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ABSTRACT
The insulin-like growth factor (IGF) signaling system plays key roles in the 

establishment and progression of different types of cancer. In agreement with this 
idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its 
primary ligand IGF-I are important for maintaining the survival of malignant cells of 
hematopoietic origin. In this review, we discuss current understanding of the role 
of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also 
address the emergence of IGF-IR as a potential therapeutic target for the treatment 
of different types of cancer including plasma cell myeloma, leukemia, and lymphoma.

INTRODUCTION

Several major advances have improved our 
understanding of the molecular characteristics of 
hematological malignancies and led to the development 
of new therapeutic agents to eliminate these aggressive 
neoplasms. The discovery of the BCR-ABL1 fusion 
oncogene and defining the pathogenetic molecular 
mechanisms in chronic myelogenous leukemia (CML) 
have led to the development of BCR-ABL tyrosine kinase 
inhibitors such as imatinib, nilotinib, and dasatinib, 
which have improved the 10-year survival rate drastically 
in CML patients, from 20% to 85% [1-5]. In patients 
diagnosed with indolent or aggressive B-cell non-
Hodgkin’s lymphoma, the use of the anti-CD20 antibody 
rituximab has resulted in improved survival [6]. These 
are only some of the most recognized examples of the 
breakthroughs that have occurred in the field of developing 
new therapies to treat hematological neoplasms. In spite of 
these discoveries, patients diagnosed with hematological 
malignancies continue to experience disease relapse and 
resistance to available treatment options, which suggests 
that the need to develop novel approaches that can be 
used alone or in combination with current therapeutic 
modalities to eradicate hematological neoplasms remains 
critical.

Numerous studies have concluded that the type 
I insulin-like growth factor receptor (IGF-IR) and 
its primary ligand IGF-I play significant roles in the 
establishment and progression of tumors, primarily by 
inhibiting apoptosis and inducing cellular transformation 
[7-10]. IGF-IR is also thought to aid malignant cells in 
acquiring anchorage-independent growth, giving the cells 
the ability to survive detachment and facilitate migratory 
processes for metastatic dissemination [11].

To date, there are several potentially effective IGF-
IR inhibitors that have been tested in preclinical studies 
as well as in clinical trials enrolling patients harboring 
aggressive forms of solid cancers and hematological 
malignancies. Importantly, these IGF-IR inhibitors are 
well tolerated with minimal toxic effects in vivo [12]. The 
effects of IGF-IR have been studied to a great extent in 
solid tumors, including those of the breast, prostate, lung, 
ovary, skin, and soft tissues [13-17]. In contrast, less 
studies have been performed to thoroughly examine the 
function of IGF-IR in hematological neoplasms [18-24]. 
In this review, we discuss the current understanding of the 
role of IGF-IR signaling in cancer including hematological 
neoplasms. We also address the emergence of IGF-IR as 
a potential therapeutic target in the treatment of these 
aggressive diseases. 

                  Review
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THE IGF SIGNALING SYSTEM

Overview

The IGF signaling system plays significant roles 
in both embryonic and postnatal development as well as 
having important functions in normal adult physiology. 
The IGF system includes four receptors: insulin receptor 
(IR), IGF-IR, IGF-IIR, and the hybrid receptors consisting 
of one-half IR and one-half IGF-IR (Figure 1). These 
receptors interact with three main ligands: insulin, IGF-I, 
and IGF-II. IR, IGF-IR, and IGF-IIR have the strongest 
binding affinity for their respective ligands, whereas the 
binding of insulin to IGF-IR and IGF-I to IR is at least 
100-fold less [25]. IGF-I and IGF-II signaling is mediated 

through IGF-IR; but IGF-I has at least 3-fold higher 
binding affinity than does IGF-II [25]. The IGF system 
also includes regulatory proteins, known as IGF binding 
proteins (IGFBPs) that regulate IGF signaling. Although 
up to 10 proteins have been described in the literature as 
IGFBPs, only IGFBP-1 thorough IGFBP-6 are considered 
true IGFBPs based on their conserved protein structure 
and high binding affinity for IGF-I and IGF-II [26].

IGF-IR

IGF-IR is a receptor tyrosine kinase that is 
structurally composed of two identical α subunits and two 
identical β subunits that are connected by disulfide bonds 
to form the functional homodimeric receptor complex 
(Figure 2). Each α subunit is entirely extracellular and 

Figure 1: Overview of the IGF system. The IGF system consists of four receptors: IR, IGF-IR, IGF-IIR, and hybrid receptors. IR 
is expressed as two isoforms - IR-A and IR-B. IR-A has oncogenic potential, expressed predominantly in fetal tissues, and its expression 
declines during adulthood. IR-B is the physiologically expressed isoform in adult tissues. The IR-A or IR-B receptor makes one half of the 
hybrid receptors along with one half of the IGF-IR. The IGF system receptors interact mainly with three ligands: insulin, IGF-I, and IGF-
II. Excluding IGF-IIR, these receptors possess tyrosine kinase activity. At the other hand, IGF-IIR (also known as mannose-6-phosphate 
[M6P] receptor) binds and removes circulating IGF-II to keep its free form at very low levels. The figure depicts IGF system ligands 
in order of their binding affinities to the different receptors. Ligands shown within the same rectangle have almost similar affinities to 
bind with a specific receptor. Ligands shown in separate yet close rectangles have slightly different receptor binding affinities. When the 
rectangles are widely separated, the ligands binding affinities are remarkably different.
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contains a cysteine rich domain that forms the primary 
binding site for its ligands IGF-I, IGF-II, and, to a 
much lesser affinity, insulin. Each β subunit includes 

an extracellular domain, a 24-residue hydrophobic 
transmembrane domain, and a larger cytoplasmic region 
that shares 84% amino acid sequence identity with the IR 

Figure 2: Schematic structure of IGF-IR. IGF-IR is a transmembranous homodimeric receptor tyrosine kinase that is composed of 
two identical extracellular α subunits and two identical transmembranous β subunits connected by disulfide bonds. The α subunit contains 
a cysteine-rich domain where the ligand binds. The cytoplasmic regions of the β subunits contain residues directly involved in IGF-IR 
signaling. Y950 is the binding site for its primary substrates including IRS-1 and SHC; Lys1003 is the ATP binding domain; and Tyr1131, 
Tyr1135, and Tyr1136 make up the activation loop of the kinase domain, which is followed by the C-terminus domain.
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[27]. Tyrosine 950 is the binding site for its substrates IRS-
1 and SHC, among others. The intracellular region of the 
β subunit contains an ATP binding site at lysine 1003. It 
also contains a kinase domain encompassing the activation 
loop made up of three critical tyrosine residues at positions 
1131, 1135, and 1136, which form part of the YXXXYY 
moiety (Y is a tyrosine and X is a non-tyrosine amino acid 
residues). It is important to note that the YXXXYY moiety 
is also present in other members of the IR family such 
as the anaplastic lymphoma kinase (ALK) and leukocyte 
tyrosine kinase receptors [28-30]. The tyrosine residues 
within the YXXXYY moiety become phosphorylated 
upon ligand binding-induced receptor dimerization. 
Residue 1136 in IGF-IR is particularly important in that 
it maintains the conformational stability of the β subunit.

The C-terminus domain of IGF-IR contains 
several tyrosine and serine residues. These residues are 
phosphorylated, probably to induce mitogenic effects, 
but how their phosphorylation actually contributes to 

normal and malignant IGF-IR signaling is still not fully 
understood. The binding of IGF-IR to its ligands causes 
the phosphorylation of tyrosine residues located in the 
intracellular portion of its β subunit. Once phosphorylated, 
tyrosine 950 provides a docking site for IGF-IR substrates 
including IRS-1-4 and SHC proteins, which, in turn, act as 
docking sites. Upon substrate binding and phosphorylation 
of docking sites, downstream signaling is activated 
through the PI3K/AKT, MAPK, and STAT pathways and 
may stimulate cancer cell growth in an autocrine/paracrine 
manner [31-33] (Figure 3).

Mouse models have revealed the importance of 
IGF-IR in prenatal and postnatal growth, especially in 
regards to genetic imprinting. The activation of IGF-IR 
during these stages improves the survival and increases 
the proliferation of mitosis-competent cells, resulting in 
the growth of tissues such as skin, bone, adipose tissue, 
and skeletal and cardiac muscles [34-38]. IGF-IR also 
plays roles related to the development of the mammary 

Figure 3: IGF-IR signaling partners. Binding of IGF-IR to its primary ligand, IGF-I, causes the phosphorylation of tyrosine residues 
present in the intracellular portion of its β subunit. Once phosphorylated, Y950 provides a docking site for its substrates IRS-1-4 and SHC 
proteins. Upon substrate binding, downstream signaling is activated through the IRS-1/PI3K/AKT/mTOR or SHC/RAS/MAPK pathway, 
leading to proliferative and anti-apoptotic effects, which culminate to oncogenesis and tumor cell survival. 
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gland during the embryonic stage. In this regard, IGF-IR 
regulates the formation and proliferation of terminal end 
buds and contributes to ductal outgrowth and branching 
during puberty. In addition, it has been demonstrated that 
IGF-IR is necessary for normal epithelial proliferation and 
alveolar formation during pregnancy and lactation [39]. 
During embryonic development, the IGF-IR pathway is 
also involved in the development of limb buds. It has been 
previously shown that the abrogation of IGF-IR expression 
such as in Igf1r-null mice or the marked decrease in 
IGF-I levels leads to generalized organ hypoplasia, 
including developmental delays in bone ossification and 
abnormalities in the central nervous system [35, 38, 40-
43]. Mice lacking the entire Igf1r gene typically exhibit 
a dramatic reduction in body mass, and they die at birth 
due to severe respiratory failure [40]. Mice carrying only 
one functional copy of Igf1r are born alive, but their body 
mass is ~45% lower than normal [40].

