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ABSTRACT
Purpose: Biomarkers and genomic signatures represent potentially predictive 

tools for precision medicine. Validation of predictive biomarkers in prospective or 
retrospective studies requires statistical justification of power and sample size. 
However, the design of these studies is complex and the statistical methods and 
associated software are limited, especially in survival data. Herein, we address 
common statistical design issues relevant to these two types of studies and provide 
guidance and a general template for analysis. 

Methods: A statistical interaction effect in the Cox proportional hazards model is 
used to describe predictive biomarkers. The analytic form by Peterson et al. and Lachin 
is utilized to calculate the statistical power for both prospective and retrospective 
studies. 

Results: We demonstrate that the common mistake of using only Hazard Ratio’s 
Ratio (HRR) or two hazard ratios (HRs) can mislead power calculations. We establish 
that the appropriate parameter settings for prospective studies require median 
survival time (MST) in 4 subgroups (treatment and control in positive biomarker, 
treatment and control in negative biomarker). For the retrospective study which 
has fixed survival time and censored status, we develop a strategy to harmonize 
the hypothesized parameters and the study cohort. Moreover, we provide an easily-
adapted R software application to generate a template of statistical plan for predictive 
biomarker validation so investigators can easily incorporate into their study proposals.

Conclusion: Our study provides guidance and software to help biostatisticians 
and clinicians design sound clinical studies for testing predictive biomarkers.

INTRODUCTION

Precision medicine, or personalized medicine, 
aims to effectively treat patients and prevent disease and 
is rapidly evolving, as evidenced by recent precision 
medicine initiatives and the US “Moonshot” (www.
nih.gov/precisionmedicine and http://www.cancer.gov/
research/key-initiatives/moonshot-cancer-initiative). In 
cancer research, various studies have identified potential 
predictive biomarkers to help physicians determine which 
treatment will result in the best outcome for a given patient 

[1-9]. For example, somatic mutations in the epidermal 
growth factor receptor (EGFR) gene predict which 
patients with non-small-cell lung carcinoma (NSCLC) 
will likely respond to gefitinib or erlotinib treatment [1, 
3, 9]. For breast cancer, Oncotype DX, a gene signature, 
provides risk assignments in patients whose disease risk is 
undetermined by routine clinical variables [8]. In order to 
claim a predictive biomarker, validation using independent 
retrospective cohorts and/or prospective clinical trials is 
necessary [10]. However, such studies require rigorous 
sample size justification to indicate whether the proposed 
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cohorts have sufficient power. Unfortunately, there is a 
paucity of literature on this topic due to the complexity 
of predictive models, especially in survival data [11-19]. 
From the statistical point of view, predictive models can 
be translated into the statistical interaction effect model by 
examining the interaction term to assess the differential 
treatment effect when the biomarker status changes. For 
survival data, a few methods based on Cox proportional 
hazards (PH) model have been used to calculate power and 
sample size for the interaction effect [11-13, 20]. However, 
utilization of these methods is not always straightforward 
due to the complexity of parameter settings. 

In this study, we evaluate a series of key issues often 
ignored in power calculations for the interaction effect in 
survival data, such as hazard ratio (HR), hazard ratio’s 
ratio (HRR), median survival time (MST), and censoring 
rate. Since prospective and retrospective studies have 
different design parameters, these issues are discussed 
individually.

RESULTS

Power calculation for validation of predictive 
biomarker is illustrated in prospective and retrospective 
studies separately due to different design nature. MST 
is used for demonstration because of its common use in 
survival analysis. 

Prospective study

In prospective predictive biomarker validation 
studies, investigators often consider HRR (often derived 
from preliminary data) to be a sufficient parameter to 
calculate power or sample size. Here we highlight the 
sole use of HRR to calculate statistical power could 
be misleading. Similarly, the HR of treatment versus 
control in positive biomarker and the HR in the negative 
biomarker are insufficient to calculate power. In fact, 
HRR requires MST in the 4 subgroups (Table 1) in order 
to appropriately calculate the statistical power. Below are 
two examples to point out inappropriate calculation if 
HRR or two HRs are used. We also explain the causes and 
provide appropriate guidance for the prospective study. 

