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ABSTRACT

Protein-coding genes and non-coding RNAs cooperate mutually in cells. 
Integrative analysis of protein-coding and non-coding RNAs may facilitate 
characterizing tumor heterogeneity. We introduced integrated consensus clustering 
(ICC) method to integrate mRNA, miRNA and lncRNA expression profiles of 431 
primary clear cell renal cell carcinomas (ccRCCs). We identified one RCC subgroup 
easily misdiagnosed as ccRCC in clinic and four robust ccRCC subtypes associated 
with distinct clinicopathologic and molecular features. In subtype R1, AMPK signaling 
pathway is significantly upregulated, which may improve the oncologic-metabolic 
shift and partially account for its best prognosis. Subtype R2 has more chromosomal 
abnormities, higher expression of cell cycle genes and less expression of genes in 
various metabolism pathways, which may explain its more aggressive characteristic 
and the worst prognosis. Moreover, much more miRNAs and lncRNAs are significantly 
upregulated in R2 and R4 respectively, suggesting more important roles of miRNAs 
in R2 and lncRNAs in R4. Triple-color co-expression network analysis identified 28 
differentially expressed modules, indicating the importance of cooperative regulation 
of mRNAs, miRNAs and lncRNAs in ccRCC. This study establishes an integrated 
transcriptomic classification which may contribute to understanding the heterogeneity 
and implicating the treatment of ccRCC.

INTRODUCTION

Renal cell carcinoma (RCC) is a serious human 
disease and accounted for nearly 61,000 (~3.7%) 
estimated new cancer cases and 14,000 (~2.4%) 
premature deaths in the United States in 2015 [1]. 
RCC can be subclassified into several major subtypes, 
including clear cell RCC (ccRCC, 70-80%), papillary 
RCC (pRCC, 10-15%), chromophobe RCC (chRCC, 
3-5%) and renal oncocytoma (RO), each possessing 
distinct histological features and genetic characteristics 
and arising from different parts of the nephron [2–6]. It 
is believed that ccRCC and pRCC arise in the proximal 

tissue of the kidney whereas chRCC and RO originate 
from distal regions of the kidney [6, 7].

Despite the common origin of proximal tubules, 
ccRCC, the most common RCC subtype, is not a single 
entity but a collection of heterogeneous tumors. Clinically, 
tumor pathologic stages and histologic grades can be used 
to stratify patients, infer prognosis and guide treatment [8]. 
However, due to intra- and inter-tumoral heterogeneity [9, 
10], stages and grades fail to explain molecular diversity 
in tumors and cannot satisfy requirements of precision 
therapy. So understanding the inherent molecular basis 
of these heterogeneities in ccRCC remains important and 
challenging.
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Currently, some molecular characteristics of ccRCC 
have been uncovered, such as recurrent mutations of 
von Hippel-Lindau (VHL), PBRM1, BAP1 and SETD2 
[11–14], and loss of chromosome 3p [11]. These genomic 
aberrations can potentially change the landscape of tumor 
transcriptomes by altering expression of global gene 
sets. For example, VHL mutations lead to imbalances of 
hypoxia inducible factors (HIF-1α and HIF-2α, or HIF1A 
and EPAS1) [15–17] and then dysregulation of cellular 
metabolism. Mutations in chromatin remodeling genes, 
including PBRM1, BAP1 and SETD2, may affect additional 
functional pathways through chromatin remodeling/histone 
methylation [12–14]. Metabolism shift and epigenetic 
reprogramming are critical for the development and 
progression of ccRCC [11]. Notably, noncoding RNAs, 
including miRNAs and long non-coding RNAs (lncRNAs), 
can be important epigenetic regulators of various biological 
processes through transcriptional and post-transcriptional 
processing and even chromatin remodeling. Recent 
evidences show critical roles for noncoding RNAs in 
tumorigenesis and some have been reported to have 
regulatory functions in crucial pathways in ccRCC such as 
miR-21, miR-92 and miR-210 [11, 18–20].

Transcriptome data, including mRNA, miRNA and 
long non-coding RNA (lncRNA) expression profiles, 
have been utilized individually for molecular subtyping 
of ccRCC [11, 21, 22]. Brannon and colleagues used 
gene expression microarray data to identify two robust 
expression subtypes (ccA and ccB) with distinct gene 
expression patterns and divergent biological pathway 
[21]. The Cancer Genome Atlas (TCGA) Research 
Network established four stable mRNA and four stable 
miRNA subgroups that correlated with survival [11]. 
Malouf’s group identified four subclasses of ccRCC with 
distinct clinicopathological and genomic features based 
on lncRNA expression profiles [22]. These studies show 
that each transcriptome type of mRNAs, miRNAs and 
lncRNAs contributes much to ccRCC subtyping.