The aberrant activation of the IGF-IR pathway is 
also strongly associated with initiating cancer growth 
[12]. Within the past 20-30 years, evidence has emerged 
to support that IGF-IR overexpression plays a significant 
role in the development and progression of tumors, 
metastatic potential, and resistance to therapies. Studies 
have shown that IGF-IR induces its oncogenic effects 
through the inhibition of apoptosis and the induction of 
transformation and angiogenesis. Furthermore, IGF-IR 
regulates properties that cause malignant cells to acquire 
anchorage-independent survival, allowing them to 
endure detachment and migration, which is essential for 
metastatic dissemination [44]. 

Moreover, it has been documented that IGF-IR 
expression above a certain threshold can induce tumor 
cell progression that is independent of exogenous ligand 
stimulation. For example, when RM11A murine breast 
cancer cells that express high levels of exogenous IGF-
IR were treated with IGF-I or IGF-II, the proliferative/
survival potential of these cells was not enhanced, 
suggesting a ligand-independent mechanism [45]. At 
the other hand, wild-type RM11A cells expressing low 
levels of IGF-IR had a robust response to IGF stimulation, 
most likely because the activation of endogenously 
expressed low levels of IGF-IR is still dependent on 
IGF-I stimulation. Therefore, it was proposed that high 
expression of IGF-IR results in its constitutive activation 
independent of the presence of ligands [45]. 

It has also been shown that the level of IGF-
IR expression, specifically a minimum number of 
its molecule, plays a key role in its transforming and 
oncogenic properties [46, 47]. For instance, in 3T3-
like fibroblasts, the IGF-IR number needs to be greater 
than 20,000 receptors per cell to enable mitogenesis and 
transformation after stimulation with IGF-I [46]. Similarly, 
in a pancreatic cell line, PANC-1, the observed increase in 
the receptor number per cell from 40,000 to 100,000 is 
in the range required to enable IGF-I-stimulated growth 

and therefore may be of central importance for pancreatic 
tumor growth [47]. Based on these findings, it was 
concluded that a relatively small increase in the number 
of receptors per cell above a certain threshold could induce 
the transformation effects of IGF-IR. 

Studies on IGF system in normal epithelial and 
cancerous cells such as those of the breast have found 
that IGF-IR is activated in one of two ways through 
IGF-I: (1) hepatic production of IGF-I can increase serum 
IGF-I, which in turn may act in an autocrine manner as a 
stimulatory molecule to induce the proliferation of normal 
as well as cancer cells; and/or (2) local production of IGF-I 
by stromal cells that surround the tumorigenic cells serves 
as a paracrine stimulator of the IGF-IR signaling [48, 49]. 
It has also been proposed that the interactions between 
IGF-I and IGF-IR enhance tumor cell survival through 
stimulation of other oncogenic signaling mechanisms. 
For instance, in prostate cancer cells, IGF-I is thought to 
indirectly stimulate the androgen receptor via crosstalk 
with IGF-IR to induce the transformation of prostatic 
epithelial cells [50, 51]. The oncogenic effects of IGF-I/
IGF-IR interactions have also been suggested to exist in 
colon cancer. IGF-IR is highly expressed in colon cancer, 
compared to normal colonic mucosa, and IGFs in colonic 
malignant mucosa could exert their effects via IGF-IR in 
a paracrine manner [51-53]. 

In contrast to the widely studied solid tumors, 
not many studies have examined the role of IGF-IR in 
hematological neoplasms, and most of these studies 
focused on plasma cell myeloma [54, 55]. Other studies 
also addressed the role of IGF-IR signaling in acute 
myelogenous leukemia (AML) and acute lymphoblastic 
leukemia (ALL) [56-64]. In addition, studies from our lab 
and others’ have demonstrated the contributions of IGF-
IR signaling to the pathogenesis of other hematological 
neoplasms, including T-cell lymphoma, mantle cell 
lymphoma, chronic lymphocytic leukemia (CLL), and 
CML [20-24, 65]. 

IGF-IIR

Also, there are studies showing the involvement 
of IGF-IIR in cancer development and progression. 
IGF-IIR, known as the cation-independent mannose-
6-phosphate receptor, acts as a reservoir to clear IGF-
II from the extracellular environment and cell surface 
through endocytosis and lysosomal degradation, thereby 
inhibiting IGF-II-induced tumor growth signaling [66-
68]. Therefore, IGF-IIR is considered a tumor suppressor 
protein. It has been demonstrated that specific alterations 
in IGF-IIR lead to the progression of a transformed 
phenotype. For example, microsatellite instability of 
IGF-IIR has been documented in cancers of the prostate, 
breast, endometrium, and gastrointestinal tract [69-71]. 
In addition, loss of heterozygosity of IGF-IIR has been 
described in liver, lung, ovarian, prostate, head and neck, 
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and breast cancers [72-76]. While loss of heterozygosity in 
tumor samples suggests the loss of IGF-IIR function and 
the enhancement of the progression toward a transformed 
phenotype, the detection of mutations in IGF-IIR that 
disrupt ligand binding at the cell surface is another 
mechanism by which IGF-IIR loses its function [77, 78].

IGF-I and IGF-II

IGF-I is a single-chain peptide that shares 62% 
and 40% amino acid sequence identities with IGF-II and 
proinsulin, respectively [79]. IGF-I is synthesized in a 
variety of tissues and cultured cell types, suggesting that 
this protein may have autocrine and paracrine effector 
functions, unlike insulin, which is stored within cells of 
a particular tissue (pancreas) and has mainly autocrine 
effects [38, 80]. Liver secretion of IGF-I is regulated by 
the growth hormone (GH), which signals peripheral tissues 
to grow, whereas insulin is tightly regulated by glucose 
uptake [80, 81]. Therefore, insulin is primarily associated 
with metabolic effects, whereas IGF-I is essentially a 
growth factor and an anabolic agent. 

IGF-I is a ~7.6 kDa 70 amino acid single chain 
polypeptide that functions as the primary ligand for IGF-
IR. There is increasing evidence that IGF-I might provide 
a major link between IGF-IR and the development of 
cancer through its regulatory effects on cell proliferation, 
differentiation, and apoptosis. Although cancer cells 
do not necessarily secrete IGF-I, high concentrations 
of circulating IGF-I, which is secreted by the liver, 
have been found to associate increased cancer risk in 
children and adults as well as to contribute to the growth, 
maintenance, and progression of cancer [82-86]. Mouse 
models have shown reduced proliferation of androgen-
dependent prostate cancer cells in IGF-I-deficient hosts 
relative to control hosts [87]. In contrast, spontaneous 
neoplasia occurs in prostate epithelium from Igf1 
transgenic mice [88]. In breast cancer, it has been shown 
that elevated IGF-I levels can reduce the synthesis of sex 
hormone-binding globulin, which can lead to an increase 
in the bioavailability of estrogen. Estrogen has been 
demonstrated to induce the expression of IGF-IR as well 
as IRS-1 and IRS-2, which synergistically potentiate the 
activation of MAPK [89]. 

IGF-II is a ~7.5 kDa 67 amino acid single chain 
mitogenic polypeptide that is produced mainly by the liver 
[68, 90-93]. It is also synthesized by other tissues, such as 
muscle and placenta, in which it elicits its effects through 
an autocrine or paracrine manner, similar to IGF-I [94, 
95]. Physiologically, IGF-II is involved in the regulation of 
fetal development (it is highly expressed during embryonic 
stages), cell growth, differentiation, and metabolism 
[90, 96-104]. Unlike IGF-I that is tightly regulated by 
GH, genetic factors, such as loss of imprinting, play a 
significant role in the regulation of IGF-II, which causes 
an overabundance of IGF-II and subsequent augmentation 

of its signaling [105, 106]. Loss of imprinting has been 
demonstrated in a variety of cancers including breast, 
ovarian, and esophageal, and kidney cancers. Furthermore, 
IGF-II can also be regulated at the transcriptional level 
either through direct binding of transcription factors 
on consensus motifs or through hormone-induced 
transcription [107-112]. IGF-II is believed to induce its 
effects mainly through IGF-IR, IR isoform A (IR-A), 
and IGF-IR/IR-A hybrid receptors. Similar to IGF-I, the 
binding of IGF-II to IGF-IR induces downstream signaling 
via the PI3K/AKT and MAPK pathways [113]. IGF-II 
is cleared from the extracellular environment through 
binding with IGF-IIR. The overexpression of IGF-II in 
cancer cells has been demonstrated using in vitro and in 
vivo experimental approaches as well as in cancer patients’ 
specimens [114-120]. Moreover, in vivo studies showed 
that IGF-II overexpression results in more aggressive 
tumors, while animals with low expression of IGF-II or 
treated with IGF-II-neutralizing antibodies had lower 
tumor burdens and prolonged survival [114, 117, 118, 
121].

