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ABSTRACT
Triple negative breast cancers (TNBCs) are highly heterogeneous and aggressive 

without targeted treatment. Here, we aim to systematically dissect TNBCs from a 
prognosis point of view by building a subnetwork atlas for TNBC prognosis through 
integrating multi-dimensional cancer genomics data from The Cancer Genome Atlas 
(TCGA) project and the interactome data from three different interaction networks. 
The subnetworks are represented as the protein-protein interaction modules 
perturbed by multiple genetic and epigenetic interacting mechanisms contributing 
to patient survival. Predictive power of these subnetwork-derived prognostic models 
is evaluated using Monte Carlo cross-validation and the concordance index (C-index). 
We uncover subnetwork biomarkers of low oncogenic GTPase activity, low ubiquitin/
proteasome degradation, effective protection from oxidative damage, and tightly 
immune response are linked to better prognosis. Such a systematic approach to 
integrate massive amount of cancer genomics data into clinical practice for TNBC 
prognosis can effectively dissect the molecular mechanisms underlying TNBC patient 
outcomes and provide potential opportunities to optimize treatment and develop 
therapeutics.

INTRODUCTION

TNBCs refer to certain breast cancers negative of 
estrogen receptor (EsR) and progesterone receptor (PgR) 
expression, as well as Her-2/Neu receptor overexpression [1]. 
They are significantly associated with younger age, African 
American and Hispanic ethnicities, more aggressiveness, 
higher distant recurrence, and poorer survival than other 
breast cancers [2, 3]. Traditional hormone-based therapy (i.e. 
tamoxifen to target EsR positive cells), and antibody-based 
therapy (i.e. trastuzumab to target Her2/Neu positive breast 
cancers) are not effective when treating TNBCs [4]. In the 
past several years, multiple clinical trials have focused on 
TNBCs [5–7], but all failed, despite a few ongoing clinical 
trials show some promising results [1]. Meanwhile, multiple 
studies have focused on finding prognostic and/or therapeutic 

markers. Some common markers have been identified, such 
as basal cytokeratin (CK) 5/6 and epidermal growth factor 
receptor (EGFR) [8, 9]. Recently, microRNAs and lncRNAs 
have become emerging targets to predict cancer prognosis 
and classify patients for clinical treatment [10–13]. However, 
chemotherapy still remains as the only clinical option for 
TNBCs [4].

It is well known that cancer is a complex disease 
because of combined effects of multiple genetic and 
epigenetic changes and subsequent dys-regulation of critical 
signaling pathways [14]. The heterogeneity of TNBCs 
further exacerbates the problem to identify prognostic and/
or therapeutic markers [1]. Pioneering molecular portraits 
of human breast cancer have provided us invaluable 
information about the link between gene expression 
pattern and phenotypic diversity [15]. Similarly, pioneering 
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prognosis work for breast cancer patients mainly used 
gene expression signatures [16, 17] combined with various 
analytic approaches such as meta-analysis, functional 
enrichment analysis, and transcriptional network analysis 
[18]. Thanks to the recent advances in next-generation 
sequencing technology, we are able to acquire multi-
dimensional genomic data with clinical information from 
a large number of patient samples from Cancer Genome 
Atlas (TCGA) including breast cancer [19], and dissect 
cancers beyond the traditional clinical variables (i.e. age 
and tumor stage) by incorporating multi-layered data to 
represent genomic activity at different levels, such as gene 
expression profiles, gene copy number variants (CNVs), 
miRNA expression, DNA methylation states and molecular 
interaction networks. Such integrated analyses using multi-
layered molecular information have been performed to help 
understand cancer outcomes [20, 21]. 

Here, we seek to identify prognostic markers using 
a network-based approach through integrative analysis of 
TCGA cancer genomics data due to the hypothesis that 
multiple genetic and epigenetic events together lead to 
a complex TNBC outcome. In this work, we proposed a 
systematic methodology to predict cancer prognosis: (1) 
Score each gene based on the synthetic effect of different 
molecular features (mRNA expression, CNV, and DNA 
methylation) on patient overall survival, (2) Identify novel 
subnetwork signatures correlated with patient survival, (3) 
Assess the prognostic power of the subnetwork signatures, 
and (4) Evaluate the utility of these subnetwork-derived 
models in TNBC prognosis through functional enrichment 
analysis, tumor stratification, and independent validation. 
We find subnetworks related to low oncogenic GTPase 
activity, low ubiquitin/proteasome degradation, effective 
protection from oxidative damage, low PIK3A activity, 
and tightly immune response are linked to better prognosis. 
Several biosynthesis and metabolism related subnetworks 
have also been identified. We expect that such a systems 
biology/precision medicine approach to integrate cancer 
genomics and interactome data can be useful to understand 
mechanisms underlying TNBC prognosis and benefit 
clinical TNBC management.