Actually, mRNAs, miRNAs and lncRNAs 
cooperate reciprocally and form regulation networks in 
tumor cells. Expression profiles of each data type reflect 
intrinsic molecular characteristics of tumors from a single 
perspective and contribute partially to tumor classification. 
Therefore, integrative analysis of multiple transcriptome 
data types including protein-coding genes and non-coding 
RNAs may facilitate capturing the heterogeneous nature of 
tumors and these data can be used to identify concordant 
tumor subtypes [23].

In this study, we introduced an integrative analytical 
method, termed integrated consensus clustering (ICC), to 
establish a classification based on multiple transcriptome 
data types. We then applied ICC to ccRCC with matched 
mRNA, miRNA and lncRNA expression data sets 
from TCGA. We identified one RCC subgroup easily 
misdiagnosed as ccRCC in clinic and four robust ccRCC 
subtypes associated with distinct clinicopathologic and 

molecular features. Furthermore, we constructed a triple-
color co-expression network and identified functional 
modules differentially expressed among subtypes and 
associated with prognosis. Our results suggest that 
integrative analysis of protein-coding and non-coding 
RNAs can effectively classify ccRCCs into subtypes with 
significantly different biological pathways and regulation 
mechanisms.

RESULTS

Integrated consensus clustering (ICC)

To integrate information from different data sources, 
we proposed ICC of three steps: (1) constructing a patient 
similarity matrix (PSM) from each data source; (2) 
integrating multiple PSMs into one fused PSM (fPSM); 
(3) obtaining a final clustering result (Figure 1). First, the 
consensus matrix of patients clustering was generated 
using the Consensus Clustering algorithm [24] for each 
data set. Each element of the consensus matrix represented 
the proportion of the corresponding two patients classified 
into the same cluster in multiple iterative clustering. We 
referred to the consensus matrices as PSMs, which could 
mask differences of diverse platforms and hence made 
PSMs comparable across various data sources. Next, 
PSMs were merged into an fPSM. Each element of fPSM 
was calculated as the sum of the corresponding elements 
from different PSMs and represented fused patient 
similarity. In the third step, the final consensus matrix 
(FCM) and clustering result were obtained from consensus 
clustering on fPSM.

To validate the feasibility of ICC, we applied ICC to 
three cancer cohorts from TCGA, namely BRCA (Breast 
invasive carcinoma), LGG (Brain Lower Grade Glioma), 
and LUAD (Lung adenocarcinoma) (Supplementary Table 
S1). Proportional area change under CDF was used for 
selection of the optimal K (Supplementary Figure S1A, 
S1C, S1E). After identification of stable clusters for each 
cancer type, overall survival analysis was performed. The 
results show that the overall survivals are significantly 
different among the subtypes in each of the three cancers 
(Supplementary Figure S1B, S1D, S1F). These results 
demonstrate that our ICC method can identify cancer 
subtypes with significant clinical relevance.

Identification of stable clusters in ccRCC by 
integrated transcriptomic analysis

We applied ICC to 431 primary ccRCC tumors with 
matched mRNA, miRNA, and lncRNA expression profiles 
from TCGA KIRC cohort to classify patients into clusters. 
To select the optimal cluster number, we assessed clustering 
stability using the FCM produced by ICC from k=2 to 12. 
For each cluster number k, an FCM was produced (Figure 
2A) and empirical cumulative distribution (CDF) of each 
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FCM was calculated (Figure 2B). To avoid subjective 
judgments, the optimal cluster number was determined 
by a combination of proportional area change under CDF 
(Δ(K), Figure 2C), proportion of ambiguous clustering 
[25] (PAC, Figure 2D) and average silhouette width (ASW, 
Figure 2E). According to Δ(K), the optimal cluster number 
was 5 because clustering stability increased for k=2 to 5 
but almost not for k > 5 (Figure 2B, 2C). And according 
to PAC and ASW, we prefer to k=5 as the optimal cluster 
number in consideration of the major change before and 
after k=5, although the lowest PAC scores and the largest 
ASW values appeared at k=2 and 5 (Figure 2D, 2E). 
Therefore, the optimal cluster number was determined to 
be 5 and then 431 ccRCCs were classified into five robust 
clusters: R1 (n = 105, 24.4%), R2 (n=127, 29.5%), R3 (n 
= 83, 19.3%), R4 (n = 92, 21.3%) and R5 (n = 24, 5.6%) 
(Figure 2F and Supplementary Table S3).