ROLE OF IGF-IR SIGNALING IN 
HEMATOLOGICAL MALIGNANCIES

Plasma cell myeloma

Plasma cell myeloma (PCM) accounts for 
approximately 10% of hematological malignancies 
with an incidence of four cases per 100,000 people 
a year [122]. The average age at diagnosis is 68 years, 
and the incidence increases with age advancement. The 
development of PCM occurs in steps. Normal plasma 
cells are usually arrested in the G1 phase of the cell cycle; 
however, malignant PCM cells exhibit uncontrolled cell 
cycle progression. PCM cells initially reside in the bone 
marrow, where they interact with stromal cells that express 
integrins and secrete cytokines to potentiate migration, 
adhesion, and proliferation of the PCM cells, and enhance 
surrounding angiogenesis [123-125]. The plasma cells 
then ultimately invade the basement membrane of the 
bone marrow and may undergo widespread dissemination. 
These processes are thought to be highly dependent on 
interleukin-6 (IL-6), as targeting IL-6/IL-6 receptor (IL-
6R) signaling decreases PCM tumor growth in vitro and 
in vivo [126-129].

In addition to IL-6, it has also been shown that 
IGF-I induces the growth and development of PCM 
through activation of IGF-IR. For instance, some earlier 
studies demonstrated that IGF-I is capable of increasing 
DNA synthesis as well as enhancing the viability and 
proliferation of several PCM cell lines. The effects of 
IGF-I were reversed when an anti-IGF-IR blocking 
antibody was additionally used [130, 131]. In further 
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support of an important role of IGF-I/IGF-IR signaling 
in PCM, studies from different labs showed that IGF-
IR and IGF-I are highly expressed in PCM, and that the 
IGF-I/IGF-IR signaling axis, at least partially through 
an autocrine cascade, contributes significantly to the 
survival and progression of PCM [54, 132]. Different 
models have been proposed to explain the functional 
relationship between IGF-I/IGF-IR and IL-6 in PCM. In 
one model, the effects of IGF-I and IL-6 on PCM cells 
appeared to be executed independently. Indeed, anti-IGF-
IR/IGF-I antibodies failed to block the stimulatory effects 
of IL-6. In a similar fashion, anti-IL-6/gp130 antibodies 
were not capable of reversing the effects of IGF-I [133]. 
Importantly, IGF-I and IL-6 were found to induce 
“additive” effects on PCM cell survival and proliferation. 
In support of this idea, IGF-I/IGF-IR axis induced its 
effects predominantly through the phosphorylation of 
IRS-1 protein, which is considered a major substrate of 
IGF-I/IGF-IR signaling [31, 134, 135]. Moreover, IL-6/
gp130 promoted the survival of PCM cells through the 
phosphorylation of STAT3. Both signaling pathways, 
however, efficiently activated the RAS/ERK/MAPK 
survival-promoting system [133]. In another model, IL-6 
was found to phosphorylate/activate IGF-IR receptor in 
PCM cell lines [136]. Interestingly, IL-6 stimulation of 
PCM cells was associated with co-localization of the IL-
6Rα with IGF-IRβ at lipid rafts.

IGF-I/IGF-IR axis supports the survival of PCM 
cells not only via signaling through IRS-1 but also by 
singling through IRS-2. The IRS-2/PI3K/p70S6K pathway 
was found to be either constitutively activated or instead 
activated via upstream interactions with IGF-I/IGF-IR 
[19]. When IRS-2/PI3K/p70S6K pathway is constitutively 
activated, the direct binding of IRS-2 with IGF-IR, 
regardless of IGF-I stimulation, induces downstream 
effects that lead to tumor cell proliferation and inhibition 
of apoptosis [19].

IGF-IR signaling inhibits apoptosis and induces 
proliferation of PCM cells

In PCM, IGF-I/IGF-IR signaling inhibits apoptosis 
and induces tumor cell proliferation through the activation 
of two distinct pathways - PI3K/AKT and MAPK. Which 
of the two processes - apoptosis or cell proliferation 
- is promoted appears to depend on which pathway is 
activated. For instance, IGF-IR suppresses apoptosis 
through inhibition of the release of cytochrome C from 
the mitochondria after the activation of the PI3K/AKT 
pathway. Activated AKT phosphorylates the pro-apoptotic 
protein BAD. Upon phosphorylation, BAD becomes 
dissociated from anti-apoptotic BCL-2 and sequestered 
by the adaptor protein 14-3-3. These processes prevent 
apoptosis from occurring in PCM cells [137, 138]. 

One possible mechanism for the activation of the 

PI3K/AKT pathway in PCM is the lack of the PTEN 
tumor suppressor protein, a negative regulator of PI3K/
AKT activity [139, 140]. The anti-apoptotic effect of 
PI3K/AKT signaling after IGF-I stimulation was found to 
be reversed upon overexpression of PTEN in PCM cell 
lines lacking PTEN, suggesting that the loss of PTEN is 
also responsible for uncontrolled IGF-IR-induced AKT 
activity in these cells [139, 140].

Whereas the activation of the PI3K/AKT pathway 
by IGF-IR appears to be involved primarily with inhibition 
of apoptosis in PCM, activation of the MAPK pathway 
is believed to be principally involved with inducing cell 
proliferation [138]. Ligand binding of IGF-I to IGF-IR 
allows the phosphorylation of the SHC substrate, which in 
turn leads to activation of RAS that subsequently activates 
the RAF kinase on its serine/threonine residues. As a 
result, activated RAF phosphorylates and activates MEK, 
which then phosphorylates and activates MAPK, leading 
to the proliferation of PCM cells [141].

In addition to the idea that distinct outcomes result 
from IGF-IR-induced activation of PI3K/AKT versus IGF-
IR-induced activation of MAPK, more recent studies have 
revealed that “crosstalk” exists between PI3K/AKT and 
MAPK and that this crosstalk is critical for PCM tumor 
progression [141, 142]. In this model, binding of IGF-I 
to IGF-IR induces phosphorylation of RAF, MEK, and 
MAPK. However, inhibition of PI3K using the LY294002 
inhibitor resulted in the inhibition of MEK and MAPK 
without interfering with the activation of upstream RAF 
[141]. This suggests that the PI3K pathway is capable of 
regulating the activation of MAPK, bypassing upstream 
activators of this pathway. Alternatively, using the MAPK 
inhibitor PD98059 did not have significant effects on the 
PI3K pathway, alluding to the idea that this crosstalk is 
mediated by PI3K, and not vice versa.

In a similar fashion, it was shown that rapamycin-
induced mTOR inhibition decreased the serine 
phosphorylation of IRS-1, which was associated with a 
compensatory  IGF-I downstream signaling via the PI3K/
AKT pathway [142]. It was noted that this activation is 
highly dependent on IGF-IR signaling, because treating 
the PCM cells with an anti-IGF-IR antibody hindered the 
ability of rapamycin to activate AKT. Related observations 
were also shown in a different study utilizing the IGF-IR 
tyrosine kinase inhibitor picropodophyllin (PPP), where 
it was found that PPP significantly sensitized RPMI 8226 
PCM cells to rapamycin and SB203580, a MAPK inhibitor 
[143]. These observations suggest a relationship and 
possible crosstalk between the mTOR and IGF pathways 
in PCM [142, 144]. 

In addition to the effects mediated by IGF-I, in 
vitro experiments have shown that IGF-II increases cell 
proliferation and protects dexamethasone-treated PCM 
cells from apoptosis [145]. Although this study did not 
examine in detail the interactions between IGF-II and 
IGF-IR, it was implied that at least the IGF-II-mediated 

http://en.wikipedia.org/wiki/C-Raf
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proliferation of PCM cells was executed through IGF-
IR. Whether the anti-apoptotic effects of IGF-II were 
also mediated through IGF-IR remains to be elucidated. 
Notably, IGF-II was almost as effective as IGF-I in 
protecting the PCM cells from dexamethasone-induced 
apoptosis [145]. 