RESULTS

Discovery of network-based prognostic 
biomarkers

We extracted the molecular features (including 
mRNA, CNV, and DNA methylation), clinical variables 
(i.e. age, tumor stage, and grade), and overall survival 
information of 119 TNBC patients and 583 non-TNBC 
patients in TCGA. TNBC and non-TNBC patients were 
separated according to the EsR, PsR, and HER2 status 
(Table 1). Mutation was not included because it happens 
rarely across the whole genome despite some common 
mutations (i.e. TP53), which can be considered as a 

clinical variable and left as an indicator for predication 
evaluation or subtyping. miRNA was not included neither 
because of the insufficient samples left for analysis. 

Considering the fact that multiple genes and multiple 
levels of regulation may function together to generate the 
complex cancer outcome, we adopted a network-based 
approach to generate multi-dimensional subnetwork-
based predictors for the prognosis of TNBC (Figure 1). 
First, we did a pre-selection step using a multivariate 
Cox proportional hazards model to estimate the effect of 
different molecular features on patient overall survival 
time. In total, we selected 1,650 features as hazard factors, 
including 383 mRNA expression changes, 623 promoter 
DNA methylation changes, and CNV of 644 genes, which 
mapped to total 1,487 survival-related genes (p < 0.05 as 
the significance cutoff from the likelihood ratio test). Next, 
we derived a score (heat) for each of the genes through 
the Equation (1) as the input into HotNet2 [22, 23], which 
uses a heat diffusion process and a statistical test based 
algorithm to discover subnetwork signatures in three PPI 
networks (HINT [24]+ HI-2012 [25], iRefIndex [26], 
and MultiNet [27]). Totally, 41 altered subnetworks with 
> = 4 nodes were detected. Furthermore, we assessed the 
predictive power of these subnetwork-based molecular 
signatures using the median C-index calculated from 
the Monte Carlo cross-validation (MATERIALS AND 
METHODS). The nonparametric C-index is scaled such 
that a C-index of 1 indicates perfect prediction accuracy, 
whereas a C-index of 0.5 is equal to random guess. We 
identified 39 out of the 41 subnetworks with a C-index 
> 0.5 and multiple subnetworks were detected in more 
than one PPI network (i.e. inthint1/iref3/multinet2, iref2/
multinet1, iref4/multinet6) (Figure 2). These subnetworks 
were numbered from 1 to N according to the predictive 
power in descending order (Figure 2 and Supplementary 
Tables S1–S3). To further understand how these 
subnetwork biomarkers may be related to patient survival, 
we investigated individual gene using NCBI Entrez 
Gene [28] and literature search and performed functional 
enrichment analysis based on the known pathways or 
ontologies using Enrichr [29]. Such a thorough analysis 
identified several pathways known to be involved in 
TNBC such as iref4/multinet6, which contain BRCA1 
interacting partners and PIK3A signaling pathway [30]. 
Several metabolism-related subnetworks have also been 
identified, such as multinet3 and multinet4/8/9/12. Most 
importantly, we found quite large amount of a subnetworks 
related to GTPase, endoplasmic reticulum (ER)-Golgi-
cell surface trafficking, ubiquitin/proteasome system, and 
complement system (Figure 3 and S1 text). 

Furthermore, we calculated P-values based on 
the comparison of the median C-index values of the 
original survival data with the distributions of the median 
C-indexes of the 100 permuted survival data to test if 
the models were statistically significant (C-index > 0.5, 
survival-data permutation test p < 0.05 as filter criteria). 
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Table 1: Summary of the three primary molecular features derived from specimens of BRCA in 
TCGA by high throughput analysis