The integrated transcriptomic classification shows 
high association with those classifications based on 
the single data type, such as ccA and ccB expression 
subtypes [21, 26] (p<1e-5), TCGA mRNA-based 
subtypes [11] (p<1e-5), TCGA miRNA-based subtypes 
[11] (p<1e-5) and the lncRNA-based subtypes [22] 
(p<1e-5) (Supplementary Table S4, Fishers’ exact test). 
Interestingly, when compared to ccA and ccB subtypes, 
our clusters R1 and R4 divide ccA into two subgroups 
with significantly different survivals, clusters R2 and 

R5 correspond to ccB, and cluster R3 consists of almost 
equal numbers of ccA and ccB tumors which may account 
for roughly 20% unclassified tumors in the ccA/ccB 
classification scheme [21] (Figure 3A, 3B). The result 
suggests that our integrated transcriptomic classification 
may be a step forward and could divide ccRCCs into more 
elaborate subgroups.

Somatic alteration analysis uncovers disparate 
characteristics of R5

We next investigated the distributions of somatic 
alterations and observed different patterns among ccRCC 
clusters at gene mutation and CNA levels (Figure 4 and 
Supplementary Tables S5-S7). For example, mutations 
of VHL and PBRM1 frequently occur in clusters R1, 
R2, R3 and R4 but scarcely in R5. BAP1 mutations are 
abundant in R2 (20.83%) and R3 (17.95%) compared to R1 
(1.01%) and R4 (4.71%) (p=5.86e-7, Fisher’s exact test), 
whereas the PBRM1 gene is mutated more frequently in R1 
(44.44%) and R4 (40.00%) compared to R2 (26.67%) and 
R3 (24.36%) (p=1.65e-4) (Figure 4A and Supplementary 
Table S5). Moreover, R2 has more gains of chromosome 
3q, 8q, 12, 20 (p<1e-4, Figure 4B and Supplementary Table 
S6) and losses of chromosome 6p, 9, 13q, 14q, 15q, 18 
(p<1e-4, Figure 4C and Supplementary Table S7), showing 
the higher frequency of chromatin abnormality of R2.

Figure 1: Illustrative steps of Integrated Consensus Clustering. A. Three matrixes represent mRNA, miRNA and lncRNA 
expression profiles, respectively, for the same cohort of patients. B. Patient similarity matrixes are represented by the consensus matrix 
produced using consensus clustering algorithm for each data type independently. C. Fused patient similarity matrix is generated by matrix 
summation of three patient similarity matrixes derived from three different datasets. D. Final consensus matrix is produced by using 
consensus clustering on fused patient similarity matrix. The final consensus matrix can be used for evaluating clustering stability of ICC.



Oncotarget82674www.impactjournals.com/oncotarget

Interestingly, cluster R5 has significantly disparate 
somatic alteration patterns compared to the other clusters. 
The well-known frequent somatic alterations in ccRCC, 
such as losses of chromosome 3p and gene mutations 
of VHL, PBRM1 and BAP1 [11], rarely occur in R5 
(Supplementary Table S5). In contrast, R5 is significantly 
enriched for losses of chromosomes 1, 2, 6, 10p, 17, 21q, 
X (Figure 4C and Supplementary Table S7), which is a 
typical genetic characteristic of chRCC [6]. Interestingly, 
according to a re-examination of ccRCC tumor histology 

by pathologists from a recent report [27], 22 tumor 
samples in TCGA were misdiagnosed as ccRCCs and 
should have been documented to be a mixture of chRCC 
and ccpRCC. Among them, 20 tumors are involved in 
our study and 19 are included in cluster R5 (sensitivity 
= 95% (19/20), Supplementary Table S3). These results 
demonstrate that R5 should be a subclass of RCCs easily 
misdiagnosed as ccRCCs in clinic. Therefore, we excluded 
R5 from the integrated transcriptomic classification of 
ccRCCs.

Figure 2: Identification of stable clusters of clear cell Renal Cell Carcinoma by using ICC. A. Consensus matrixes of 431 
TCGA ccRCC samples for each k (k=2 to 7), displaying the clustering stability using 1000 iterations of hierarchical clustering. B. Plot of 
cumulative distribution function (CDF) from consensus matrix for each k (k= 2 to 12). C. The Δ(k) vs k plot, indicating the optimal cluster 
number is k=5 where the ‘elbow’ occurs. D. Proportion of Ambiguous Clustering (PAC) vs k plot, allowing inference of the optimal k by 
the lowest PAC, that is 2 or 5. E. Average silhouette width vs k plot, showing the optimal cluster number k= 5 with respect to the major 
increase from k=3 to k=5 and the subsequent drop-off. F. Silhouette width profile calculated from the consensus matrix when k=5, which 
was selected as the optimal k.
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Clinicopathological characteristics and survival 
analysis of four ccRCC subtypes

We surveyed clinicopathological characteristics of 
four ccRCC subtypes (Table 1). Subtype R2 is enriched 
for more distant metastasis and higher histologic grade and 
pathologic stage, suggesting more aggressive behaviors 
of tumors in R2 (Figure 5A). Overall survival analysis 
reveals significantly different survival outcomes among 
the four integrated transcriptomic subtypes (Figure 5B). 
Furthermore, multivariate analysis demonstrates that our 
four integrated transcriptomic subtypes are independent 
prognostic factors after adjusting for clinical indices 
including gender, age, pathologic stage and histologic 
grade (Table 2).

