positions 57 & 59 in some complexes

F28 0 Between interacting positions 27 & 29 in some complexes

G77 0  

E153 0  

C186 0  

First column shows the amino acid position according to HRas sequence. Second column indicates the number of 3D 
complexes binding sites in which the position is directly involved. Third column contains PDB Id codes for the complexes 
that are related to each position or annotation of indirect relationships to binding sites.

Table 4: DIRP specific positions clustered in Ras functional regions

Functional Regions Positions Ratio

Switch I (Effectors binding site) Y32, D33, P34, T35, I36 23%

Switch II G60, Y64, A66, R68, Y71 23%

C-terminal hyper variable region C186 5%

Nucleotide (GDP/GTP) binding site G12, F28, T35, T58, A59, G60 27%

Innert regions T20, Q22, D54, G77, V103, I139, E153 32%

First column lists the different functional region in Ras proteins. Second column indicates the DIRP amino acid position 
according to HRas sequence. Third column shows the percentage (Ratio) of DIRP specific positions in each functional 
region.
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However, it is also possible that the likelihood of 
convergent evolution increases when Ras sequences 
diverge. Certainly, the study of the potential role of the 
convergence evolution in shaping the Ras signaling 
network is a key topic that deserves a deeper phylogenetic 
analysis.

Despite intensive efforts in both basic and applied 
research in the field over the past 30 years, all attempts 
to develop an effective RAS inhibitor have consistently 
failed and thus RAS proteins have been historically 
considered undruggable [6, 21, 30]. Most studies have 
either tried to block RAS farnesylation to impair its 
translocation to the plasma membrane or to interfere with 
nucleotide binding, thus impairing RAS function. RAS 
farnesyltransferase inhibitors failed basically because 
cells can use alternative routes to add posttranslational 
modifications to RAS proteins. On the other hand, RAS 
GTPases bind nucleotides with picomolar affinities, what 
makes very difficult for an inhibitor to compete with the 
intracellular nucleotide pools, which are in the millimolar 
range [31]. More recently, however, several research 
groups have contributed with new 3D structures showing 
RAS GTPases in previously unknown conformations [32]. 
This set of data, together with new dynamic, computer-

based models of RAS activation and a new methodology 
based on a combination of protein engineering and 
organic synthesis, i.e. chemical genetics [33, 34], have 
revealed transient pockets in the RAS proteins that can 
be targeted with small molecule inhibitors, thus leading 
to a renewed interest in RAS proteins as druggable targets 
[30]. Following computational modeling approaches, 
new molecules have been designed to inhibit RAS and 
RAL function. No inhibitors to RAP have been described 
to date. Two orthosteric peptides, HBS3 [35] and SAH-
SOS1 [36], efficiently impair Ras-GEF interactions by 
mimetizing the αH helix of SOS1 positioned between the 
Ras switch I and switch II regions, involving residues L6, 
G15, L56, D57, E63, Y64, R73, T74 and Q99 in KRAS. 
Most of these residues are close (or are identical, e.g. Y64) 
to some DIRPs identified here. In addition, several groups 
have recently succeeded in the direct targeting of Ras-GEF 
interactions with small molecule inhibitors: by analyzing 
different RAS conformations, new druggable pockets were 
found involving residues K5, L6, V7, D54 (DIRP), I55, 
L56, Y71 (DIRP) and T74 [37, 38]. In addition, using 
NMR-based screen, Sun et al. identified a hydrophobic 
pocket located between the α2 helix of switch II (residues 
60-70; amongst them: 60, 64, 66 and 68 are DIRP 

Figure 7: Spatial distribution of all DIRP in HRAS protein. Relevant residues are positioned on a surface model for the 3D 
structure of the human HRAS paralog (pdb# 1aa9). Upper row: residues involved in the interaction of HRAS with the GEF Sos are in light 
purple while those DIRP involved in the interaction are in dark purple. DIRP not involved in the HRAS-Sos interaction are in pink. Lower 
row: residues involved in the interaction of HRAS with the GAP are in light blue while those DIRP involved in the interaction are in dark 
blue. DIRP not involved in the HRAS-GAP interaction are in marine blue. Note that both common and specific DIRP positions can be 
identified following this approach. For clarity, three rotating views are shown for each HRas protein.
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positions) and the central β sheet of KRas-G12D where 
to acommodate a collection of small molecules inhibitors, 
blocking interaction with its GEF Sos [39].