Cancer CNV Methylation mRNA Core set
Non-TNBC gistic2

583 × 11,878 genes
450k/27k (combined)
595 × 19847 probes

HiseqV2
595 × 11,442 genes 583 × 43167

TNBC gistic2
119 × 11,878 genes

450k/27k (combined)
123 × 19847 probes

HiseqV2
123 × 11,442 genes 119 × 43284

Figure 1: An overview of the methodology. (A). Identification of survival-related subnetwork biomarkers. First, molecular features 
(CNV, mRNA, DNA methylation) and clinical variables from 119 TNBC patients were collected as the core set. Next, multivariate cox 
model was used to select hazard factors (644 CNV, 383 mRNA, 623 DNA methylation) filtered by likelihood ratio test p-value < 0.05, 
which represented the significance of each molecular feature correlated with patient overall survival adjusted for age. Furthermore, the 
heat score for each gene was calculated as the negative sum of the natural logarithm of the single molecular feature p-values (Red: high 
score; Yellow: low score) to evaluate the collaborative effect of different molecular features on patient overall survival. Subnetworks were 
identified using HotNet2 algorithm in three PPI networks using a heat diffusion process and a statistical test based on both the score of the 
genes and the local topology of the subnetwork. (B). Evaluation of the multi-dimensional subnetwork-derived prognostic models. Monte 
Carlo cross-validation and C-index were applied to assess the predictive power of each subnetwork signature. During each of the 100 times 
of random splitting, 80% of the total samples were used to train the model and the remaining of 20% were used as the test set for C-index 
calculation. C-index > 0.5 and permutation test p < 0.05 were applied as the filtering criteria. C-index for each subnetwork was plotted with 
the median in the center and the whiskers marking the 25% and 75% percentile. The vertical black line marked the C-index equivalent to 
a random guess (C-index = 0.5).
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Figure 2: Predictive power ranking of the survival related subnetwork biomarkers. Subnetworks were numbered from 
1 to N according to the predictive power in descending order. C-index for each subnetwork was plotted with the median in the center and 
the whiskers marking the 25% and 75% percentile. The vertical black line marked the C-index equivalent to a random guess (C-index 
= 0.5). Subnetworks shared by different PPIs were colored (Red: share by three; Orange: shared by HINT+HI2012and MultiNet; Dark 
purple: share by HINT+HI2012and iRefIndex; Plum: shared by iRefIndex and MultiNet; Yellow: not shared). Subnetworks passing the 
permutation test (p < 0.05) based on the comparison of the median C-index values of the original survival data with the distributions of the 
median C-indexes of the 100 permuted survival data were labeled with a star.
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Finally, we determined 1 subnetwork in HINT+HI2012 
(inthint1), 5 in iRefIndex (iref1 ~ iref4, iref6), 6 in 
MultiNet (multinet1 ~ multinet6) as candidate prognostic 
biomarkers significantly associated with patient overall 
survival, which were labeled with a star in Figure 2 and 
plotted in detail in Figure 3A. 

Independent validation

Given the limited availability of suitable 
independent data providing the highly integrated and 
multi-dimensional genomic data, we validated our 
subnetwork biomarkers using the most common and 
accessible gene expression data only. For each subnetwork 
biomarker, as previously described [31], a risk score model 
was developed as a linear combination of the mRNA 
expression levels of the genes in the subnetwork and the 
estimated regression coefficients in the multivariate Cox 
regression analysis as the weight (MATERIALS AND 
METHODS). We were able to calculate a subnetwork-
based risk score (referred to as “snRS”) for each patient 
in the 119 TCGA TNBC samples and classified them 
into high-risk or low-risk group using the median risk 
score as the cutoff, The same score model obtained from 
the discovery series was used to calculate the snRS for 
each patient from four independent data sets (GSE1456, 
GSE31448, GSE16446 and GSE25066) (Table 2). We 
found that the snRSs for 10 subnetwork biomarkers 
were significantly associated with survival in at least one 
data set tested and most of the top/shared subnetworks 
described above were validated (Figure 4). Particularly, 
iref2/multinet1, the subnetwork containing RAB protein 
and its inhibitor CHML was significant in TCGA (log-
rank p = 0.0152), GSE1456 (log-rank p = 0.025), and 
GSE25066 (log-rank p = 0.033). Such analysis validated 
that our subnetwork biomarkers were well predictive of 
TNBC survival. 

Prognostic value of the subnetwork-based 
biomarkers to assess TNBC clinical outcome

To assess whether the prognostic values of the 
subnetwork signatures are independent of conventional 
clinical factors of TNBC patients, we performed the 
univariate and multivariate analysis using the snRS of 
iref2 (or multinet6) or other clinical factors as explanatory 
variables. The result indicated that the snRS maintained 
an independent correlation with overall survival after 
adjusting for conventional clinical factors, including age, 
stage, number of lymph nodes, tumor weight, as shown 
in Table 3. For example, iref2, as an independent risk 
factor, was significantly associated with overall survival 
of TNBC patients (HR = 4.2384, 95% CI: 2.19255–8.193,  
p = 1.75E-05). Taken together, these analyses 
demonstrated the added value of the subnetwork-based 
biomarkers in a prognostic setting.