Molecular expression patterns and pathway 
analysis

RNAs with subtype-specific expression may play 
important functions in individual molecular subtypes. 
So we identified the mRNAs, miRNAs and lncRNAs 
with significantly high expression (fold change > 1.5 
and adjusted p value < 0.05) among four integrated 
transcriptomic subtypes by comparing each subtype with 
the rest using a moderated t-test [28] (Figure 6A-6C). 
Interestingly, the numbers of subtype-specific highly 
expressed mRNAs and lncRNAs in R2 and R4 are much 
larger than those in R1 and R3, implying that tumors in R2 
and R4 are more active at transcriptomic level. In addition, 
highly expressed miRNAs in R2 are far more than those 
in other subtypes and highly expressed lncRNAs in R4 
account for more than half (6693/12727=52.6%) of all the 

lncRNAs evaluated in this study. These results suggest that 
non-coding RNAs are important in ccRCC subtyping and 
that miRNAs and lncRNAs may play critical roles in R2 
and R4, respectively.

To reveal biological functions related to each 
subtype, we performed gene ontology enrichment 
analysis on the top 500 overexpressed mRNAs using R 
package topGO [29] and then the top 50 most significantly 
enriched biological processes were summarized using 
the REVIGO webserver [30]. Four subtypes show 
distinct enriched biological processes (Figure 6A and 
Supplementary Figure S2). Consistent with previous 
reports [21, 31], upregulated metabolism-related genes, 
which are enriched in R1, correlate with good prognosis of 
ccRCC, and overexpression of genes involved in mitotic 
cell cycle, which are enriched in R2, are associated with 
worse prognosis. Moreover, collagen is the most abundant 
protein in the extracellular matrix (ECM). Upregulation of 
genes in collagen metabolic process may help cancer cells 
breach the ECM and escape, which may account for more 
invasive and metastatic features of tumors in R2 [32]. In 
addition, upregulated genes involved in RNA splicing in 
R4 implies that aberrant splicing events may contribute to 
disease progression of tumors in R4.

Next, we investigated the expression of pathways 
among four subtypes by pairwise comparisons of four 
subtypes and adjacent normal samples using gene set 
analysis [33] and KEGG pathway genes. Downregulated 
expression of various metabolic pathways are observed in 
all four ccRCC subtypes when compared to adjacent normal 
samples (Supplementary Figure S3), which is consistent 
with the central feature of oncologic-metabolic shift in 
ccRCC [11]. The widespread differentially expressed 

Figure 3: Prognostic value of integrated transcriptomic classification compared with ccA/ccB classification. A. Overlap 
between our integrated transcriptomic classification and ccA/ccB clusters. The bottom panel shows the detailed crosstab table. B. Kaplan-
Meier plot showing that clusters R1 and R4 can effectively separate the samples in ccA cluster in terms of overall survival (R1(n=104) vs 
R4 (n=88), log-rank test P = 4.68e-4).
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Figure 4: Distributions of somatic genomic alteration in five clusters identified by ICC. A. Distributions of non-silent 
mutations of the top 15 most frequently mutated genes in ccRCC. The right panel represents significance of enrichment or anti-enrichment 
(one-sided Fisher’s exact test) of non-silent mutation events for each gene within any particular cluster versus the other clusters. B, C. 
Distributions of arm-level copy number alterations (CNA), including amplification (B) and deletion (C), in five clusters. Bar plots of 
frequency of CNA in five clusters are on the top five panels. The bottom panel shows significance of enrichment or anti-enrichment (one-
sided Fisher’s exact test) of CNA events for each chromosome arms within any particular cluster versus the other clusters.
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pathways are observed among the four ccRCC subtypes, 
which delineates the distinct pathway characteristics of 
subtypes. Notably, AMPK signaling pathway is more 
highly expressed in R1 compared to any other subtype. 
Activated AMPK signaling pathway can lead to inhibition 
of biosynthetic pathways and activation of catabolic 
pathways [34] and hence improve the oncologic-metabolic 
shift of ccRCC, which may explain good prognosis of R1. 
Subtype R2 has the highest expression of genes involved 
in cell cycle, p53 signaling pathway and ECM-receptor 
interaction and the lowest expression of genes involved 
in multiple metabolism pathways (Figure 6D), which may 
promote aggressive behavior of ccRCC and account for 
poor prognosis of R2.