Prior to power calculation, we specify additional 

parameters a-b to determine subgroup proportion in Table 
2 and c-d to calculate subgroup censoring rate): (a) Ratio 
of treatment and control = (1:1), (b) Prevalence of the 
positive biomarker in the control and treatment groups, 
respectively = (0.5, 0.5), (c) Survival time distribution: 
Exponential distribution, (d) Censoring time distribution: 
Uniform distribution with 1 year follow-up and a total 
study time of 5 years, (e) Total sample size (n = 300), and 
(f) A two-sided 5% type I error.

• Issue of HRR: There are many ways leading to 
the same HRR. Here we use a HRR of 4/9 as an example 
with two cases represented by different MSTs in Table 3. 
In Case 1A, MST is 4 years with treatment and 3 years 
without treatment in the negative biomarker group. For 
the positive biomarker group, MST is 3 years and 1 
year with and without treatment, respectively. Thus, HR 
of treatment (compared to control) is 1/3 and 3/4 in the 
positive and negative biomarker groups, respectively. 
The corresponding HRR for the interaction effect is (1/3)/
(3/4) = 4/9. In Case 1B, the negative biomarker group 
has a MST of 2 years with treatment and 1 year without 
treatment, while the positive biomarker group has a MST 
of 9 years if treatment is given and 2 years if not. The 
corresponding HRR for the interaction effect remains 4/9. 

With these settings, we are able to calculate power 
using Equation 1 (Methods Section). We first calculate 
each subgroup censoring rate by comparing each subgroup 
MST to the uniform censoring time distribution through 
Equation 2. Results in Table 3 show that the censoring rate 
in the 4 subgroups ranges 17%-61% in Case 1A and 17%-
80% in Case 1B. By plugging the resulting censoring rates 
and prevalence of each subgroup in the subgroup factor,  

 in Equation 1 (i.e., summation of 1/
( (1-censoring rate) × proportion of each subgroup)), Case 
1A has a smaller subgroup factor of 31.74 compared to 
37.7 in Case 1B. As a result, power is higher in Case 1A 
(71%) than in Case 1B (63%).

Issue of two HRs: Case 1A and 1C have the same 
HRR of 4/9 and are used for demonstration (Table 3). 
Case 1C has the same MSTs as Case 1A in the negative 
biomarker group with and without treatment. But the 
MSTs are double for Case 1C in the positive biomarker 
group (2 and 6 years in control and treatment group, 
respectively). Both cases have the same HRs in negative 

Table 1: Median survival time in each subgroup
Median survival time (MST) Survival probability (S(t))

TREATMENT TREATMENT
no yes no yes

BIOMARKER
low (negative) MST(negative, control) MST(negative, treatment) S(t)(negative, control) S(t)(negative, treatment)

high (positive) MST(positive, control) MST(positive, treatment) S(t)(positive, control) S(t)(positive, treatment)

HRR=MST(negative, treatment)× MST(positive, control))/ 
(MST(negative, control)× MST(positive, treatment))

HRR= (S(t)(negative, control)× S(t)(positive, treatment)) /
(S(t)(negative, treatment)× S(t)(positive, control))
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and positive biomarker groups (3/4 and 1/3, respectively). 
The only difference is that MSTs in the positive biomarker 
group are larger in Case 1C than in Case 1A. This 
difference leads to a higher subgroup censoring rate in 
Case 1C (38%-71%) than in Case 1A (17%-61%) in Table 
3. Therefore, the power becomes lower in Case 1C (61%) 
than in Case 1A (71%). 

Both examples show an 8-10% power difference 
and highlight the importance of the two issues (sole 
use of HRR or two HRs) which could lead to dramatic 
change of statistical power. This question could be solved 
by specifying MST in the 4 subgroups (Table 1). The 4 
specified subgroup MSTs enable to compete with the 
censoring time to generate the censoring rate for each 
subgroup, and therefore to calculate power. 

Once the power is calculated, we face another 
challenge of how to describe the power calculation to 
justify the sample size. Simply reporting the power and 
listing the specified parameters, may not sufficiently 
communicate to readers how the power is computed. 
Below, we share an easily-adaptable template developed 
using R software (‘PowerPredictiveBiomarker’ R package 
in package installation of Supplementary materials) and 
we illustrate its functionality using a previously described 
gene expression signature. 