Comparison with molecular feature-based 
prognostic predictor

To test our hypothesis that incorporating prior 
knowledge of cellular protein-protein interactions could 
enhance the biological insight and predict utility of TCGA 
genomic data, we compared our network-based method 
with the molecular feature-based method. To assess the 
predictive power of individual molecular data type or 
the combined profiling of multiple types of molecular 
data, we used the same procedure as described in Yuan’s 
study (which could be accessed in Synapse (doi:10.7303/
syn1710282) [20] (MATERIALS AND METHODS). 
We observed that mRNA data only could hardly predict 
TNBC patient survival (C-Index = 0.44), while DNA 
methylation data and combined molecular data (mRNA 
+ CNV + DNA methylation) have improved prognostic 
power (C-Index = 0.52 and 0.51 respectively). In contrast, 
mRNA is the best data type to predict the survival of 
non-TNBC (C-Index = 0.59) (Figure 5). Such analysis 
indicated that each molecular data type contributed to 
TNBC prognosis and combining all types of data could 
lead to better but limited prognostic predictive power. 
However, when using our subnetwork-based biomarkers, 
the predictive power was significantly improved (median 
C-index = 0.7573 for iref1 vs median C-index = 0.51 for 
combined molecular-based model, one-sided Wilcoxon 
signed rank test, p < 0.0019). Therefore, our subnetwork 
biomarkers based on biologically related genes and 
interactions are more meaningful than molecular feature 
based biomarkers merely selected by LASSO throughout 
the genome.  

Application of the network-based biomarkers for 
survival oriented TNBC stratification 

We further stratified the 119 TNBC patients into 
high-risk and low-risk groups (HR = 2.482; 95% CI, 
0.9973 to 6.176; p = 0.0507) via non-negative matrix 
factorization (NMF) based on the similarity of their 
molecular profiles, which included 444 molecular features 
(CNV: 157, methylation: 106, mRNA: 181) derived 
from the 39 subnetwork models with a C-index > 0.5 
(MATERIALS AND METHODS). We found that cluster 2 
has better prognosis than cluster 1 on overall survival and 
recurrence-free survival (RFS) (Figure 6A and 6B). Based 
on the hierarchical clustering results, we found three most 
different molecular clusters between the high-risk and 
low-risk groups: a DNA methylation cluster with hyper-
methylation in poor survival group enriched with genes 
in Legionellosis (p = 2.9X10e-5) and a hypo-methylation 
cluster enriched of genes in Metabolism (p = 0.04), as 
well as an mRNA cluster with higher expression level 
of the genes enriched in complement and coagulation 
cascades (p = 8.836e-12) in good survival group. 
Furthermore, we categorized our 116 TNBC samples to 
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Figure 3: Biological insights of the top/shared prognostic subnetwork biomarkers. (A) Top ranked and shared subnetwork 
biomarkers as examples to illustrate the molecular insights from the prognostic models. Subnetworks were plotted showing the interactions 
among genes with the color representing the heat score (Red, hot: higher significance; Yellow, cold: less low significance). Multi-dimensional 
information (mRNA, CNV and DNA methylation) of each gene in each subnetwork associated with survival outcome (derived from the 
multivariate Cox regression analysis in 119 TNBC patients) was plotted as likelihood ratio test p-value represented as color (white, light 
blue and dark blue). HR was used to estimate the association of individual molecular feature with survival (better or worse), where an HR 
greater (or less) than 1 represented a worse (or better) prognosis and marked as “P” (or “G”). (B) A schematic view of the major signaling 
pathways and cell organelles significantly related to TNBC survival. Functioning mitochondrion, ER, Golgi, and vesicle trafficking among 
ER, Golgi and cell surface, as well as low ubiquitin/proteasome activity and oxidative damaged proteins are linked to better survival. Cell 
organelles: Nucleus (cyan), ER (light green), ribosomes (green), Golgi apparatus (light purple), mitochondrion (yellow). Cellular activities: 
ubiquitin (maroon), proteasome (grey, yellow, cyan), ROS (red), oxidative damaged protein (red curls). 
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the six subtypes using a web-based subtyping tool (http://
cbc.mc.vanderbilt.edu/tnbc/) based on a comprehensive 
study performed by Lehmann et al., which categorized 
TNBC to six subtypes from 587 TNBC cases based on 
gene expression profile [32]. Three samples were filtered 
out based on their sample checking criteria. Interestingly, 
though Lehmann subtypes were not determined by 
prognosis (log-rank p = 0.2512), our method categorized 
that IM subtype mainly belonged to cluster 2 while BL1 
and M subtypes belong to cluster 1, with better or worse 
prognosis respectively (Figure 6C).

DISCUSSION

In this study, we developed a network based method 
combining multidimensional genetic and epigenetic 
information as well as clinical data to dissect the 
mechanisms underlying overall survival of TNBC patients. 
We identified subnetwork signatures containing important 
genes, interacting partners, and regulating patterns linked 
to patient overall survival. We found that low oncogenic 
GTPase activity, low ubiquitin/proteasome degradation, 
effective protection from oxidative damage, and tightly 
immune response were linked to better prognosis.  We 
also confirmed low PIK3A activity and revealed certain 

metabolism features related to better prognosis. To achieve 
a prognosis-favor environment, ER and Golgi are of 
particular importance (Figure 3B).