Inhibitors that impair RAL binding to its upstream 
GEFs have also been identified by structure-based virtual 
screening. Three compounds (RBC6, RBC8 and RCB10) 
able to interact with a GEF binding site, adjacent to switch 
II (residues 70-77) and the α2 helix (residues 78-85) of 
RALA, were identified by following that methodology 
[40]. By using molecular docking, the residues involved 
in the interaction were predicted to be those corresponding 
to positions T58, G60, R68, Y71 and M72 in HRAS, all 
of which (except M72) were identified as DIRP in our 
analysis. Interestingly, positions analogous to G10, A11 
and Q95 in HRAS were predicted to mediate binding of 
the RBC inhibitors to RALA to impair interaction with 
GEFs and these three residues are close to other DIRP, 
i.e. the R103 and the catalytic G12. Thus, regardless their 
chemical nature (peptides or small molecules) the new set 
of inhibitory compounds designed to block protein-protein 
interactions in the Ras family network share a number of 

critical target residues that are identical to some DIRP 
conserved positions identified in our study.

In contrast to the prototypical RAS proteins, 
mutations in RAL or RAP proteins are infrequent and 
irrelevant in cancer (Supplementary Tables S6 and S7) 
[41]. However RALA and RALB are overexpressed 
in a number of tumors, most notably NSCLC and 
melanoma [9, 10, 42]. Thus, rewiring of the Ras network 
as a consequence of point mutations in DIRP residues 
is unlikely to occur because oncogenic mutations have 
only been found in HRAS, KRAS and NRAS, with G12 
and Q61 accounting for the vast majority of hits (97% in 
HRAS, 99% in KRAS) (Supplementary Tables S6 and S7) 
[21]. On the other hand, rewiring due to changes in protein 
expression might occur in the context of RAL proteins, 
since altered expression of RAS isoforms is not a common 
feature in cancer (Supplementary Figure S1) although 
seems to relate with some RASopathies [21, 43]. However, 
the results presented here, i.e. the identification of DIRP 
conserved residues coincident with positions occupied by 
PPI inhibitors bound to RAS GTPases, suggest that these 

Figure 8: DIRP overlap with or are positioned near to residues frequently mutated in cancer. Shown are the surface models 
for the 3D structures of HRAS (pdb# 1aa9), KRAS (pdb# 4epv) and NRAS (pdb# 3con; the only NRas 3D structure available in PDB, 
lacking residues 61-71), the three human RAS paralogs most frequently mutated in cancer. Mutations currently included in the TCGA 
catalog (Cancer Mut.) have been colored in green and DIRP in red. Overlapping positions (i.e., DIRP corresponding to residues mutated  
in cancer) are colored in yellow. For clarity, three rotating views are shown for each Ras protein.
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new group of inhibitors might not be as specific as initially 
expected. This is particularly important since we still lack 
information about their efficacy in vivo. The HBS3, SAH-
SOS1 orthopeptides and the DCAI compound have been 
shown to reduce Ras-GTP levels and, in some instances, 
to inhibit ERK activation in cultured cells [35–37], but 
no in vivo experiments have been reported yet. On the 
contrary, the RBC8 and some related inhibitors of RAL-
GEF interaction have been tested in mice xenografted 
with H2122 (lung) tumors, where they were able to 
reduce tumor growth in a dose-dependent manner [40]. 
Ras inhibitors may be used in combination with other 
ERK pathway inhibitors since, for instance, blocking 
MEK activity alone is not effective in the inhibition of 
Ras-dependent tumors. Also, oncogenic BRAF (V600E) 
inhibition can result in paradoxical activation of the 
pathway [30, 44, 45]. In any case, in light of the renewed 
interest in RAS GTPases as druggable targets in cancer 
[4], we believe that the identification of DIRP residues 
should be a valuable tool to assist in the evaluation of 
potential unspecificities of new Ras inhibitors.