IGF-IR induces adhesion, invasion, and migration 
of PCM cells

IGF-I/IGF-IR signaling is also involved in 
critical aspects of PCM dissemination, including 
adhesion, invasion, and migration. One of the principal 
features of malignant PCM cells during homing is their 
ability to transmigrate and adhere to the bone marrow 
microenvironment. In this regard, IGF-I acts as a chemo-
attractant for PCM cells that increases their adhesion 
to the extracellular matrix glycoprotein fibronectin 
[146]. This effect is also dependent on the activation 
of IGF-IR downstream targets including PI3K/AKT 
[146]. In addition, IGF-I can rapidly and transiently 
induce the association between IGF-IR and β1 integrin, 
a heterodimeric membrane protein that mediates cell 
adhesion to the extracellular matrix, which also leads to 
further adhesion of PCM cells to fibronectin [146]. The 
phosphorylation of IGF-IR, IRS-1, and PI3K leads to the 
co-localization of IGF-IR and β1 integrin on lipid rafts in 
the cell membrane [146, 147].

It has also been shown that IGF-I triggers the 
polymerization of F-actin, induces phosphorylation of 
FAK and paxillin, and enhances β1 integrin’s association 
with these focal adhesion proteins, which enhances PCM 
homing to the bone marrow microenvironment [146, 148]. 
IGF-I induces the migration of PCM cells in an AKT-
dependent or -independent manner, such as through the 
PKD or RhoA/PKC pathway [146, 149, 150]. This was 
further demonstrated when an anti-IGF-I antibody, anti-β1 
integrin antibody or PI3K inhibitor abrogated IGF-I-
induced transmigration [146]. 

Acute and chronic leukemia and myelodysplastic 
syndromes

Upregulation of IGF-I/IGF-IR signaling is prevalent 
in several types of leukemia, including AML, B-ALL, 
T-ALL, CML, and CLL.

Overexpression of IGF-IR has been reported in 
human AML cells and autocrine IGF-I production has been 
suggested to play a role in drug resistance in AML [18, 56, 
57]. Furthermore, constitutive activation of the PI3K/AKT 
signaling pathway is believed to play crucial roles in the 
survival of AML cells [151, 152]. Constitutive activation 
of PI3K/AKT, at least in part, results from autocrine IGF-I 
release and activation of IGF-IR, which was shown in 
70% of AML samples [18, 57]. Several in vitro studies 

using different IGF-IR inhibitors illustrated the therapeutic 
potential of targeting IGF-IR in AML. For example, NVP-
ADW742, a small molecule inhibitor of IGF-IR, induces 
AKT dephosphorylation, which subsequently decreases 
p38 phosphorylation and downregulates antiapoptotic 
proteins such as BCL-2 in AML cells [60]. Inhibition 
of constitutive IGF-IR phosphorylation as well as 
downstream signaling through MEK and AKT was also 
demonstrated after treatment with BMS-536924 or BMS-
554417, dual IGF-IR/IR inhibitors [59, 153]. In another 
study, the IGF-IR small molecule inhibitor NVP-AEW541 
sensitized primary AML blasts and cell lines to etoposide-
induced apoptosis through caspase-3 cleavage, in addition 
to inducing antiproliferative effects [56].

In addition, in AML, it has also been shown that 
mTOR inhibition using rapamycin overactivates PI3K/
AKT by upregulating IGF-I/IGF-IR signaling, in a fashion 
similar to that seen in PCM. These effects appear to occur 
through enhancing not only IRS-1 expression but also IRS-
2 expression. Using 19 AML samples with constitutive 
PI3K/AKT activation, the rapamycin-derivative 
inhibitor everolimus increased AKT phosphorylation by 
upregulating the expression of IRS-2 via an IGF-I/IGF-
IR autocrine loop [58]. These findings suggest crosstalk 
between IGF-IR, PI3K/AKT, and mTOR in AML. 

The myelodysplastic syndromes (MDS) arise from 
clonal hematopoietic stem cells that are characterized by 
atypical morphology, aberrant maturation, and specific 
molecular events. Approximately, one third of MDS 
patients experience progression to AML [154]. Decreased 
apoptosis of the hematopoietic cells plays an important 
role in the pathogenesis of MDS and probably in its 
transformation to AML [155-157]. Recently, IGF-IR has 
been shown to be involved in MDS pathogenesis and its 
transformation to AML. Compared with normal myeloid 
cells, IGF-IR protein and mRNA expression is enhanced 
in MDS cells, and this enhancement increases with 
progression to AML. In addition, in both MDS and AML, 
apoptotic signals are present only in IGF-IR-negative 
cells, suggesting that IGF-IR protects these cells from 
apoptosis [158]. 

Our group has discovered that IGF-IR also plays a 
role in CML [21]. In our study, IGF-IR was upregulated 
in CML cell lines, and the expression of IGF-IR appeared 
to be directly correlated with the progression of CML. 
For instance, IGF-IR was expressed in 30% and 25% of 
patients with chronic phase and accelerated phase CML, 
respectively, but the expression rate increased to 73% in 
patients with blast phase CML. Treatment of CML cells 
with PPP, an IGF-IR small molecule inhibitor, resulted 
in decreased cell viability and proliferation. In addition, 
inhibition of IGF-IR decreased activated/phosphorylated 
AKT and STAT5 as well as downregulated BCL-2, BCL-
XL, and basal caspase-3 and was associated with apoptotic 
cell death. Inhibition of IGF-IR also resulted in cell cycle 
arrest at the G2/M-phase, which was mediated through 
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upregulation of cyclin B1 and downregulation of cyclin 
E and pCdc2 [21].

In another recent study, the involvement of c-myb 
with IGF system in inducing the proliferation of CML 
cells was demonstrated [159]. C-myb plays an important 
role in the regulation of cell growth and differentiation 
and is highly expressed in malignant hematopoietic cells. 
Induced overexpression of c-myb causes a significant 
increase in IGF-I, IGF-II, and IGF-IR expression, and 
a decrease in IGFBP-3 expression, which promotes 
CML cell proliferation [159]. Of note is that anti-IGF-
IR antibodies inhibited the c-myb-induced cell growth. 
The growth-promoting effects of c-myb were mediated 
through two major intracellular signaling pathways, AKT 
and ERK. The activation of AKT and ERK by c-myb was 
abrogated by IGF-IR and IGFBP-3 antibodies. These 
findings suggest that c-myb stimulates cell growth, in part, 
by regulating the expression of the components of the IGF 
system in CML. 

The contribution of IGF-I/IGF-IR signaling to CLL 
has also been investigated. It was shown that IGF-I and 
IGF-IR participate in autocrine/paracrine loops to promote 
the survival of CLL cells [160]. High levels of IGF-IR 
protein and mRNA expression were detected in CLL 
cells and positively correlated with the expression of the 
antiapoptotic protein BCL-2. It was also shown that serum 
IGF-I was elevated in CLL patients, but the level of GH 
remained unchanged, suggesting that autocrine production 
of IGF-I by CLL cells results in increased levels of serum 
IGF-I, independently of GH, and can stimulate IGF-IR 
to promote CLL cell survival. Moreover, a recent study 
showed that the high expression of IGF-IR gene in CLL 
was associted with bad prognostic indicators including 
IGHV gene unmutated status, high CD38 expression, 
trisomy 12, and del(11)(q23) [161]. Furthermore, the 
increae in IGF-IR gene expression charectierized a 
subgroup of CLL patients with NOTCH1 mutation. In 
a separate study, 3 different IGF-IR inhibitors reduced 
CLL cell viability and induced apoptosis, even in the 
presence of the surrounding stromal cells, which provide 
a protective barrier [24]. Furthermore, it was found that 
sorafenib, a multikinase inhibitor, was able to decrease 
IGF-IR expression as well as decrease tyrosine kinase 
activity, suggesting IGF-IR is a target for sorafenib in 
CLL. 

Significant work has also been accompalished 
in T-ALL and B-ALL to study the effects of not only 
IGF-IR but also IGFs. For instance, one study reported 
the characteristics of insulin, IR, IGF-I, IGF-II, and GH 
binding in 18 established T-ALL and B-ALL cell lines 
[162]. IGF-IR and IR were present in these cell lines; 
IGF-IR was preferentially expressed in T-ALL cell lines 
and IR was preferentially expressed in B-ALL cell lines. 
In addition, using binding assays, it was determined that 
there were different binding affinities for IGF-I, IGF-II, 
and insulin in the different cell lines. This was the first 

report to document the expression of these proteins in 
ALL. Another in vitro study used FL5.12, a murine pro 
B-ALL cell line, to further elucidate the main mechanism 
of IGF-IR signaling in this disease [163]. This cell line 
contains a Y1250F/Y1251F double-mutant IGF-IR, which 
causes loss of apoptotic induction in response to IGF-I 
withdrawal and deficient colony-forming capabilities 
and metastatic potential; however, these cells still display 
mitotic activity [163-166]. This study showed that the 
FL5.12 cells had impaired phosphorylation of JNK, SHC, 
and MAPK upon IGF-I stimulation, but IGF-I-induced 
phosphorylation of AKT was comparable to that in wild-
type cells. Thus, this mutation hinders IGF-IR signaling 
by specifically abrogating the JNK, SHC, and MAPK 
pathways [163].