Here, we particularly would like to discuss the 
biological insights from two subnetworks while more 
literature based and functional enrichment-based analyses 
can be found in supporting information (S1 text). 

inthint1/iref3/multinet2  

UBA5 (ubiquitin like modifier activating enzyme 5) 
and UFM1 (ubiquitin-fold modifier 1) were identified as a 
novel protein-conjugating system, knockdown or depletion 
of which could lead to unfolded protein response (UPR), 
ER stress, and inhibited vesicle trafficking [33, 34]. 
Knockdown of UBA5 has been shown to inhibit breast 
cancer cell growth [35], implying the low activity of this 
ubiquitination system is beneficial for patient survival. 
APEH (acylaminoacyl-peptide hydrolase) plays an 
important role in destroying oxidatively damaged proteins 
in living cells [36] and deletion of APEH locus have 
been found in small cell lung carcinoma [37] and renal 
cell carcinoma [38]. As a mammalian lectin, LGALS8 
(galectin 8) can inhibit cell adhesion and induce apoptosis 
by binding to integrin a4αβ3 to modulate cell-matrix 

Table 2: Four breast cancer data sets used for independent validation
Data set TNBC definition Sample size Cancer type Microarray platform Reference

GSE25066 EsR-, Her2-, PgR- 159 stage I–III breast cancers Affymetrix Hu133A [54]
GSE16446 EsR-, Her2- 80 Primary breast cancer Affymetrix HU133 Plus 2.0 [55]
GSE31448 EsR-, Her2-, PgR- 84 invasive adenocarcinoma Affymetrix HU133 Plus 2.0 [56]
GSE1456 Basal-like 25 Primary breast cancer Affymetrix Hu133A [57]

Table 3: Univariate and multivariate Cox regression analysis of overall survival in TCGA TNBC dataset
Variables Univariable model Multivariable model

HR 95% CI of HR p value HR 95% CI of HR p value
iref2 biomarker
snRS 2.718 1.878–3.934 1.15E-07 4.2384 2.19255–8.193 1.75E-05
age 1.008 0.9734–1.044 0.653 1.0556 0.99871–1.116 0.0556
stage(III/IV vs.I/II) 4.439 1.728–11.4 0.001962 54.1785 3.68274–797.045 0.00361
Lymph node count 1.808 0.6515–5.018 0.255 0.2453 0.04945–1.217 0.0854
tumor_weight 0.9993 0.9964–1.002 0.627 1.0025 0.99823–1.007 0.253
multinet6 biomarker
snRS 2.72 1.715–4.308 2.09E-05 2.36 1.4122–3.943 1.05E-03
age 1.008 0.9734–1.044 0.653 1.001 0.9604–1.044 0.945
stage(III/IV vs.I/II) 4.439 1.728–11.4 0.001962 9.229 1.6767–50.801 0.0107
Lymph node count 1.808 0.6515–5.018 0.255 1.059 0.2904–3.865 0.93
tumor_weight 0.9993 0.9964–1.002 0.627 1.001 0.9976–1.004 0.614
Abbreviations: HR, hazard ratio; CI, confidence interval



Oncotarget71627www.impactjournals.com/oncotarget

Figure 4: Independent validation of the subnetwork biomarkers obtained from TCGA. Multivariate Cox regression analysis 
of overall survival was performed using TCGA mRNA data (training set, TCGA mRNA) of genes in subnetwork biomarkers to get the 
estimated regression coefficients to build up a prognostic model. These models were further validated using the TNBC samples from four 
GEO data sets (validation set). Kaplan-Meier curves showed effective separation of patient survival for GEO data sets using exemplary 
subnetwork-derived biomarkers from TCGA. TCGA hybrid: patient overall survival analysis using combined mRNA, CNV, methylation 
data (for features); TCGA mRNA (training set): patient overall survival analysis to generate prognostic models using TCGA mRNA data 
alone; GEO data sets (test sets, including GSE1456, GSE31448, GSE16446, and GSE25066): patient overall, disease-free, or distant 
relapse-free survival to validate prognostic models trained by TCGA mRNA data.
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interactions [39], Therefore, high level of APEH and 
LGALS8 is beneficial to patient survival. CBR1 (carbonyl 
reductase 1) may reduce the effect of many anti-cancer 
drugs by metabolization, such as reducing the effect of 
doxorubicin in breast cancer patients [40] and attenuating 
the effect of arsenic trioxide in leukemia patients [41]. 
Thus, low level of CBR1 (CNV) is linked to better 
prognosis. In summary, this shared subnetwork implied 
that low activity of ubiquitin/proteasome degradation by 
low presence of UBA5/UFM1, and effective removal 
of oxidatively damaged proteins by APEH are linked to 
better prognosis.