Triple-color co-expression network analysis

To systematically understand the potential 
regulation relationships among mRNAs, miRNAs and 
lncRNAs in ccRCC, we constructed a triple-color co-
expression network of mRNAs, miRNAs and lncRNAs 
using weighted gene co-expression network analysis 
(WGCNA) [35] on a cohort of 407 ccRCCs included 
in R1-R4. Using unsupervised hierarchical clustering 
analysis and a dynamic hybrid tree cut algorithm, we 
identified 31 distinct triple-color co-expression modules 
(Supplementary Figure S4A, Supplementary Tables S8-
S9). This result suggests that synergistic and regulatory 
effects among protein-coding and non-coding RNAs may 

Table 1: Clinical and pathological characteristics of integrated transcriptomic subtypes

  R1 R2 R3 R4 P value

Patients Count 105 127 83 92 -

Age(in years)
Median 61 62 57 60 -

Range (29,86) (26,85) (32,88) (38,88)  

Survival  

Median survival 
time Not reached 45.7 Not reached 79.5 -

(in months)      

5-year survival 
rate 83.40% 34% 63.90% 55.60%  

Gender 
Female 51 35 21 40

0.00057* 
Male 54 92 62 52

Histologic grade

G1 4 1 0 3

1.21E-13**
G2 60 26 39 43

G3 37 53 36 40

G4 4 46 8 6

Pathologic stage

I 67 27 44 46

2.35E-11**
II 7 13 10 10

III 23 48 17 24

IV 8 39 12 12

Tumor size 

T1 67 29 47 46

3.82E-11** 
T2 9 17 13 12

T3 29 73 22 33

T4 0 8 1 1

Lymph node status
N0 47 65 36 47

0.03599** 
N1 2 10 4 0

Distant metastasis
M0 97 89 72 79

4.75E-05** 
M1 8 38 11 13

* Fisher’s exact test
** Kruskal-Wallis Rank Sum test
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exist widely in ccRCC and contribute to the identification 
of homogeneous integrated transcriptomic subtypes. 
In addition, we used the module eigengene (ME) to 
summarize expression of each module and to assess 
whether modules are associated with subtype phenotypes 
(See Methods). We observed significant expression 
differences in 28 modules among subtypes (Supplementary 
Figure S4B). We further identified 10 prognosis modules 
(M2-7, M10, M17-18, M28) (Figure 7A) with significant 
correlation with survival and enrichment of prognosis 
genes (See Methods). These results suggest that these 
triple-color modules, especially prognosis modules, may 
play important roles in tumorigenesis of ccRCC.

To explore biological functions of modules, we 
performed gene ontology enrichment analysis on mRNAs 

of each module using topGO [29]. Then we summarized 
the top 50 most significant biological processes using 
REVIGO [30] and defined the most significant summarized 
biological process as the function of the module. These 
module functions include diverse biological processes, 
such as mitotic cell cycle, carboxylic acid metabolism, 
blood vessel morphogenesis, RNA processing and 
extracellular matrix organization (Supplementary Figures 
S4B). Notably, among the 10 prognosis modules (Figure 
7A), the functions of M5 (blood vessel morphogenesis), 
M6 (carboxylic acid metabolism) and M10 (mitotic cell 
cycle) have been reported to be critical in ccRCC [11]. 
Other prognosis modules such as M4 (mitochondrion 
translation), M7 (histone lysine methylation), M17 
(extracellular matrix organization) and M18 (positive 

Figure 5: Four integrated transcriptomic subtypes were associated with different clinicopathological features and 
overall survival. A. Subtype R2 was enriched for more distant metastasis and higher histologic grade and pathologic stage. B. Kaplan-
Meier survival analysis revealed significantly different survival outcomes among the four integrated transcriptome subtypes.
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regulation of autophagy) may also exert important 
functions in tumorigenesis of ccRCC although they are 
less well-studied for the moment. Interestingly, the worst 
prognosis subtype R2 shows nearly completely opposite 
expression patterns of prognosis modules compared to 
the best prognosis subtype R1 (Figure 7A), suggesting 
that these prognosis modules together may characterize 
the molecular features of subtypes and correspond to 
their disparate survival outcomes. This result also shows 
that low expression of M6 (carboxylic acid metabolism) 
and M18 (positive regulation of autophagy) and high 
expression of M10 (mitotic cell cycle), M17 (extracellular 
matrix organization) and M28 (lymphocyte activation) 
may be associated with poor prognosis in ccRCC (absolute 
Pearson’s correlation coefficient > 0.5 in R2). In addition, 
subtype R4 shows very close expression patterns with 
R1 except M7 (histone lysine methylation), which has 
significantly high expression in R4 but low expression in 
R1. The result implies that high expression of M7 (histone 
lysine methylation) may partially account for the worse 
prognosis of R4 when compared to R1.