Some studies have aimed at identifying potential 
causes of IGF-IR overexpression in ALL. At least 
two groups have identified deregulated microRNAs 
that contribute to IGF-IR overexpression in T-ALL. 
It was shown that Notch1 repressed the expression of 
microRNA-223, which, in turn, was able to decrease the 
expression IGF-IR protein. However, increased expression 
of microRNA-233 alone did not significantly hinder 
cell growth, alluding to the possibility that, in addition 
to the decrease in IGF-IR expression, modifications of 
other survival molecules are probably required to fully 
suppress T-ALL [167]. Another study showed that the 
forced expression of microRNA-99a and microRNA-100 
inhibited the expression of IGF-IR and mTOR, as well as 
the downstream oncogenic proteins MCL1 and the FK506-
binding protein 51 in T-ALL cell lines. Importantly, 
microRNA-99a and microRNA-100 were significantly 
decreased in 111 ALL patients, and their decrease 
correlated with poor survival [168]. 

Evidence based on in vitro studies showed that 
targeting IGF-IR is a potential therapeutic strategy in 
ALL. For instance, one study showed that PPP efficiently 
decreased cell viability and induced G2/M-phase cell 
cycle arrest in Jurkat and Molt-3 T-ALL cell lines, with 
no effect on normal T lymphocytes. PPP was also able to 
increase the expression of cleaved caspase 3 and PARP 
and downregulate the anti-apoptotic proteins BCL-2 and 
BCL-XL, signifying apoptotic cell death. Furthermore, 
PPP decreased the phosphorylation of AKT and MAPK 
in T-ALL cells [64]. 

Myeloproliferative neoplasms (MPN) other than 
CML

This category encompasses a relatively uncommon 
group of hematological neoplasms that have specific 
clinicopathological and molecular characteristics. 
Polycythemia vera (PV), primary myelofibrosis, and 
essential thrombocythemia are the most frequently 
encountered MPN.
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The role of IGF/IGF-IR signaling in MPN has 
been investigated in a limited number of studies, and 
most of these studies focused on PV. An earlier study 
showed that the early circulating erythroid progenitors 
collected from PV patients and maintained in serum-
free medium possess remarkably enhanced sensitivity 
to IGF-I, much more pronounced than the sensitivity of 
control progenitor cells from healthy subjects, attesting 
to probable contribution of IGF-I/IGF-IR signaling to 
PV pathogenesis. Notably, the sensitivity of the cells 
from PV patients to IGF-I substantially exceeded their 
sensitivity to erythropoietin [169]. To investigate the 
molecular basis of IGF-I hypersensitivity, the same group 
found that basal and IGF-I-stimulated levels of IGF-IRβ 
subunit’s tyrosine phosphorylation were more enhanced 
in circulating mononuclear cells from patients with PV 
than in cells from normal individuals [170]. Furthermore, 
IGFBP-1 was shown to be significantly elevated in PV 
patients. Functionally, IGFBP-1 from these patients 
had pronounced stimulatory effects on erythroid burst 
formation in vitro [171]. Subsequent contradictory data 
showed no differences in IGF-IR phosphorylation levels 
in PV patients versus healthy controls [172]. However, this 
latter study further supported alterations in IGFBP levels 
including increased IGFBP-1, -2, and -4, and decreased 
IGFBP-3 in these patients. More recently, the expression 
of JAK2V617F mutant, a hallmark molecular event in PV, 
was found to render Ba/F3 cells hypersensitive to IGF-I 
stimulation, providing a molecular evidence that connects 
IGF-I/IGF-IR signaling to PV [173].

Arsenite-inducible RNA-associated protein-
like (AIRAPL) is an evolutionary conserved regulator 
of cellular proteostasis in nematodes. A recent study 
demonstrated that AIRAPL-deficient mice develop a fully 
penetrant MPN-like disease [174]. Further analysis of 
the mechanisms underlying these findings demonstrated 
that AIRAPL promotes the ubiquitination and proteasome 
degradation of newly synthesized IGF-IR receptor 
polypeptides, which leads to apoptotic cell death. The lack 
of AIRAPL and its inhibitory effects on IGF-IR signaling 
and apoptosis, in reverse, lead to the development of 
MPN. This intriguing idea was further supported by: (1) 
targeting IGF-IR prevented MPN in AIRAPL-deficient 
mice as well as in mice carrying the Jak2V617F mutation; 
and (2) the expression of AIRAPL was found to be 
commonly lacking in human MPN samples [174].

Malignant lymphoma

The potential contribution of IGF-IR to the 
pathogenesis of the different subtypes of malignant 
lymphoma has not been sufficiently investigated. Some 
studies, however, have shown that IGF-IR is over-
expressed in some types of lymphoma cells [22, 23, 175, 
176]. Studies from our lab supported a role for IGF-IR 
in nucleophosmin-ALK-expressing (NPM-ALK+) T-cell 

lymphoma [22]. In this regard, IGF-IR and IGF-I are 
widely overexpressed in NPM-ALK+ T-cell lymphoma 
cell lines and in ALK+ lymphoma tumors from patients 
[22]. We were also able to identify novel reciprocal 
functional interactions between IGF-IR and NPM-ALK 
that were demonstrated through transfection experiments 
using wild-type and mutated constructs of IGF-IR and 
NPM-ALK [22, 65]. Transfection of an NPM-ALK+ 
T-cell lymphoma cell line with wild-type NPM-ALK 
significantly increased pIGF-IR, and transfection with 
wild-type IGF-IR induced a marked increase in pNPM-
ALK [22, 65]. Transfection of non-functional mutants 
failed to induce similar effects. Our studies also showed 
that selective antagonism of IGF-IR with PPP decreased 
cell viability, induced apoptosis and G2/M-phase cell-cycle 
arrest, and decreased proliferation and colony formation of 
NPM-ALK+ T-cell lymphoma cells [22]. In a more recent 
work, similar findings were observed when GSK1838705, 
a small molecule IGF-IR/IR/ALK inhibitor, was utilized 
to treat a variety of different cancers with high expression 
of IGF-IR, including NPM-ALK+ T-cell lymphoma [177]. 

Furthermore, in our lab, we used NPM-ALK+ 
T-cell lymphoma as a cancer model to identify novel 
transcriptional and posttranscriptional mechanisms 
underlying the aberrant increase in IGF-IR expression 
(Figure 4). For instance, the transcription factors Ikaros 
isoform-1 (Ik-1) and myeloid zinc finger 1 (MZF1) are 
markedly decreased in this lymphoma. Importantly, we 
found that Ik-1 and MZF1 are capable of down-regulating 
IGF-IR gene expression by binding directly to its promoter 
and 5’ region [178]. As result of decreasing IGF-IR 
mRNA and protein expression, both Ik-1 and MZF1 also 
decreased the expression of phosphorylated IGF-IR, which 
subsequently decreased the phosphorylation of important 
downstream signaling proteins such as AKT and IRS-1. 
Ectopic expression of these transcription factors decreased 
lymphoma cell viability, proliferation, migration, and 
colony-forming potential. We also demonstrated that the 
decay of IGF-IR mRNA is significantly delayed in NPM-
ALK+ T-cell lymphoma cell lines compared with normal T 
lymphocytes, suggesting a second possible mechanism by 
which IGF-IR is upregulated in these cells [178]. 

To a lesser extent, a role of GH in regulating 
IGF-IR expression has been demonstrated in mouse 
T-cell EL4 lymphoma cells. It was shown that one of 
the consequences of overexpression of endogenous GH 
was an increase in the expression of IGF-I and IGF-IR, 
which mediated the protection of these lymphoma cells 
from apoptosis. As mentioned previously, GH regulates 
the secretion of IGF-I by the liver, although IGF-I 
concentrations can arise independently of GH. The EL4 
lymphoma model may demonstrate a potential method of 
upregulation of IGF-IR via GH [175]. 

Our group has also demonstrated overexpression 
of IGF-IR in mantle cell lymphoma (MCL) cell lines and 
human lymphoma tissues [23]. The inhibition of IGF-IR 
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by siRNA and PPP downregulated pIRS-1, pAKT, and 
pSTAT3 and induced caspase-3 cleavage in MCL. To 
our knowledge, these results were the first to report the 
expression of IRS-1 and pIRS-1 in MCL, which suggests 
that these proteins, through interactions with IGF-IR, could 
contribute to the survival of this aggressive lymphoma. 

In Hodgkin lymphoma (HL), a recent study 
demonstrated that IGF-IR was overexpressed in 55% of 
the patients, and pIGF-IR was detectable in only 3 of the 
16 IGF-IR-positive tumors that were analyzed for pIGF-
IR expression [179]. In vitro experiments showed that 
the mitotic potential of HL cells is highly dependent on 
IGF-I, as treatment with the ligand resulted in increased 
phosphorylation of IGF-IR, AKT, and ERK in L428 and 
L1236 HL cells. Treatment with PPP was able to induce 

cell growth inhibition via G2/M-phase cell cycle arrest. 
In addition, positive IGF-IR status correlated with higher 
overall survival and 5-year progression-free survival rates 
compared with IGF-IR-negative patients, suggesting that 
positive IGF-IR status is in fact a prognostic marker for 
HL patients. This same phenomenon was also shown in 
a separate study, in which IGF-IR was associated with a 
better prognosis in patients with classical HL. However, 
this study also suggested that IGF-IR expression was 
closely associated with MET receptor expression, which 
allows another mode of therapeutic interference [180]. 
Despite the widely documented cancer-promoting effects 
of IGF-IR signaling, these two studies failed to provide 
an explanation for the better outcome of HL patients with 
IGF-IR expression in their tumors. 