iref2/multinet1

RAB6A is a member of RAS oncogene family 
localized at Golgi apparatus [42], and RABGAP1 
is a RAB6A activating protein playing a role in the 
coordination of microtubule and Golgi dynamics during 
the cell cycle [43]. CHML (CHM like, Rab escort 
protein 2) inhibits the geranylgeranylation reaction 
on RABs [44] and TMF1 (TATA element modulatory 
factor 1) is a conserved Golgi protein that binds to RAB6 
and influences Golgi morphology [45], depletion of which 
blocks membrane transport among endosome, Golgi and 
ER [46]. Downregulation of TMF has been shown in 
solid tumors while overexpression of TMF significantly 
attenuated the growth of xenograft tumors [47]. Therefore, 
our prediction that low RAB oncogenic activity of by low 
CNV_RAB6A and mRNA_RABGAP1 and high level of 
their inhibitory factors CHML (mRNA, CNV) and CNV_
TMF1 are beneficial for patient survival agrees well with 
previous studies.

Meanwhile, we would like to raise the point that 
one should carefully interpret and apply our results, 

because they are based on prognosis, which is from an 
outcome angle rather than from a causal angle. For 
example, we identified quite large amount of subnetworks 
that low ubiquitin/proteasome degradation is linked to 
better prognosis, which agrees well with current view 
of inhibiting ubiquitin/proteasome pathway proved to 
be effective strategies to treat various malignancies [48]. 
However, it does not necessarily mean that inhibiting 
ubiquitin/proteasome pathway will inhibit tumor growth, 
because there is still a possibility that low ubiquitin/
proteasome activity is very likely an outcome of efficient 
ubiquitin/proteasome dependent mechanism to degrade 
oncogenic proteins (i.e. oncogenic products, oxidatively 
damaged proteins). It is also quite controversial about 
whether ER stress and UPR lead to cancer cell survival 
or death, which are context-dependent [49]. Thus, though 
our subnetworks biomarkers are quite efficient to predict 
TNBC patient outcome, one should carefully apply them 
when developing therapeutic strategies to specifically 
activate or inhibit members in the subnetworks.

Furthermore, we would like to advance the importance 
of integrating/combining multiple data types. Previous 
studies mainly focused on analyzing individual data type. 
Here, we found different data types from 66 and 376 genes 
significantly associated with TNBC and non-TNBC survival 
respectively. The major contribution of the 66 genes in 
TNBC came from DNA methylation (35 out of 66), while 
the contribution from both mRNA and CNV come from 
16 genes. Such a difference may explain why combined 
molecular data type has a better prediction (highest 
C-index) than individual molecule data type (Figure 5). In 
contrast, 199 mRNA, 34 CNV, and 147 DNA methylation 
significantly associated with survival in non-TNBC, which 
also explained why mRNA was the best to predict survival 
for non-TNBC (highest C-index in Figure 5). 

Figure 5: Comparison of the prognostic power among individual and combined molecular data types. C-indexes of 
models trained from individual molecular data alone or combination of multiple data types in TNBC (a), and non-TNBC (b) distinguished 
with different colors. For each data type, during each of the 100 times of random splitting, 80% of the total samples were used to train the 
model and the remaining 20% as the test set for C-index calculations. The boxplot was plotted with the median C-index in the center and 
the whiskers marking the 25% and 75% percentile. The mRNA had the highest C-index in non-TNBC, while the combined molecular data 
had the highest C-index for TNBC.  To compare the performance across different prognostic models, one tailed Wilcoxon signed rank test 
was used to calculate the p-value.
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Figure 6: Survival related tumor stratification. (A). Consensus non-negative matrix factorization (NMF) clustering of 119 KIRC 
patients based on 444 molecular features (CNV: 157; mRNA: 181; DNA methylation: 106) derived from 39 subnetwork-based prognostic 
models revealed two molecular subtypes (clusters). Three most different molecular clusters between the high-risk and low-risk groups 
were highlighted: a DNA hyper-methylation cluster (Legionellosis, poor survival, p = 2.9X10e-5), a DNA hypo-methylation cluster 
(Metabolism, p = 0.04), and an mRNA cluster (complement and coagulation cascades, good survival, p = 8.836e-12). (B). Kaplan-Meier 
curves showing patients in cluster 2 with better overall survival and recurrence-free survival (RFS) than patients in cluster 1. (C).  Subtyping 
116 TCGA TNBC patients based on Lehmann’s method and survival analysis. TNBC patients were subtyped using web-based tool (http://
cbc.mc.vanderbilt.edu/tnbc/). Kaplan-Meier curves of overall survival were plotted to show the prognostic difference for six Lehmann 
subtypes (log-rank test, p = 0.2512) (upper panel). IM subtype was stratified to cluster 2 while BL1 and M subtypes were stratified to cluster 
1, with better or worse prognosis respectively shown by Kaplan-Meier curves of overall survival and RFS (lower panel). 
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Additionally, it should be noted that our study 
still has some limitations that could guide future work. 
First, our predictive quality largely depends on the 
data itself and data quality we used. TCGA is the most 
comprehensive dataset available to us, but TNBC patients 
are quite limited and we had to leave miRNA information 
out because of insufficient samples left. Second, most of 
these TNBC patients are at early stage (stage I and II), and 
the lack of late stage TNBC patients (Stage III and IV) 
inevitably affects our final subnetworks. With more TNBC 
patients and the advancement of sequencing technology 
for various data types, our method could achieve better 
predictive results. Third, in statistical prediction, three 
other cross-validation methods (independent test, K-fold 
cross-validation, and jackknife test) are usually used 
to examine a predictor for its effectiveness in practical 
application and of the three test methods, the jackknife 
test is deemed the least arbitrary that can always yield a 
unique result for a given benchmark dataset  [50]. Finally, 
as suggested by Chou [51], user-friendly and publicly 
accessible web-servers will significantly enhance the 
impacts in developing new prediction or analysis methods, 
thus we shall make efforts in our future work to provide a 
web-server for the identification method presented in here.

