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ABSTRACT
Genome-wide alterations in RNA expression profiles are age-associated. Yet the 

rate and temporal pattern of those alterations are poorly understood. We investigated 
temporal changes in RNA expression profiles in blood from population-based studies 
using a quadratic regression model. Comparative analysis between two independent 
studies was carried out after sample-weighting that downsized differences in sample 
distribution over age between the datasets. We show that age-associated expression 
profiles are clustered into two major inclinations and transcriptional alternations 
occur predominantly from the seventh decade onwards. The age-associated genes in 
blood are enriched in functional groups of the translational machinery and the immune 
system. The results are highly consistent between the two population-based studies 
indicating that our analysis overcomes potential confounders in population-based 
studies. We suggest that the critical age when major transcriptional alterations occur 
could help understanding aging and disease risk during adulthood.

INTRODUCTION

Age-dependent tissue deterioration characterizes 
physiological aging in multi-cellular organisms. Impaired 
maintenance of cellular homeostasis contributes to aging, 
partly caused by genome-wide transcriptional alterations 
affecting multiple gene networks [1]. In humans, the 
aging-associated gene network pattern is highly complex. 
Compared with model organisms, in humans the adulthood 
phase is much longer. Thus, slow progression in tissue and 
molecular alterations can contribute to the complexity of 
the aging process. 

Most often, age-associated physiological and 
molecular alterations are extracted using linear regression 

models (few examples in: [2–7]). Linear regression 
assumes a constant change over time and therefore might 
be appropriate for organisms that aged over a short period 
[2]. In humans, however, adulthood spans from 50 to 
80 years. It is very unlikely that the rate of age-associated 
changes progresses at a constant rate. The fitness of 
different regression models to describe age-associated 
physiological features demonstrated that a quadratic or a 
parabolic regression model are most suitable to describe 
age-associated changes [8]. We also reported that the 
fitness of a quadratic regression model to describe age-
associated changes in expression profiles is higher than 
linear or cubic regression models [9]. Quadratic models 
have fewer assumptions compared with a linear model. 
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Moreover, a quadratic model could be employed to 
identify the age when major changes occur (named here 
age-position). Using cross-sectional transcriptome studies, 
it was suggested that most transcriptional alterations in 
brain frontal cortex occur around the age of 42 [10], and in 
Vastus lateralis muscle major changes occur already in the 
fourth decade [11]. In both studies, two linear regression 
models were applied to identify the age-positions. 
Applying a quadratic regression model we indeed 
confirmed that major expression profiles are changed first 
in the fourth decade in both brain frontal cortex and Vastus 
lateralis muscle [9]. 

Ideally, the pattern of aging-associated molecular 
changes could be extracted from population-based datasets 
[12]. These datasets are cross-sectional, covering a broad 
age-range, and all subjects are included. Most population-
based datasets are skewed in the old age, making a 
linear regression model unfit. Here we investigated age-
associated molecular changes in whole blood from two 
population datasets. The Rotterdam Study (RS) cohort 
III [13] and the SHIP-TREND cohort [14, 15] were 
independently generated using RNA microarrays. After 
correcting for the skewed sample distribution across 
age, we demonstrate that an age-associated pattern of 
molecular changes is highly similar between the two 
datasets. We show that in whole blood major molecular 
changes occur only at the seventh decade, predominantly 
affecting the translation and immune cellular machineries. 

RESULTS

Dataset demographics of the RS and the SHIP-
TREND are presented in Table 1. Each datasets was 
analyzed independently and subsequently compared for 
replication, confirmation and identification of the most 
consistent age-dysregulated genes. In both studies, all 
subjects are Caucasian. Gender distribution across age was 
similar and not skewed in both datasets (Supplementary 
Table S1). Outliers were not identified by using principal 
component analysis (Supplementary Figure S1). 
Therefore, all subjects were included and the models were 
not corrected for potential confounders. However, the 
sample distribution over age and the age-range differed 
between the two studies (Table 1 and Supplementary 
Figure S2), and a positive skewness was found in the RS 
dataset, indicating underrepresentation of elderly subjects 
(Supplementary Figure S2). To compensate for the uneven 
sample distribution we included a sample-weighting step, 
which downsized the effect of overrepresentation and 
underrepresentation in the population. Sample weighting 
was achieved using moving decade age groups inversely 
proportional to the size of their neighbourhood. We 
compared the number of significantly dysregulated probes 
(p-value < 0.05; false discovery rate (FDR)) between the 
non-weighted and weighted datasets and found that the 
percentage of overlapping age-associated genes between 

the weighted and non-weighted datasets was high for 
both the RS and SHIP-TREND dataset (76.7% for RS, 
94.4% for SHIP-TREND; Table S2). Higher percentage 
of overlapping genes in the SHIP-TREND dataset is 
expected due to a more even distribution with age as 
compared to the RS dataset (Supplementary Figure S2). A 
higher number of genes were identified as age-associated 
after sample weighting compared with the non-weighted, 
in both datasets (Supplementary Table S2). 