Figure 4: Proposed model illustrating the multilevel deregulatory mechanisms that lead to upregulation of IGF-IR 
expression in NPM-ALK+ T-cell lymphoma. We have been using NPM-ALK+ T-cell lymphoma as a cancer model to identify 
novel mechanisms underlying upregulation of IGF-IR expression. The levels of the transcription factors Ik-1 and MZF1 are significantly 
decreased in this lymphoma, preventing them from transcriptionally inhibiting IGF-IR gene expression and allowing IGF-IR mRNA to be 
transcribed. Furthermore, slower decay of IGF-IR mRNA increases its bioavailability for protein translation. In addition, microRNA-30a 
and microRNA-30d are also markedly decreased in NPM-ALK+ T-cell lymphoma (unpublished data). Lack of suppression of the IGF-IR-
3’-UTR by these microRNAs leads to the posttranscriptional stabilization and upregulation of IGF-IR protein. IGF-IR protein is further 
stabilized by the posttranslational modification SUMOylation. SUMOylated IGF-IR can indirectly stabilize NPM-ALK, which is also 
capable of being SUMOylated [303]. 
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Diffuse large B-cell lymphoma (DLBCL) occurs in 
adults, and the standard chemotherapy treatment results 
in improvement in 60-70% of patients. Nonetheless, 
other treatment options are being sought for those 
in whom standard chemotherapy has failed. At least 
two IGF-IR inhibitors have been shown to efficiently 
induce cellular death in DLBCL in vitro: PPP and NVP-
AEW541 [181]. As in other studies using PPP, DLBCL 
cells underwent apoptosis upon treatment with this 
inhibitor, proliferation was reduced, and cell growth was 
hindered through a G2/M-phase cell cycle arrest with 
complete elimination of cells in the G0/G1 phase of the 
cell cycle. Interestingly, however, PPP did not decrease 
the phosphorylation of IGF-IR at Tyr1131/Tyr1136 or its 
downstream targets AKT and ERK1/2, suggesting another 

possible mechanism of action in these cells. In contrast, 
NVP-AEW541 significantly inhibited phosphorylation 
of IGF-IR at Tyr1131/Tyr1136 and AKT, while ERK1/2 
phosphorylation was less affected, suggesting that dual 
treatment with these inhibitors might provide more 
effective therapy for DLBCL [181].

PRECLINICAL AND CLINICAL 
EVALUATION OF IGF-IR INHIBITORS 
AND MECHANISMS OF RESISTANCE 
TO THESE INHIBITORS

One of the reasons why IGF-IR was initially 
considered a poor choice therapeutic option was the fact 

Figure 5: Resistance to IGF-IR inhibition in cancer cells. Several resistance mechanisms to IGF-IR inhibitors have been reported 
using in vitro and in vivo experimental models as well as proposed in clinical trials. Lack of abundant levels of IGF-IR protein expression 
or adequate number of IGF-IR receptor molecules per cell, which could be an inherent criterion of a specific type of cancer or acquired 
after initiation of IGF-IR inhibition therapy particularly with using IGF-IR antibodies that cause endocytosis and degradation of IGF-IR, 
is believed to be an important factor leading to resistance. Resistance to IGF-IR inhibition can be mediated through other members of the 
IGF system receptors that possess oncogenic potential such as IR-A or the hybrid receptor IGF-IR/IR-A. In addition, resistance can also be 
initiated through other non-IGF signaling systems. Examples of these include EGFR/HER2 and PDGFRα. Collectively, resistance systems 
bypass IGF-IR inhibition by providing alternate downstream activation of AKT and MAPK. These kinases further activate/sustain mTOR 
and survivin. mTOR, in return, contributes through a feedback loop to upregulation of EGFR/HER2 and AKT. EGFR/HER2 and PDGFRα 
can also surpass the effects of IGF-IR inhibition by activating the SRC kinases family. Additional studies are still required to further analyze 
the mechanisms that cause resistance to IGF-IR inhibitors, which is a very important limiting factor to the wide clinical utilization of these 
inhibitors to treat cancer patients. These studies may also shed light on mechanisms of resistance to other targeted therapeutics.
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Table 1: Inhibitors of IGF-IR that underwent pre-clinical evaluation.
Inhibitor Phase Tumor Type Manufacturer Type of inhibitor References

A-928605 Pre-clinical Neuroblastoma Abbott
Dual IGF-IR/IR 
tyrosine kinase 
inhibitor

[283]

ABDP Pre-clinical Colon cancer AstraZeneca
Dual IGF-IR/IR 
tyrosine kinase 
inhibitor

[284]

AG-1024 Pre-clinical

Breast cancer, colorectal 
cancer, glioma, hepatocellular 
carcinoma, mesothelioma, 
NSCLC, osteosarcoma, 
pancreatic cancer, prostate 
cancer

Calbiochem EMD 
Biosciences

Tyrosine kinase and 
autophosphorylation 
inhibitor

[268, 285-
294]

BMS-536924 Pre-clinical AML, breast cancer, ovarian 
cancer

Bristol-Myers 
Squibb

ATP-competitive 
inhibitor

[59, 249, 
295]

BMS-554417 Pre-clinical Breast cancer, ovarian cancer Bristol-Myers 
Squibb

Reversible ATP-
competitive small 
molecule inhibitor

[153]

GSK1838705A Pre-clinical

Breast cancer, cervical cancer, 
colon cancer, Ewing sarcoma, 
glioma, head and neck cancer, 
hepatocellular carcinoma, 
lung cancer, NPM-ALK+ 
T-cell lymphoma, ovarian 
cancer, PCM, pancreatic 
cancer, prostate cancer

GlaxoSmithKline
Triple IGF-IR/IR/
ALK tyrosine kinase 
inhibitor

[177, 296-
298]

GSK1904529A Pre-clinical

Askin tumor, breast cancer, 
cervical cancer, colon cancer, 
Ewing sarcoma, head and 
neck cancer, lung cancer, 
NPM-ALK+ T-cell lymphoma, 
ovarian cancer, PCM, prostate 
cancer

GlaxoSmithKline
Dual IGF-IR/IR 
tyrosine kinase 
inhibitor

[299]

INSM-18 Pre-clinical Prostate cancer Insmed
Dual IGF-IR/HER2 
small molecule 
inhibitor

[300]

NVP-ADW742 Pre-clinical AML, Ewing sarcoma, 
medulloblastoma, NSCLC Novartis

Reversible ATP-
competitive small 
molecule inhibitor

[60, 257, 
259, 301, 
302]

NVP-AEW541 Pre-clinical

AML, breast cancer, colon 
cancer, endometrial cancer, 
esophageal cancer, Ewing 
sarcoma, gastric cancer, 
gastrointestinal stromal 
tumors, glioma, head and 
neck cancer, hepatocellular 
carcinoma, medulloblastoma, 
neuroblastoma, ovarian 
cancer, pancreatic cancer, 
PCM, pituitary tumors, 
prostate cancer, soft tissue 
sarcomas, synovial sarcoma

Novartis
Reversible ATP-
competitive small 
molecule inhibitor

[56, 57, 61, 
218-240]

Picropodophyllin 
(PPP; AXL1717) Pre-clinical

Breast cancer, CML, colon 
cancer, Ewing sarcoma, 
glioblastoma, hepatocellular 
carcinoma, lung cancer, 
MCL, medulloblastoma, 
neuroblastoma, NPM-
ALK+ T-cell lymphoma, 
osteosarcoma, ovarian cancer, 
pancreatic cancer, PCM, uveal 
melanoma

Axelar
Non-ATP-competitive 
small molecule 
inhibitor

[21-23, 56, 
64, 203-
216]
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Table 2: IGF-IR inhibitors that were used in clinical trials.