Moreover, in prognosis modules, miRNAs and 
lncRNAs may play important regulation functions in 
associated biological processes. For example, in module 
M10 (mitotic cell cycle) (Figure 7B), miR-30a [36], let-
7c [37, 38], miR-101 [39] and LINC00511 [40] (Figure 
7C) have been reported to play regulation functions in 
tumor cell growth and proliferation. The rest miRNAs 
and lncRNAs in M10 may also participate in regulation 
of genes associated with cell cycle since they are highly 
co-expressed. Interestingly, DEPDC1, the antisense gene 
of lncRNA DEPDC1-AS1, plays a pivotal role in the 
regulation of mitotic progression [41]. DEPDC1 and 
DEPDC1-AS1 are both included in M10 and highly co-
expressed. The result suggests that DEPDC1-AS1 may 
be involved in cell cycle as a cis-acting regulator of 
DEPDC1. Although detailed molecular mechanism need 

further research, our results still suggest that the prognosis 
modules may represent critical functional modules in 
ccRCC and those miRNAs and lncRNAs in modules 
may play important regulation functions in associated 
biological processes.

DISCUSSION

In this study, we introduced ICC to integrate 
mRNA, miRNA and lncRNA expression profiles for 
ccRCC subtyping. We identified one RCC subclass 
easily misdiagnosed as ccRCCs in clinic and four robust 
ccRCC subtypes that were associated with different 
clinicopathologic features, genomic aberrations and 
molecular expression patterns. Survival analysis showed 
that our classification could separate ccRCC tumors 
with different overall survivals. Functional analysis of 
four ccRCC subtypes characterized distinct features of 
biological processes and pathways. In addition, triple-
color co-expression network analysis depicted co-
expression relationships among mRNAs, miRNAs and 
lncRNAs in ccRCC and identified 10 prognosis modules 
characterizing molecular features of four subtypes. Our 
results show that the integrative analysis of protein-coding 
genes and non-coding RNAs may contribute to delineate 
molecular heterogeneity within ccRCC and may help 
guiding treatment of ccRCC.

Our ICC approach integrates multiple data types 
by transforming the information of each data type into 
a PSM and merging PSMs into an fPSM. The final 
clustering result is determined by consensus clustering on 
fPSM. One advantage of the method is that it does not 
require normalization of data across multiple types or 
platforms prior to integrating them. Any data type can be 
integrated into analysis, including gene mutations, CNA, 
DNA methylation and gene/miRNA/protein expression 
profiles. We used ICC to integrate mRNA, miRNA and 

Table 2: Univariate and multivariate Cox analyses including the classification and clinical features

Variables Ref
Univariate analysis Multivariate analysis

H.R.(95% C.I.) P value H.R.(95% C.I.) P value

Integrated Cluster 

R1 - 1.25E-08 - 0.003402

R2 5.581(3.087-10.090) 1.27E-08 2.984(1.589-5.603) 0.000673

R3 2.441(1.242-4.796) 0.009608 2.393(1.212-4.722) 0.011903

R4 2.949(1.560-5.576) 0.000876 3.072(1.621-5.823) 0.000582

Gender Female 0.934(0.668-1.307) 0.692018 0.941(0.664-1.335) 0.735252

Age - 1.033(1.018-1.047) 5.81E-06 1.033(1.017-1.049) 4.32E-05

Pathologic Stage - 1.931(1.662-2.243) 1.00E-13 1.689(1.421-2.007) 2.66E-09

Histologic Grade - 2.198(1.750-2.762) 1.37E-11 1.319(1.012-1.720) 0.040471
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Figure 6: Different molecular expression patterns and pathways expression levels among subtypes. A-C. subtype-specific 
mRNA (A), miRNA (B) and lncRNA (C) expression patterns among four ccRCC subtypes. The numbers of significantly highly expressed 
RNAs were labeled on the left. D. Heatmap of relative expression levels of selected pathways for all contrasts among ccRCC subtypes and 
normals by gene set analysis. The complete heatmap is shown in Supplementary Figure S3. Each subtype was compared with every other 
subtype and adjacent normal samples. These pairwise comparisons resulted in 16 columns and each column indicated which pathways were 
elevated or reduced when comparing the two subclasses indicated by the colors at the top of the heatmap. Categories of KEGG pathways 
were indicated by the colors at the left of the heatmap.
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lncRNA expression profiles of ccRCCs and successfully 
identified five robust clusters including one RCC subclass 
misdiagnosed as ccRCCs and four clinically relevant 
subtypes. This integrative analysis framework can also be 
applied to other cancer types.