Data example

The malignancy-risk (MR) gene signature [21, 
22] has been described as a predictive signature that can 
identify early-stage NSCLC patients most likely to benefit 
from adjuvant chemotherapy (ACT). For example, in the 
JBR10 trial [21, 23] (a randomized two-arm trial), the 
MR signature shows a significant interaction effect (p = 
0.02) with ACT treatment. Specifically, patients identified 

as high-risk by the MR signature tend to survive longer 
if they received ACT (p = 0.03). For low-risk patients, 
untreated patients had a longer survival but the result is 
not statistically significantly (p = 0.24). The estimated 
MST is 3.1 and 11.01 years for high-risk patients without 
and with ACT, respectively. For low-risk patients, the 
predicted MST is 10.11 and 6.66 years for patients without 
or with ACT, respectively. 

Suppose we plan to validate the MR signature in a 
prospective study with a total sample size of 200, a ratio of 
1:1 of treatment and control, a 50% prevalence of high MR 
in treatment and control, a 5-year study with 2 years of 
follow-up, and a two-sided 5% type I error. The statistical 
plan below provides power for sample size justification 
(details in Supplementary Figure 1). 

Since patients with high MR have MST of 11.01 and 
3.1 years in the treatment and control groups, respectively, 
the corresponding HR is 0.28 (3.1/11.01). In contrast, the 
HR is 1.52 (10.11/6.66) for patients with the low MR 
with the MSTs of 6.66 and 10.11 years in the treatment 
and control groups, respectively. Therefore, HRR of high 
versus low MR is 0.19 (0.28/1.52). Table 4A summarizes 
the MST for each subgroup. In addition, the overall MST 
(combination of the 4 subgroups) is also obtained as 6.98 
years accordingly. Similarly, MSTs for the treatment, 
control, high MR, and low MR groups are 8.56, 5.6, 5.84, 
8.21 years, respectively.

We also assume that (1) the percentage of patients 
in the treatment group is 50%, and (2) the prevalence of 
high MR is 50% and 50% in the treatment and control 
groups, respectively. With both assumptions, the subgroup 
proportion ranges 25% to 25% in Table 4B. The sample 
size of subgroup is between 50 and 50 (Table 4C).

With a total study time of 5 years with 2 years of 
follow-up and assumption of uniform distribution for 
the censoring time, the censoring time follows a uniform 

Table 2: Proportion in each subgroup
TREATMENT

Proportion no yes

BIOMARKER
low (negative) γ1,1=(1-ppos|treatment) ×(1-ptreatment) γ1,2=(1-ppos|treatment) ×ptreatment

high (positive) γ2,1=ppos|treatment ×(1-ptreatment) γ2,2=ppos|treatment ×ptreatment

Table 3: MST and censoring rate of Case 1A-1C
Case 1A (HR=4/9) : 

71% power
Case 1B (HR=4/9) : 

63% power
Case 1C (HR=4/9): 

61% power

MST Censoring rate
(Overall=45%) MST Censoring rate

(Overall=43%) MST Censoring rate
(Overall=55.5%)

TREATMENT TREATMENT TREATMENT TREATMENT TREATMENT TREATMENT

BIOMARKER no yes no yes no yes no yes no yes no yes
low (negative) 3 yrs 4 yrs 52% 61% 1 yr 2 yrs 17% 38% 3 yrs 4 yrs 52% 61%

high (positive) 1 yr 3 yrs 17% 52% 2 yrs 9 yrs 38% 80% 2 yr 6 yrs 38% 71%
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distribution between 2 and 5 years. By comparing with 
MST in Table 4A (assuming exponential distribution for 
survival time), censoring rates for the 4 subgroups range 
from 0.47 to 0.8 through Equation 2 (Table 4D).

By taking all together for consideration with a two-
sided 5% type I error, the sample size of 200 will have an 
87% power to detect a HRR of 0.19.

Retrospective study

Prospective study requires accrual time and follow-
up time to construct a censoring time. Uniform distribution 
is a good choice in this case. With given MST in each 
subgroup to form HRR, overall and subgroup censoring 
rate could be computed by Equation 2. In contrast, 
retrospective study often has observed survival time and 
censored status collected. Thus overall MST and censoring 
rate are already determined. If survival time and censored 
status are also available to treatment and control groups, 
we will know the corresponding MSTs and censoring rates. 
So, accrual time and follow-up time become irrelevant 
for the retrospective study. Since the retrospective study 
has this unique property, we consider a strategy to have 
hypothesized parameters more realistically reflecting to 
the study cohort. 