Inhibitor Phase Tumor Type Manufacturer Type of 
Inhibitor Web links and references

AMG 479
(Ganitumab)

Phase 
I/II

Breast cancer, colorectal cancer, Ewing 
sarcoma, lung cancer, lymphoma, 
melanoma, ovarian cancer, pancreatic 
cancer, refractory solid tumors, soft tissue 
sarcomas 

Amgen
Monoclonal 
antibody 
(IgG1)

https://clinicaltrials.gov/ct2/
results?term=AMG-479&pg=2

AVE1642 Phase 
I/II Breast cancer, liver cancer, PCM Sanofi-Aventis

Monoclonal 
antibody 
(IgG1)

https://clinicaltrials.gov/ct2/res
ults?term=AVE1642&Search=
Search

BIIB022 Phase 
I

Hepatocellular carcinoma, NSCLC, 
refractory solid tumors Biogen

Monoclonal 
antibody 
(IgG4)

https://clinicaltrials.gov/ct2/res
ults?term=BIIB022&Search=S
earch

BMS-754807 Phase 
I/II

Advanced or metastatic solid tumors, 
breast cancer, colorectal carcinoma, head 
and neck squamous cell carcinoma 

Bristol-Myers 
Squibb

Dual IGF-
IR/IR 
tyrosine 
kinase 
inhibitor-
reversible 
ATP 
competitive 
inhibitor

https://clinicaltrials.gov/
ct2/results?term=BMS-
754807&Search=Search

CP-751,871
(Figitumumab)

Phase 
I/II/III

Advanced solid tumors, breast cancer, 
colorectal cancer, Ewing sarcoma, head 
and neck squamous cell carcinoma, lung 
cancer, PCM, prostate cancer

Pfizer
Monoclonal 
antibody 
(IgG2)

https://clinicaltrials.gov/
ct2/results?term=CP-
751%2C871&Search=Search

IMC-A12
(Cixutumumab)

Phase 
I/II

Adrenocortical carcinoma, brain stem 
neoplasms, breast cancer, ciliary body 
and choroid melanoma, colorectal cancer, 
esophageal carcinoma, Ewing sarcoma, 
head and neck squamous cell carcinoma, 
hepatocellular carcinoma, lung 
cancer, mesothelioma, neuroendocrine 
neoplasms, osteosarcoma, prostate cancer, 
recurrent or refractory solid tumors, soft 
tissue sarcomas, thymoma and thymic 
carcinoma

ImClone
Monoclonal 
antibody 
(IgG1)

https://clinicaltrials.gov/
ct2/results?term=IMC-
A12&Search=Search

MK-0646
(Dalotuzumab)

Phase 
I/II

Advanced solid tumors, breast 
cancer, colorectal cancer, lung cancer, 
neuroendocrine neoplasms, ovarian 
cancer, pancreatic cancer, PCM

Merck
Monoclonal 
antibody  
(IgG1)

https://clinicaltrials.gov/
ct2/results?term=MK-
0646&Search=Search

OSI-906
(Linsitinib)

Phase 
I/II/III

Advanced solid tumors, 
adrenocortical carcinoma, breast cancer, 
colorectal cancer, Ewing sarcoma, 
gastrointestinal stromal tumors, head 
and neck squamous cell carcinoma, 
hepatocellular carcinoma, lung cancer, 
ovarian cancer, pancreatic cancer, PCM, 
prostate cancer

OSI 
Pharmaceuticals

Reversible 
ATP-
competitive 
small 
molecule 
inhibitor

https://clinicaltrials.gov/
ct2/results?term=OSI-
906&Search=Search

Picropodophyllin 
(PPP; AXL1717)

Phase 
I/II Malignant astrocytomas, NSCLC Axelar 

Non-ATP-
competitive 
small 
molecule 
inhibitor

https://clinicaltrials.gov/ct2/resu
lts?term=Picropodophyllin+&Se
arch=Search and
[217]

R1507 Phase 
I/II

Breast cancer, Ewing sarcoma, NSCLC, 
osteosarcoma, soft tissue sarcomas Roche

Monoclonal 
antibody 
(IgG1)

https://clinicaltrials.gov/ct2/re
sults?term=R1507&Search=Se
arch

SCH717454
(Robatumumab)

Phase 
I/II

Advanced solid tumors, colorectal 
cancer, Ewing sarcoma, neuroblastoma, 
osteosarcoma, pediatric solid tumors, soft 
tissue sarcomas

Schering-Plough
Monoclonal 
antibody 
(IgG1)

https://clinicaltrials.gov/ct2/res
ults?term=SCH717454&Searc
h=Search

XL-228 Phase 
I

Advanced solid tumors, CML, lymphoma, 
PCM, Ph+ ALL Exelixis

Dual IGF-
IR/SRC 
small 
molecule 
inhibitor

https://clinicaltrials.gov/
ct2/results?term=XL-
228&Search=Search

https://clinicaltrials.gov/ct2/results?term=AMG-479&pg=2
https://clinicaltrials.gov/ct2/results?term=AMG-479&pg=2
https://clinicaltrials.gov/ct2/results?term=AVE1642&Search=Search
https://clinicaltrials.gov/ct2/results?term=AVE1642&Search=Search
https://clinicaltrials.gov/ct2/results?term=AVE1642&Search=Search
https://clinicaltrials.gov/ct2/results?term=BIIB022&Search=Search
https://clinicaltrials.gov/ct2/results?term=BIIB022&Search=Search
https://clinicaltrials.gov/ct2/results?term=BIIB022&Search=Search
https://clinicaltrials.gov/ct2/results?term=BMS-754807&Search=Search
https://clinicaltrials.gov/ct2/results?term=BMS-754807&Search=Search
https://clinicaltrials.gov/ct2/results?term=BMS-754807&Search=Search
https://clinicaltrials.gov/ct2/results?term=CP-751%2C871&Search=Search
https://clinicaltrials.gov/ct2/results?term=CP-751%2C871&Search=Search
https://clinicaltrials.gov/ct2/results?term=CP-751%2C871&Search=Search
https://clinicaltrials.gov/ct2/results?term=IMC-A12&Search=Search
https://clinicaltrials.gov/ct2/results?term=IMC-A12&Search=Search
https://clinicaltrials.gov/ct2/results?term=IMC-A12&Search=Search
https://clinicaltrials.gov/ct2/results?term=MK-0646&Search=Search
https://clinicaltrials.gov/ct2/results?term=MK-0646&Search=Search
https://clinicaltrials.gov/ct2/results?term=MK-0646&Search=Search
https://clinicaltrials.gov/ct2/results?term=OSI-906&Search=Search
https://clinicaltrials.gov/ct2/results?term=OSI-906&Search=Search
https://clinicaltrials.gov/ct2/results?term=OSI-906&Search=Search
https://clinicaltrials.gov/ct2/results?term=Picropodophyllin+&Search=Search
https://clinicaltrials.gov/ct2/results?term=Picropodophyllin+&Search=Search
https://clinicaltrials.gov/ct2/results?term=Picropodophyllin+&Search=Search
https://clinicaltrials.gov/ct2/results?term=R1507&Search=Search
https://clinicaltrials.gov/ct2/results?term=R1507&Search=Search
https://clinicaltrials.gov/ct2/results?term=R1507&Search=Search
https://clinicaltrials.gov/ct2/results?term=SCH717454&Search=Search
https://clinicaltrials.gov/ct2/results?term=SCH717454&Search=Search
https://clinicaltrials.gov/ct2/results?term=SCH717454&Search=Search
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that it shares a high percentage of amino acid sequence 
identity with IR. However, more recently, there have been 
several approaches to target IGF-IR more specifically. 
Strategies to inhibit IGF-IR signaling in human cancers 
include: (1) monoclonal antibodies that directly block IGF-
IR; (2) monoclonal antibodies that function by neutralizing 
the circulating ligands IGF-I or IGF-II, which prevents 
IGF-IR from being activated; and (3) small molecule 
inhibitors that antagonize the kinase activity of IGF-IR 
[182]. The anti-IGF-IR monoclonal antibodies sometimes 
result in insulin resistance, hyperinsulinemia, and 
hyperglycemia. Similar to IGF-IR monoclonal antibodies, 
the primary side effect of small molecule inhibitors is 
hyperglycemia, possibly through the inhibition of IR [183-
187]. Table 1 lists the IGF-IR inhibitors that have been 
evaluated in preclinical studies. In addition, Table 2 lists 
the inhibitors that have been utilized in clinical trials, with 
different hematological neoplasms highlighted in RED.

An example of the anti-IGF-IR blocking antibodies 
is AVE1642, which had encouraging effects in vitro and in 
vivo in animal models in different types of cancer including 
lung, hepatocellular carcinoma, PCM, Ewing sarcoma, and 
neuroblastoma, as well as against breast cancer metastasis 
[188-191]. Furthermore, it was well tolerated as a single 
agent or in combination with other chemotherapeutics in 
early clinical trials [192-194]. In addition, the IMC-A12 
(cixutumumab) anti-IGF-IR monoclonal antibody 
achieved cancer growth inhibition in vitro and in xenograft 
models [195-198]. The efficacy of this antibody has since 
been evaluated in clinical trials, alone or in combination 
with other therapeutic agents [183-185, 199-202]. In 
addition to AVE1642 and cixutumumab, several other anti-
IGF-IR monoclonal antibodies underwent preclinical and 
clinical trials evaluations, and are listed in Tables 1 and 2, 
respectively.