Among the five clusters identified with ICC, cluster 
R5 shows significantly different somatic alterations 
patterns with other clusters. A recent report shows 
that 22 ccRCC samples in TCGA are misdiagnosed 
as ccRCCs and should be a mixture of chRCC and 
ccpRCC [27]. Cluster R5 accurately recognized 19 

Figure 7: Distinct expression patterns of prognosis modules among subtypes and the potential regulatory network 
of miRNAs in module 10. A. Heatmap reporting correlations and corresponding p-values between prognosis modules and subtype 
phenotypes. Each module is represented by its module eigengene and the most significant biological processes for each module are shown 
on the right. B. Heatmap of genes belonging to prognosis module 10 (mitotic cell cyle) (top) and corresponding module eigengene values 
across samples (bottom). C. Visualization of the potential regulatory network of miRNAs in module 10. Yellow circle, red rhombus and 
purple rhomboid indicate mRNAs, miRNAs and lncRNAs, respectively. We predicted the targets (including mRNAs and lncRNAs) of 
miRNAs in module 10 using miRWalk2.0 webserver with default settings. Then those predicted targets included in module 10 were retained 
together with miRNAs for network visualization.
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out of 20 misdiagnosed samples included in our study 
(True Positive Rate (TPR) = 86.4%, higher than TPR = 
64.5% by lncRNA-based classification [22]). The result 
demonstrates the ability of integrative analysis of protein 
coding genes and non-coding RNAs to distinguish other 
RCCs from ccRCCs.

Our integrated transcriptomic classification 
identified four robust ccRCC subtypes. When compared 
to previously established gene expression ccA/ccB 
classification, our subtyping system can further divide ccA 
into two subgroups R1 and R4 with significantly different 
survival. Moreover, more than half (52.6%) of lncRNAs 
are significantly highly expressed in R4, much more 
than those in other subtypes, which makes R4 a potential 
lncRNA-dependent subtype. These results suggest 
that integrating information from both protein coding 
and non-coding RNAs may contribute to capturing the 
heterogeneity of ccRCC and could help dividing ccRCCs 
into more elaborate subgroups.

To our knowledge, this is the first integrative 
analysis of protein-coding genes and non-coding RNAs 
in cancer subtyping. Our four integrated transcriptomic 
subtypes significantly correlate with clinicopathologic and 
molecular features. Although this result should be verified 
in a larger sample size from multiple centers, our study 
demonstrates that integrative analysis of protein-coding 
genes and non-coding RNAs are valuable for ccRCC 
subtyping.

MATERIALS AND METHODS

The cancer genome atlas (TCGA) data

All ccRCC patients are from the kidney renal clear 
cell carcinoma (KIRC) cohort of The Cancer Genome 
Atlas (TCGA) project [11]. Multi-omics datasets of a 
cohort of 431 ccRCC patients with matched mRNA, 
miRNA and lncRNA expression profiles were used in this 
study (Supplementary Tables S2-S3). Level 3 mRNA-
seq RSEM data (n = 533) and Level 3 miRNA-seq RPM 
data (n = 516) were obtained from the Broad Institute 
GDAC FireBrowse (TCGA data version 20150601, http://
firebrowse.org/). LncRNA RPKM data (n = 448) was 
downloaded from TANRIC database [42]. Gene mutation 
and copy number alteration data were archived from 
Mutation MutSig2.0 Analyses results and CopyNumber 
Gistic2 Analyses results on the Broad Institute GDAC 
FireBrowse (TCGA data version 20150401). Clinical 
information data were downloaded from UCSC cancer 
browser [43].

Transcriptome data preprocessing

The same preprocessing flow was applied to mRNA, 
miRNA and lncRNA datasets independently. Given a 
dataset, the RNA expression matrix was obtained by 

substituting the smallest non-zero value for all zero or 
NA values in the dataset and taking a base-2 logarithmic 
transformation. Before clustering, RNA expression matrix 
was median centered by RNA and the most variable RNAs 
was selected using median absolute deviation. Finally, 
the most variable 2,500 mRNAs, 1,500 lncRNAs and 
300 miRNAs were used for the unsupervised clustering 
analysis.

Integration of multiple transcriptome data types 
using consensus clustering

For the first step of the ICC method, we employed 
consensus clustering algorithm [24] to integrate multiple 
transcriptome data types, including mRNA expression, 
miRNA expression and lncRNA expression profiles. 
First, we constructed the patient similarity matrix (PSM) 
represented by a consensus matrix for each data type 
independently (Figure 1A, 1B). Due to the comparability 
of the consensus matrix, we then combined three PSMs 
into a fused PSM (fPSM) by matrix addition (Figure 
1C). Specifically, we initially performed consensus 
clustering on each filtered RNA expression matrix to 
construct the consensus matrix using the R package 
ConsensusClusterPlus. To ensure comparability of 
clustering results based on different data types, the same 
clustering parameters were used for different data types 
and different cluster numbers. For any given data type 
and cluster number k, we conducted 1,000 runs (reps) 
of agglomerative hierarchical clustering algorithm 
(clusterAlg) using the resampled data with 80% 
patient resampling (pItem) and 80% RNA resampling 
(pFeature). The distance measurement was set as 
Pearson correlation (distance) and linkage function was 
set as “ward.D” (both innerLinkage and finalLinkage). 
Then, a single combined consensus matrix was achieved 
by summation of three consensus matrices derived 
from different data types. We consider the combined 
consensus matrix as a fPSM capturing a combination 
of multiple patient similarity measures derived from 
different transcriptome data types.