Our strategy: Suppose the biomarker of interest has 
demonstrated potential clinical relevance in preliminary 
data with estimated MSTs in the 4 subgroups (Table 1) 
and the corresponding HRR (effect size). We plan to 
validate the biomarker in a retrospective study. Two key 
issues need to be addressed: (a) how to specify MSTs in 
the 4 subgroups such that the overall MST is comparable 
to the study cohort (or comparable MSTs between the 
preliminary data and study cohort in the treatment and 
control groups if the MST is available for the treatment 
and control in the study cohort) and (b) how to build 

an appropriate censoring time distribution such that the 
overall censoring rate is comparable to the study cohort (or 
comparable censoring rate between the preliminary data 
and study cohort in the treatment and control groups if the 
censoring rate is available for the treatment and control 
in the study cohort). In short, the key to the two issues is 
how to make the hypothesized settings comparable to the 
study cohort. 

To generate a comparable overall MST, we consider 
an approach that employs a common factor, k, to all 4 
subgroup MSTs such that the overall MST is the same to 
the study cohort through Equation 4. A similar formula 
(Equation 5) for the factor, kg, (g = 1 and 2 for the control 
and treatment, respectively) could be applied to treatment 
and control groups if both MSTs are available in the study 
cohort. Thus, by providing overall MST of the study 
cohort (or MSTs for treatment and control), we are able 
to scale the 4 subgroup MSTs of the preliminary data to 
generate a matched overall MST (or matched MSTs for 
treatment and control).

To determine a matched overall censoring rate, we 
use exponential distribution for censoring time because the 
observed survival time in retrospective study is variable 
in contrast to prospective study which uses the uniform 
distribution for a fixed maximum of study time. With 
the property of exponential distribution in both survival 
and censoring time, we can identify appropriate overall 
censoring time distribution or censoring time distribution 
for treatment and control through Equation 6-7. Once 
the censoring time distribution is determined, we are 
able to calculate censoring rate for each subgroup. With 
the specified HRR and prevalence of each subgroup, the 
power can be easily calculated through Equation 1. 

Table 4: MST, proportion, sample size, and censoring rate for each subgroup in MR signature in a prospective study

Power=87% A:
MST (years) B:

Subgroup Proportion
C:

Subgroup 
Sample Size

D:
Subgroup 

Censoring Rate
HRR=0.19 TREATMENT TREATMENT TREATMENT TREATMENT

MR no yes no yes no yes no yes
Low 10.11 6.66 0.25 0.25 50 50 0.79 0.7
High 3.10 11.01 0.25 0.25 50 50 0.47 0.8

Table 5: MST, proportion, sample size, and censoring rate for each subgroup in MR signature in a retrospective study
A:

MST (years; from 
preliminary data)

B:
MST (years; after 

scaled)

C:
Subgroup 
Proportion

D:
Subgroup 

Sample Size

E:
Subgroup 

Censoring Rate
TREATMENT TREATMENT TREATMENT TREATMENT TREATMENT

MR no yes no yes no yes no yes no yes
Low 10.11 6.66 8.69 6.06 0.26 0.24 35 32 0.41 0.70
High 3.10 11.01 2.67 10.02 0.26 0.24 35 32 0.69 0.58
Overall 5.6 8.56 4.82 7.80
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Data example (MR continued; Supplementary 
Figure 2)

Suppose we also plan to validate the MR signature 
by utilizing archived tissue samples from a retrospective 
study, a phase III, randomized three-arm clinical trial, 
neo-adjuvant taxol/carboplatin hope (NATCH) [24]. For 
this study, we focus on two arms, control arm and ACT 
arm, with OS as the primary outcome. The control arm has 
141 patients with a 55% censoring rate and a MST of 4.8 
years while there are 129 patients in the ACT arm with a 
censoring rate of 64% and a MST of 7.8 years. We expect 
that 50% of the tissue samples (n = (141+129)/2 = 135) are 
available and would like to know if this sample size has 
sufficient power to test the effect size (HRR = 0.19) for the 
signature validation. 