MATERIALS AND METHODS

Multi- dimensional genomic data

The multi-dimensional cancer-associated data sets 
containing clinical information, copy-number variation 
(CNV), promoter DNA methylation, mRNA expression 
were collected from TCGA Cancer Browser (https://
genome-cancer.ucsc.edu/proj/site/hgHeatmap/). A brief 
summary of the data information is provided in Table 1. 
TN was determined as negative of clinical calls for 
estrogen receptor (EsR), progesterone (PgR) and human 
epidermal growth factor receptor 2 (HER2), while non-
TN was determined by at least one positive of the above 
receptors. In the end, we collected 119 samples for TNBC 
and 583 samples for non-TNBC, respectively. 

Protein-protein interaction data

To date there is no single database of human protein-
protein interactions with high sensitivity and specificity, 
yet we used three interaction networks with various types 
of interactions to allow for different false positive and 
false negative interactions described previously [22]. The 
data can be downloaded from:http://compbio-research.
cs.brown.edu/pancancer/hotnet2/#!/data.

Basically, three networks were used: (1) HINT+HI2012, 
a combination of high-quality protein-protein interactomes 
from HINT [24] and HI-2012 [25] which consists of 40,783 
interactions among 10,008 proteins; (2) iRefIndex [26], an 
integrated network from multiple data sources including 

various types of interactions (i.e. physical interaction, 
genetic inequality, (de)acetylation, (de)methylation, (de)
phosphorylation, (de)ubiquitination) except for colocalizations 
and genetic interactions, which consists of 91,872 interactions 
among 12,338 proteins; and (3) MultiNet [27] a network that 
integrates multiple types of interactions, including protein-
protein, phosphorylation, metabolic, signaling, genetic, 
and regulatory interactions from multiple databases, which 
consists of 109,597 interactions among 14,445 proteins. 

Data filtering

CNV profiling was filtered with 12099 expressed 
genes described previously [22], which include 12,081 
genes with at least 3 RNA-Seq reads per sample in at 
least 70% of samples from syn1734155 plus 18 well-
known cancer genes. Finally, CNV of a total of 11878 
genes was consolidated in 119 TNBC and 583 non-TNBC 
samples. The DNA methylation profile was measured 
experimentally using either the Illumina Infimum Human 
DNA Methylation 450K (433 samples) or 27K (287 
samples) platform. After merging the data from the two 
platforms, 19847 probes were mapped to 13474 genes 
in 123 TNBC samples and 595 non-TNBC samples. The 
mRNA expression profile was filtered with the 12099 
expressed genes and 11,442 genes were left. For TNBC 
and non-TNBC, we defined the sample intersection across 
all platforms as the core sample set.

Identification of novel survival-related 
subnetworks

Subnetwork signatures of survival-related genes 
were determined both by the scores of their genes, and the 
interactions among the genes. For each gene, we evaluated 
its effect on patient overall survival by taking into account 
the molecular features of mRNA expression, CNV, and 
promoter DNA methylation status. The R program 
“coxph” was used to fit a multivariate Cox proportional 
hazards model between each molecular feature and patient 
survival time adjusted for age, with the likelihood ratio test 
being used to estimate the significance. Only the features 
which passed the cutoff of p < 0.05 were considered 
to be survival-related. A heat score for each gene was 
calculated using the Equation (1) summarized as the 
sum negative natural logarithm of single survival-related 
molecular feature p-values, which is corresponded to 
Fisher’s Method for combining p-values for (independent) 
statistical tests [23]. For DNA methylation, considering 
the fact that one gene may have multiple methylation loci, 
we only retained one CpG methylation probe that was 
most correlated with survival time.