The PPI networks used in this study are based on 
protein physical interactions collected from different 
data sources including in vitro experiments. These do 
not consider all the temporal or spatial regulation of gene 
expression (e.g. cellular compartmental barriers), which 
may prevent some interactions from occurring in vivo.

The results of this study add a novel perspective 
to the generally accepted model according to which 
phylogenetically close paralogous genes have similar 
interactions that diverge over time along with the 
divergency of their sequences [17–19]. Although the 
specificity of protein-protein interactions is the result 
of a complex combination of factors, our work suggests 
that a number of key positions are highly relevant to the 
interactions specificity. These positions could explain why 
divergent Ras proteins share close interaction contexts, 
increasing the probability of cross-talking amongst 
them. Finding compounds that target this functionally 
overlapping DIRP partners may help in the design of new 
treatment strategies.

MATERIALS AND METHODS

Phylogenetic trees of the Ras family

The phylogenetic trees for the 35 human Ras 
paralogous proteins used in this work were part of 
the dataset that was obtained in Diez et al. [2]. These 
original trees were the product of an exhaustive and 
accurate search for all the encoding genes in the Ras 
protein families across 24 eukaryotic species (putative 
pseudo-genes were excluded from the analysis). Ras 
human sequences were obtained from Uniprot and were 
aligned with their orthologs using ClustalW [46]. Finally, 
phylogenetic trees were constructed by Neighbor-Joining 

method implemented using the software Quicktree [47]. 
Tree topology reliability was assessed with the bootstrap 
method using 1000 replications.

Protein-protein interaction networks data

The two protein-protein interaction networks used 
in this work were constructed using the following human 
datasets: PINA and STRING [48, 49]. STRING describes 
263,666 interactions between 14,732 proteins from the 
integration of: BIND, DIP, GRID, HPRD, IntAct, MINT 
and PID databases [50–55]. PINA includes 108,477 
unique interactions between 15,450 different proteins 
collected from six publicly available and manually 
curated databases: IntAct, MINT, BioGRID, DIP, HPRD 
and MIPS/MPact [56]. Only direct physical interactions 
were used in this study, avoiding both data derived from 
phylogenetic studies (preventing tautologies in the results 
when comparing with tree distances) and interactions 
obtained by textmining processes [57].

PINA covers 63% of the proteins present in the Ras 
phylogenetic tree and 31% of all possible connections 
between them, while STRING covers 77% and 52% 
respectively. Although the PPI data from PINA and 
STRING integrate a similar source of information 
(physical interactions, as mentioned), they show a different 
level of coverage of the Ras tree data and also a different 
network topology. Therefore, both were considered as 
valid and complementary datasets in this analysis.

Pairwise distances in PPI networks and 
phylogenetic trees

RAS proteins were mapped onto the PPI networks 
and highly connected nodes (those with 300 or more 
connections) were removed, since these hubs introduce 
noise in distance calculations, as shown by Hériché et al. 
[58]. Out of the various algorithms tried, the Laplacian 
Exponential Diffusion Kernel (DK) and the Commute 
Time Kernel (CT) [58], were the ones that best fitted 
our purposes (see Section 1 in Supplementary material). 
Thus the pairwise protein distances within the networks 
were calculated using these methods. These are based on 
a calculation of the probability (p) of association of node 
pairs in the network using different statistical approaches 
for mathematically representing the network flow. Note 
that CT is also included as part of widely used tools 
such as GeneMANIA [59]. These probabilities were 
normalized and transformed into distances by calculating 
their negative natural logarithm (–Ln(p)) (Section 2 in 
Supplementary material). Statistical comparison between 
phylogenetic distances and PPI network matrices and 
their plot representations were performed using the 
computational software R [60].