The IGF-IR small molecule inhibitors compete for 
the binding site for ATP within the IGF-IR kinase domain. 
For example, in in vitro and in vivo preclinical models, 
PPP was shown to demonstrate pronounced inhibitory 
effects on cancer cells, including growth inhibition, cell 
cycle arrest, and apoptosis [21-23, 56, 64, 203-216]. 
Because of promising preclinical outcomes, the effects 
of PPP have also been explored in clinical trials [217]. 
NVP-AEW541 is another IGF-IR small molecule inhibitor 
that has been extensively tested in in vitro and in vivo 
preclinical studies in a variety of cancer cell types [56, 57, 
61, 218-240]. Some of the small molecule inhibitors of 
IGF-IR that underwent preclinical evaluations are listed 
in Table 1, and, in addition, some of the ones tested in 
clinical trials are shown in Table 2. 

Even when IGF-IR inhibitors were tolerated, 
significant number of patients did not exhibit improved 
outcomes. While further evaluations are required to 
characterize the mechanisms behind the shortcomings 
of these inhibitors, several studies underscored that an 
adequate number of IGF-IR receptors per cell or high 

levels of expression of IGF-IR protein or mRNA is 
required to achieve a robust response to the inhibitors 
[241-245]. Although an inherent low number of IGF-IR 
molecules per cancer cell may cause primary resistance to 
anti-IGF-IR antibodies or small molecule inhibitors, this 
factor appears to be more relevant to inducing secondary 
resistance when anti-IGF-IR antibodies are used. After 
the anti-IGF-IR antibody/IGF-IR complex undergoes 
endocytosis and subsequent degradation, a substantial 
reduction in the number of IGF-IR molecules on the 
surface of the cells typically occurs, which could cause 
secondary resistance after an initial response to the effects 
of IGF-IR antibodies [244]. The resistance to IGF-IR 
inhibitors can also stem from other members of the IGF 
system receptors including the IR, particularly IR-A and to 
a lesser extent IR-B [244, 246-248]. Moreover, the hybrid 
receptor IGF-IR/IR-A has also been suggested to induce 
significant resistance to IGF-IR inhibitors.

One of the widely studied mechanisms for cancer 
cell resistance to IGF-IR inhibition is the upregulation 
of AKT/mTOR signaling pathway. It was shown that 
inhibition of IGF-IR induces activation of AKT/mTOR, 
resulting in a feedback synthesis and activation of AKT 
as well as of epidermal growth factor receptor (EGFR) 
family and survivin. These proteins possess pronounced 
ability to overcome the effects of IGF-IR inhibitors and 
cause survival of the resistant cells [32, 234, 236, 241, 
249-252]. Similarly, potentiation of ERK/MAPK signaling 
has been implicated in the resistance to IGF-IR inhibitors 
[32, 238, 244, 253]. Also, recent studies suggested that 
a bypass activation of SRC kinases family induces 
significant resistance to IGF-IR inhibitors in cancer cells 
[254]. Activated SRC acts through integrin α5β3, which 
leads to considerable resistance to IGF-IR inhibition 
[255]. Signaling through platelet-derived growth factor 
receptor-α (PDGFRα) has also been proposed to enhance 
the resistance to targeting IGF-IR [237, 243]. In support of 
this notion, PDGFRα is overexpressed and constitutively 
activated in cells resistant to IGF-IR inhibitors. Figure 
5 illustrates some of the most commonly proposed 
mechanisms of resistance to IGF-IR inhibitors. 

IGF-IR SIGNALING INDUCES 
RESISTANCE TO DIFFERENT CANCER 
THERAPEUTIC MODALITIES

The IGF-IR-related drug resistance in cancer does 
not only result from the utilization of IGF-IR inhibitors. 
In fact, IGF-IR signaling, by itself, can elicit substantial 
resistance to other cancer therapeutic modalities including 
chemotherapy and radiotherapy [256-263]. Moreover, 
IGF-IR has been shown to induce resistance to agents that 
selectively target oncogenic molecules other than IGF-IR. 
In a fashion reminiscent to the effects of EGFR family 
of kinases on inhibitors of IGF-IR, substantial evidence 
from several laboratories supported that IGF-IR signaling 
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causes resistance to the blocking antibodies and small 
molecule inhibitors that interfere with the signaling of 
EGFR/HER2 kinases family [264-270]. This phenomenon 
has been reported in a variety of cancers including 
those of the lung, breast, and prostate. It is possible that 
heterodimerization between IGF-IR and EGFR/HER2 
contributes to the resistance to EGFR inhibitors [271, 
272]. In addition to resistance to the inhibition of EGFR, 
IGF-IR has been shown to induce significant resistance 
to inhibitors of several other cancer survival signaling 

including those functioning  through modulation of the 
estrogen and androgen receptors (breast and prostate 
cancers, respectively), proteasome degradation (PCM), 
ALK kinase (NSCLC), ATM-related kinase (ATR; breast 
cancer), and the colony-stimulating factor-1 receptor 
(CSF-1R; gliomas) [273-279]. Although the mechanisms 
of IGF-IR-induced resistance are not completely defined, 
upregulation and bypass activation of survival-promoting 
proteins have been demonstrated. For example, a recent 
study showed that in breast cancer cells resistant to the 

Table 3: Summary of mechanistic roles of IGF-IR in the pathogenesis of hematological malignancies.
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effects of the anti-EGFR/HER2 antibody trastuzumab, 
IGF-IR induces resistance through the SRC/FAK/FoxM1 
signaling [280]. Other studies also showed that IGF-IR-
mediated upregulation of MAPK/ERK signaling could 
be another mechanism for drug resistance [275]. But one 
of the most frequently implicated modes of cancer cell 
resistance is the ability of IGF-IR to enhance PI3K/AKT/
mTOR signaling, which could bypass the effects of the 
therapeutic agents. This mechanism has been demonstrated 
in different types of cancer cells including breast cancer, 
NSCLC, and head and neck squamous cell carcinoma 
cells, and by using different types of cancer antagonists 
including hormonal modulation, chemotherapeutic agents, 
EGFR small molecule inhibitors gefitinib and erlotinib, 
and AKT small molecule inhibitor AZD5363 [258, 264, 
272, 275, 276]. IGF-IR-induced upregulation of PI3K/
AKT/mTOR appears to induce its effects, at least in part, 
through upregulation of survivin expression [258, 267, 
272].

Analyzing carefully the different routes of IGF-IR-
induced drug resistance can possibly shed some light on 
how to intervene with novel therapeutics to overcome this 
setback. It is important to note that the mechanisms by 
which resistance to IGF-IR inhibitors evolve are largely 
similar to the mechanisms induced by IGF-IR against 
other therapeutic modalities. Therefore, it is not surprising 
that preclinical studies and clinical trials where combined 
targeting of IGF-IR and other survival promoting proteins 
that reciprocally interact with IGF-IR to cause drug 
resistance provided promising results implicating that such 
an approach could be more beneficial than using one agent 
alone [201, 258, 264, 272, 277, 278, 279, 280, 281, 282].

CONCLUSIONS

In spite of the breakthroughs that have occurred 
in treating patients with hematological malignancies, 
important gaps in knowledge still exist in understanding 
the pathobiology of these aggressive neoplasms. 
Unraveling the mysteries underlying these gaps is 
expected to further facilitate the development of novel 
therapeutic strategies to tackle and eradicate these 
neoplasms. Although a relatively fewer studies have 
analyzed the role of IGF-IR in hematological neoplasms 
than in solid cancers, strong evidence suggests that this 
oncogenic receptor may become a useful target, alone or 
in combination, for treating hematological neoplasms. 

Several in vitro and in vivo experimental models 
have provided links between IGF-IR signaling and 
downstream mediators that maintain the survival of PCM, 
leukemia, and lymphoma. Table 3 summarizes some of 
these mechanisms. Characterizing the effects of IGF-
IR has led to the development of promising targeting 
approaches, including monoclonal antibodies and small 
molecule inhibitors that have shown potent antitumor 
activity in vitro and in animal models. 

Although early evidence at least from some clinical 
trials suggested that targeting IGF-IR could represent 
a promising approach to treating cancer patients, the 
outcomes of these trials have not been as conclusive as the 
in vitro and animal research. We believe that one relevant 
explanation for this discrepancy is that the selection of 
patients included in the trials was mostly random and not 
rationally justified. The majority of these trials were phase 
I that included patients who have already been treated 
with several approaches that most likely have caused their 
cancers to undergo important molecular and biological 
modifications that resulted in resistance to more than 
one therapeutic modality. Instead, selection of patients 
to be treated by IGF-IR inhibitors, or similar targeted 
therapeutics, should be based on rigorous criteria such as 
proven biomarkers, stringent clinical characteristics, and/
or histopathological and molecular assays. As an example, 
a higher success rate for IGF-IR inhibitors could have 
been achieved if an accurate estimation of the level of 
expression of IGF-IR and possibly the expression of pIGF-
IR was first performed in the patients’ tumors prior to their 
enrollment in the trials. It is quite reasonable to assume 
that the presence of abundant expression of IGF-IR could 
positively impact the response to its inhibitors. Utilizing 
such strategies may improve the clinical outcomes of 
targeted therapeutics, including IGF-IR inhibitors, in 
cancer and, hopefully, in time eliminate this aggressive 
disease. 
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