2 log ( ), , ,e mm
score p m mRNA CNV methy= − × =∑  (1)

The genes with a score > 0 were identified as survival-
related genes. Subnetwork signatures in individual PPI 
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network were discovered using HotNet2 [22, 23], which 
uses a heat diffusion process with the gene heat score as the 
input and a statistical test based algorithm (Figure 1A). 

Ranking subnetworks based on their prognostic 
power

For each subnetwork, we firstly assembled a multi-
dimensional molecular profile by extracting three types 
of molecular features of its gene members from the 
core sample set. We then explored the predictive power 
of the subnetwork on patient overall survival using a 
Monte Carlo cross-validation and permutation testing 
procedure. Briefly, for the core sample set, we randomly 
split the samples into two groups: 80% as the training set 
and 20% as the test set. For the training set, we used the 
Cox proportional hazards model with ElasticNet [52], a 
modified L1 penalized log partial likelihood (LASSO) 
[53] for feature selection to train the models based on the 
molecular profile of individual subnetwork. ElasticNet 
was used for feature selection, because it combines penalty 
terms of LASSO and Ridge to compromise variable 
selection and group effect, considering the potential 
intrinsic relations among biologically relevant genes and 
widespread co-linearity of large-scale biological data [52].
The prognostic outcomes for the training set were used to 
determine the regression coefficients. These coefficients 
were then used to predict outcomes for patients in the 
test set and calculate the C-index. The above procedure 
was repeated 100 times to generate 100 C-indexes and 
the median C-index was used as the predictive value for 
each subnetwork. C-index has been frequently applied 
to evaluate risk prediction model and survival analysis: 
A C-index of 1 indicates perfect prediction accuracy, 
while a C-index of 0.5 is equivalent to a random guess. 
Our survival predictive models were evaluated based on a 
research framework which could be accessed in Synapse 
(doi:10.7303/syn1710282) (Figure 1B).  

Selection of important molecular features 
for prognostic model building and tumor 
stratification

When building the predictive model using the 
molecular features of each subnetwork, ElasticNet was 
used to select a small number of “important” features. 
Basically, 100 samplings of the training set could extract 
100 important feature sets and the occurrence of each 
molecular feature was counted. Since the possibility of 
random selection bias for any given feature could be ruled 
out if the feature was consistently selected for, we only kept 
features occurring more than 5 times to construct our final 
predictive model for each subnetwork-based biomarker. 
And all the selected molecular features derived from the 
39 subnetwork models were used for tumor stratification. 

Survival analysis

A risk score formula was established by weighting 
each of the selected features of the subnetwork by their 
estimated regression coefficients in the multivariable 
Cox regression analysis. With this risk score formula, 
we were able to calculate a subnetwork-based risk score 
(referred to as “snRS”) for each patient in the data set. 
Then the patients were classified into high-risk or low-risk 
groups using the median risk score as the cutoff. Survival 
differences between the low-risk and high-risk groups 
identified in each set were assessed by the Kaplan-Meier 
estimate and compared using the log-rank test. Univariate 
and multivariate analyses with Cox proportional hazards 
regression for overall survival were performed on the 
individual conventional clinical variables with and 
without the subnetwork-based signature in each dataset. 
Hazard ratios (HR) and 95% confidence intervals (CI) 
were calculated. All statistical tests were two-sided and 
performed with R software.

Assessment of the prognostic power of diverse or 
combined molecular features-based models

First, a pre-selection step to keep the top significant 
features correlated with overall survival (univariate Cox 
model, likelihood ratio test, p < 0.05) was performed 
as Yuan’s study [20]. Next, the ElasticNet [52]+Cox 
was applied to train the models in training set. Then the 
trained predictive models were used to predict outcomes 
for patients in the test set for the C-index calculation. 
For TNBC or non-TNBC core set, the above procedure 
was repeated 100 times from the 100 times of randomly 
splitting of the core set into training and test sets to 
generate 100 prognostic models and the corresponding 
C-indexes. From the 100 prognostic models, only the 
models with a C-index > 0.5 and a permutation test 
p-value < 0.05 based on a 100 survival-permutated data 
were retained for downstream analysis (22 models for 
TNBC and 31 models for non-TNBC). In total,28 mRNA, 
43 CNV, and 48 DNA methylation features mapping to 
66 genes were selected from the 22 TNBC models. In 
contrast, 199 mRNA, 34 CNV, and 147 DNA methylation 
mapping to 376 genes were found significantly associated 
with survival from the 31 non-TNBC models.
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