Phylogenetic pairwise distances were calculated 
using the algorithm described by Pazos et al. [61], 
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which uses protein tree files in the Newick Standard 
format as input and returns the numeric distance value 
for each pair. Later, scale corrections were carried out, 
applying an exponential mathematical transformation to 
the phylogenetic distances, so they could be plotted and 
compared together with the network distances (Figure 3 
and Section 2 in Supplementary material).

Selection of the divergent but interacting 
RAS pairs

To select divergent sequence pairs a maximum 
identity threshold of 45% was defined. This value was 
based on the BLOSUM 45 matrix [62], which was 
designed to weight amino acid substitutions between 
highly divergent sequences. This selected threshold 
correlated to a normalized phylogenetic distance between 
proteins greater than 1.7 (Figure 4).

To establish significant closeness between proteins in 
the interaction networks, a second threshold was set based 
on random distributions of the DK and CT network distance 
values. For each dataset and algorithm, this threshold 
was estimated accordingly to a statistical p-value = 0.05 
(Supplementary Table S2 in Supplementary material).

Finally, those pairs with sequence identity ≤ 45% 
and DK and CT values ≥ DK0.05 and CT0.05, respectively, 
were used to select the final set of DIRP pairs (Table 1 and 
Figure 4, panel II).

Multiple sequence alignment and measurement 
of amino acid conservation

A Multiple Sequence Alignment (MSA) of all 
Ras sequences was employed to assess amino acid 
conservation between protein pairs. This evaluation was 
done using the BLOSUM 45 amino acid substitution 
matrix to rate every change in each position of the 
sequences. The choice of BLOSUM 45 was based on the 
fact that this matrix was originally designed to compare 
highly divergent sequences with up to 45% identity, a 
condition that the dataset mostly fulfilled. Only those 
amino acids that aligned with the HRas sequence were 
used for the analysis of conservation. HRas was selected 
as a template for being the most studied protein in the 
family and one of the main pharmacological targets.

For each amino acid position in the MSA two values 
were calculated: i) the average level of conservation 
between DIRP (positive control) based on binary 
alignments of all pairs in the DIRP dataset and ii) the 
average level of conservation of an equal number of 
randomly selected Ras protein pairs (negative control) 
using the same approach as in “i)”. These two values were 
then normalized to the average level of conservation of 
the global MSA. Based on the random model results, a 
p-value was calculated and used as a threshold to select 
the significantly conserved amino acids (Figure 5 and 
Figure 6).

Visualization and edition of the MSA was done 
using the software JalView V2.7 [63]. A general pipeline 
of the process can be seen in steps A, B and C in Figure 5.

Random models

For each PPI network and algorithm used, random 
models were generated at different stages of the work in 
order to estimate the statistical significance of the results 
(i.e. to be used as negative controls).

Random models of the interactome

A hundred PPI network models were built for every 
PPI network used, randomly permuting the partners of 
each node while maintaining their degree of connection. 
Network distances were then calculated in these models 
and compared to phylogenetic distances.

Random set of aligned protein pairs

A hundred sets of protein pairs were built by 
randomly selecting aligned pairs out of the MSA. Random 
set sizes were kept the same as the original dataset (see 
Table 1 for information about the number of aligned pairs 
in each case).

Acquisition and processing of Ras complexes 
structural data

All known interaction complexes of human 
Ras proteins were downloaded from the Protein Data 
Bank (PDB) [20]. Those with 100% sequence identity 
were grouped together (Supplementary Table S3 in 
Supplementary material) and then clustered into functional 
categories according to their 3D structural similarity 
(rms < 1.0; Supplementary Table S4 in Supplementary 
material). For each functional group, the Ras interaction 
surface was determined by computing the difference in 
the solvent accessible surface area of Ras amino acids 
between the complex and unbounded states, using the 
DSSP software [64]. Data regarding mutation frequencies 
were obtained from COSMIC (http://cancer.sanger.
ac.uk/cosmic) [5] Structural models were rendered with 
The PyMOL Molecular Graphics System, Version 1.8 
Schrödinger, LLC.
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