We first compare MST of the treatment (and control) 
between the preliminary data and the study cohort. Results 
show that for the treatment group, the preliminary data 
had a higher MST than the study cohort (8.56 versus 7.8 
years; Table 5A for MST from preliminary data). For the 
control group, the preliminary data had a higher MST than 
the study cohort (5.6 versus 4.8 years; Table 5A). To make 
both data comparable, we use Equation 5 for the factor, kg, 
to rescale the preliminary data (Table 5B for scaled MST). 
Since the formula need the proportion of each subgroup, 
we assume a 50% prevalence of positive biomarker in both 
treatment and control groups. Combined with 48% patients 
in the treatment group, the subgroup proportion ranges 
24% to 26% with the sample size between 32 and 35 
(Table 5C-D for proportion and sample size). By plugging 
the subgroup proportions in the formula, the resulting 
scale factor becomes 0.91 and 0.86 for the treatment and 
control, respectively. The rescaled data show that MSTs in 
treatment and control match well to the ones in the study 
cohort while retaining the same HRR.

The next step is to identify the censoring time 
distribution for the treatment and control groups in order 
to match the censoring rate to the study cohort. With the 
fixed censoring rate in the study cohort (64% and 55% for 
the treatment and control, respectively), subgroup scaled 
MST, and subgroup proportion (Table 5B-C), Equation 7 
yields exponential censoring time distribution with MST 
13.98 and 5.99 years for the treatment and control groups, 
respectively. As a result, censoring rate of each subgroup 
ranges from 0.41 to 0.70 in Table 5E by Equation 3.

Therefore, by taking all together for consideration 
(censoring rate and proportion for each subgroup) with a 
two-sided 5% type I error, the sample size of 135 will have 
85% power to detect a HRR of 0.19 by Equation 1.

DISCUSSION

Predictive biomarkers are potentially powerful 
tools for precision medicine. However, development of 

predictive biomarker requires prospective or retrospective 
studies for validation and solid statistical plans to justify 
sample size. Unfortunately, these studies have complex 
designs and the statistical methods and associated 
software are limited. In this study, we clarify common 
misconceptions in sole use of HRR and HRs, explain 
key parameters, and provide an easily-adapted statistical 
plan template for study design and power calculations. 
We highlight important differences between retrospective 
and prospective studies and our strategy to mimic study 
cohorts for proper power calculations.

In particular, for prospective studies, we highlight 
the need for MST in the 4 subgroups of Table 1. The 
use of only HRR or two HRs could mislead the power. 
Proper power calculation also requires enrollment time 
and follow-up time to define the censoring time in order 
to determine the censoring rate. In addition, we have to 
provide the prevalence of positive biomarker for treatment 
and control groups along with the ratio of treatment and 
control to determine the subgroup proportion. Once these 
parameters are well defined, power can be calculated for 
a given sample size and type I error through Equation 1. 
More importantly, based on our collaborative research 
experiences, we provide a template of statistical plan to 
detail derivation of censoring rate, proportion, and sample 
size for each subgroup, and therefore power calculation. 
To make the template accessible, we have developed a 
R software application (‘PowerPredictiveBiomarker’ R 
package) for the biomedical community. 

For the retrospective study, we point out its distinct 
design which requires special treatment to generate 
appropriate power. Specifically, the retrospective study 
has fixed survival time and censored status (i.e., survival 
data have been collected). This feature challenges the 
hypothesized parameters. For example, suppose the 
preliminary data for discovering the biomarker has an 
overall MST of 6 years, but the study cohort you plan to 
validate has an overall MST of 2 years. Then both studies 
have a different overall MST. As a result, direct plugin 
of the preliminary results into the study cohort becomes 
problematic. Our strategy provides an approach to 
harmonize both studies such that their MSTs and censoring 
rates are comparable. Like the prospective study, the 
‘PowerPredictiveBiomarker’ R package generates a 
template of statistical plan so investigators could easily 
incorporate into their retrospective study proposal. 
Example data from the published MR signature gives a 
hand-on experience for end-user to prepare the statistical 
plan for predictive biomarker validation. 