Assessment of clustering stability

Given multiple transcriptome data sets and a 
specific cluster number k, we can now achieve a fPSM 
for clustering. Furthermore, to obtain stable clustering 
results, we used consensus clustering to the fPSM to 
assess clustering stability (Figure 1D). Considering the 
specific properties of the PSM (patients × patients), we 
used a custom implementation of consensus clustering to 
resample patients identically from rows and columns of 
the fPSM. We carried out 1,000 runs of “ward.D” linkage 
hierarchical clustering using the resampled data with 
80% patient resampling and 1-Spearman correlation as 
distance. Then a final consensus matrix was calculated. 
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Finally, we performed hierarchical clustering to achieve 
the cluster membership result with 1-the final consensus 
matrix as a distance matrix and “ward.D” as the linkage 
function.

Selection of optimal cluster number

We selected a maximum cluster number k of 12 
for assessment of optimal cluster number. To intuitively 
inspect clustering results, we used the R package 
pheatmap for visualization of the final consensus matrix 
for each cluster number. We also calculated empirical 
cumulative distribution (CDF) for the final consensus 
matrix and used the proportional area change under CDF 
(Δ(k)) for selection of the optimal k. According to the Δ(k) 
vs k plot, the optimal k is the k for which the Δ(k) value 
will be close to zero. To avoid a subjective judgement, we 
also investigated the proportion of ambiguous clustering 
(PAC) score and average silhouette width for each cluster 
number k, and the k for which the lowest PAC score or 
highest average silhouette width (ASW) appears can be 
considered to be the optimal K. The optimal number of 
clusters was determined by a combination of Δ(K), PAC 
and ASW.

Gene-set analysis

We performed gene-set analysis among ccRCC 
subtypes and adjacent normal sample group using the 
R package PIANO [33] and KEGG pathway genes set 
from NCBI BioSystems [44]. The p-value for each gene 
calculated for differential expression analysis was used 
as gene-wise statistics. Fisher’s combined probability 
test was used to aggregate data into a gene-set p-value. 
The “geneSampling” method was used for significance 
assessment of gene sets. The significant up(/down)-
regulated pathways were filtered and only the dominantly 
up- or down-regulated pathways were reported.

Weighted gene co-expression network analysis

A signed weighted co-expression network 
was constructed using the R package WGCNA [35]. 
mRNAs, miRNAs and lncRNAs expressed in more 
than 70% samples of 407 ccRCCs (patients in R1-R4) 
were independently filtered. Then 27,543 genes (18,288 
mRNAs, 566 miRNAs and 8,689 lncRNAs) were 
included for network construction. In order to seize the 
negative regulation functions of miRNAs, we multiplied 
miRNA expression values by -1 so that miRNAs could 
be positive correlation with their potential targets 
and clustered together in the signed network. First, a 
matrix of pairwise correlations between all pairs of 
RNAs across 407 ccRCC samples was calculated. 
Then, an adjacency matrix was computed by raising 
the 0.5*(1+correlation matrix) to the power of 6, 
which is the suggested value for more than 60 samples 

in a signed hybrid network. Based on the adjacency 
matrix, a topological overlap matrix was constructed. 
Using 1-topological overlap matrix as a dissimilarity 
matrix, the average linkage hierarchical clustering 
was performed. Finally, robustly defined modules 
were identified by cutting the hierarchical clustering 
tree using the dynamic hybrid tree cut algorithm. We 
summarized each module by the module eigengene 
(ME) represented by the first principal component of 
the scaled module expression profiles, which explains 
the major variation of module expression. Expression 
values of MEs were used for assessing correlations of 
modules with survival and five subtype phenotypes. 
Here, the subtype phenotype was introduced as a binary 
trait variable across all samples. In this case, phenotypic 
trait is the subtype category, that is R1-R4. To define 
prognosis modules, we also identified 2,822 prognosis 
genes (2,494 mRNAs, 27 miRNAs and 301 lncRNAs) 
(Supplementary Table S9) which were significantly 
correlated with survival after adjusting by FDR among 
all 27,543 genes (Adjusted p value < 1e-4).

Statistical analysis

All statistical analysis was performed using R 
language [45]. The R package survival was used for 
survival analysis. Kaplan-Meier methods and a log-rank 
test were used to assess differences between survival 
distributions. Univariate and multivariate models were 
calculated using Cox proportional hazards regression. 
The R package limma [28] was employed for differential 
expression analysis. A Fisher’s exact test was used 
to compute p-values from a contingency table. The 
Benjamini and Hochberg method was used for multiple 
testing adjustment and 0.05 was considered statistically 
significant, unless otherwise noted.
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