In summary, power calculation for predictive 
biomarker in survival data requires well thought out 
parameter settings. Our study provides guidance and 
software to help biostatisticians and clinicians conduct 
power calculation in order to design a scientifically solid 
validation cohort for testing predictive biomarker. 
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MATERIALS AND METHODS

Interaction effect model for survival data: An 
interaction effect model is described below based on the 
Cox PH model. The model includes a biomarker variable 
(positive and negative) and a treatment variable (treatment 
and control), and the interaction term of the two variables 
as expressed in the Cox PH model:

 
where h(t) is a hazard of event at time t and h0(t) is 

the baseline hazard.
This model involves three parameters, β1, β2, and β3: 
β1 represents the biomarker effect. A positive value 

of β1 indicates shorter survival for those with a positive 
biomarker than the ones with a negative biomarker. 

β2 represents the treatment effect. A negative value 
of β2 indicates survival improved in treated patients 
compared to untreated patients. 

β3 represents the interaction effect between 
biomarker and treatment, a differential treatment effect 
when the biomarker value changes. 

The parameter of interest for a predictive biomarker 
is the interaction term, β3. β3 can be expressed as log(HRR) 
where HRR is the abbreviation of Hazard Ratio’s Ratio 
(i.e., hazard ratio (HR) in positive biomarker/HR in 
negative biomarker). Power calculation for the interaction 
model includes two methods by Peterson et al. [11] and 
Lachin [20]. 

Formula of power calculaiton by Peterson et al. and 
Lachin [11, 20] methods: Both methods have a similar 
analytic form of power function to estimate the interaction 
effect, β3, with the formula below 

 (Eq.1)
Where HRR could be expressed as exp(β3), Ф is a 

cumulative normal distribution, Z is the normal quantile at 
1-α/2 level, N is the total sample size, ci,j is the censoring 
rate and yi,j is the proportion for subgroup i, j with i = 1 
and 2 for negative and positive biomarker, respectively, 
and with j = 1 and 2 for control and treatment group, 
respectively. 

Prospective and retrospective study for predictive 
biomarker validtaion: The prospective study we consider 
for the application is the biomarker stratified design 
which patients within each biomarker subgroup are 
randomly assigned to treatment or control groups [25-
27]. One successful example is the ‘Marker Validation of 
Erlotinib in Lung Cancer’ (MARVEL) trial using EGFR 
gene to stratify patients and then randomly assign patients 
with erlotinib or pemetrexed (ClinicalTrials.gov ID: 
NCT00738881). The other potential design is a prospective 
observational trial which biomarker status is measured for 

each patient, but not used for treatment assignment, such 
as ‘A multi-center prospective observational biomarker 
study on egfrm+ non-small cell lung cancer patients 
with leptomeningeal metastasis’ (ClinicalTrials.gov ID: 
NCT02803619). In short, both designs allow us to validate 
if the biomarker is predictive to treatment in a prospective 
way. For the retrospective study, our focus is a study that 
could utilize achieved tissue samples from a randomized 
clinical trial (RCT). For example, JBR10, a complete RCT 
to evaluate chemotherapy, has been utilized to validating 
various gene signatures in NSCLC [21, 23, 28]. Another 
example is ‘Alliance for Clinical Trials in Oncology’ 
which allow biospecimen request from various complete 
RCTs.

Challenges: While the analytic form in Equation 
1 is attractive, it has issues of how to get HRR for the 
predictive effect size, how to compute ci,j for the censoring 
rate, and how to calculate γi,j for the subgroup proportion. 
For retrospective study, other unique issues are how to 
hypothesize MSTs in the 4 subgroups of Table 1 and how 
to identify appropriate censoring time distribution to better 
fit the study cohort. Below we provide guidance to address 
these problems.

HRR: By definition, HRR is a ratio of two hazard 
ratios between the positive and negative biomarker 
(negative biomarker as reference) where the hazard ratio 
is referred to the comparison of hazard rate (λ) between 
treatment and control (control as reference). Thus, HRR 
is composed of four subgroups (treatment and control 
in positive biomarker, treatment and control in negative 
biomarker; Table 1) and has the form, ( λ(negative, treatment)× 
λ (positive, control))/ (λ (negative, control)× λ (positive, treatment)). While it 
is not straightforward to get the hazard rate, we find out 
two useful surrogates: median survival time (MST) and 
survival probability at a specific time point (S(t)). Both are 
summary statistics commonly used in survival analysis. 
With the assumption of exponential distribution for 
survival time, these summary statistics are exchangeable 
with the hazard rate, λ, under the following formula:

 
Therefore, HRR can be based upon MST or S(t) in 

the four subgroups of Table 1 (i.e., HRR = (MST(negative, 

treatment)× MST(positive, control))/ (MST(negative, control)× MST(positive, 
treatment)) or = (S(t)(negative, control)× S(t)(positive, treatment)) /(S(t)
(negative, treatment)× S(t)(positive, control))).

Censoring rate: Since the analytic form (Equation 
1) requires subgroup censoring rate (ci,j) and an overall 
censoring rate (c), the following equation’ is used to 
calculate the censoring rate. 

  
where Ti,j is the survival time of subgroup(i,j) (i = 1 

and 2 for negative and positive biomarker, respectively, 
and with j = 1 and 2 for control and treatment group), and 
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C is the censoring time with a density function, fc(t).
When Ti,j follows an exponential distribution with 

λ(i,j) or MST(i,,j), the subgroup censoring rate (ci,j) could be 
simplified for a uniform censoring time or an exponential 
censoring time. 

 for a uniform censoring time with two parameters: 
a and b as the corresponding lower and upper 
boundary.                                                                       (Eq. 2)

 
for an exponential censoring time with λc, or MSTc.
                                                                      (Eq. 3)
Subgroup proportion: Calculation of γi,j could 

be through the prevalence of positive biomarker in 
the treatment group (p(pos|treatment}) and in the control 
group ((p(pos|control})) and the proportion of patients 
receiving treatment ((p(treatment})) (Table 2). Specifically, 
the proportion of control group is γ1,1 = (1-ppos|treatment) 
×(1-ptreatment) for the negative biomarker and γ2,1 = ppos|treatment 
×(1-ptreatment) for the positive biomarker. Similarly, the 
proportion of negative biomarker in the treatment group 
is γ1,2 = (1-ppos|treatment) ×ptreatment. For the positive biomarker, 
the proportion is γ2,2 = ppos|treatment ×ptreatment. 

Comparable overall MST: One key issue in 
retrospective study is how to hypothesize MSTs in the 
4 subgroups of Table 1 such that the overall MST is 
comparable to the study cohort. Our approach is to find 
a common factor, k, such that the weighted summation 
(subgroup proportion as weight) equates to 0.5 (definition 
of MST) by the formula:

                                                                       (Eq. 4)
where λi,j = log(2)/MST(i,j) is the hazard rate and γi,j 

is the prevalence for the subgroup (i,j), and λ0 and MST0 
are the overall hazard rate and overall MST, respectively, 
for the study cohort. The approach ensures the rescaled 4 
subgroup MSTs have the same overall MST to the study 
cohort. Derivation of the formula is based on Equation 
3. With the assumption of exponential distribution for 
two survival time distributions, we are able to compare 

each subgroup distribution with the overall distribution 
of the study cohort. Then with the common factor, k, the 
weighted summation over the 4 subgroups yields Equation 
4.

A similar formula for the factor, kg, (g = 1 and 2 for 
the control and treatment, respectively) could be applied 
to treatment and control groups if both MSTs are available 
in the study cohort:

                                                                       (Eq. 5)
where λi,g = log(2)/MST(i,g) is the hazard rate of 

the subgroup (i,g) (i = 1 and 2 for positive and negative 
biomarker, respectively) in the treatment or control groups, 
and yi,g is the corresponding prevalence. λ0,g and MST0,g are 
the hazard rate and MST, respectively, for the control (g = 
1) and the treatment (g = 2) in the study cohort. 

Censoring time distribution for the retrospective 
study: Another key issue in retrospective study is to 
select an appropriate censoring time distribution such 
that the overall censoring rate is comparable to the study 
cohort. With the property of exponential distribution in 
both survival and censoring time through Equation 3, 
distribution of the overall censoring time can be identified 
through the formula:

                                                                      (Eq. 6)
where λc and MSTc are the hazard rate and MST, 

respectively, for the overall censoring time and c is the 
overall censoring rate. Similarly, the formula of censoring 
time distribution for the treatment and control is 

                                                                       (Eq. 7)
where λc,g and MSTc,g are the hazard rate and MST, 

respectively, of the censoring time and cg is the censoring 
rate for control (g = 1) and treatment (g = 2). 
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