The age-associated probes were identified using 
a basis spline (b-spline) quadratic regression model. To 
reduce assumptions in the model, the b-spline excluded 
control knots [9]. Significant probes were considered 
with a p-value < 0.05 (FDR). Out of all probes, 73% and 
41.7% were significantly age-associated in the RS and in 
the SHIP-TREND dataset, respectively, however most 
significant probes (93.3% and 95.4%; (Supplementary 
Table S2)) had a fold change (FC) < 1.2 in absolute value. 
As fold change is crucial to assess the rate of changes 
over age, we applied a FC filter. We selected a FC ≥ 1.2 
in absolute value as a threshold, based on a recent study 
suggesting that this numeric FC value renders more 
reproducible results [16]. 

The probes that passed the FDR < 5% and absolute 
FC ≥ 1.2 filtering criteria, 1023 in the RS and 990 in SHIP-
TREND (Table 2) were clustered using K-means clustering 
method. K-means with Euclidean distance as a distance 
measure was used to identify the age-associated trends in 
the expression profile datasets, with the age being used as a 
continuous variable, and thus rendering it most suitable for 
the analysis [9]. Clustering was performed on each dataset 
separately, and the most consistent clusters were identified 
with the significant overlapping genes between the two 
datasets. After merging the clusters with redundant trends 
and exclusion of the clusters with N = 1, in both datasets 
two major age-associated expression profiles with opposite 
inclinations were identified (Figure 1A). 

To assess the age point at which the major changes 
in the expression profiles occur, K-means clustering using 
absolute correlation as a distance measure was applied. 
The age when major changes occur (i.e. age-position) 
was determined from the conjunction point between the 
opposite inclinations (Figure 1B). Importantly, only one 
age-position was identified in either dataset. In the RS 
dataset, the age-position occurred at the end of the seventh 
decade and in the SHIP-TREND dataset in the beginning 
of the seventh decade (Figure 2B). The earlier occurrence 
of the age-position in SHIP-TREND compared with RS 
could be attributed to the difference in the age ranges of 
the datasets. In a previous study, we showed that the age-
position is influenced by the age range of the dataset [9]. 
Therefore, we then verified the age-position in matched 
age range (46 to 81 years of age) datasets. The whole 
analysis was repeated in the age-matched datasets, and 
296 probes were filtered as significant in the RS, and 857 
probes in the SHIP-TREND. Also in these datasets only 
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one age-position was found, and it was mapped to the 
seventh decade in both RS and SHIP-TREND datasets 
(Supplementary Table S3 and Figure S3). This indicates 
that the difference in the occurrence of the age-position 
between the full and the age-matched datasets is due 
to the different age range covered by the two studies. 
Moreover, in the RS dataset only 21% of the genes that 
passed the p-value and fold change filters were found in 
the age-matched dataset. This suggests that most gene 
expression changes are denoted by the age group > 81 
years old. 

Subsequently, major age-associated molecular 
signatures in both datasets were identified using 
clustering of the gene functional groups into enrichment 
maps. Overall, enrichment maps in both datasets were 
highly similar, and the most prominent functional gene 
networks overlapped between the RS and the SHIP-
TREND. Reduced expression levels were found for 
genes of RNA metabolism and translation groups, and an 
increase in expression levels was found for genes of the 
defense response and erythrocyte system (Supplementary 
Figure S4). Gene networks of the immune system were 

Table 1: Study demographics
Samples Age range #Probes #Annotated probes

RS 762 46–89 21238 15216
SHIP-TREND 991 21–81 48803 24928
Overlap (%) 19750 (93%) 13741 (90%)

Table shows the number of included study participants, age range in years, number of probes and number of annotated probes 
(using Entrez gene ID) for the RS and the SHIP-TREND dataset. The overlap between RS and SHIP-TREND is calculated 
out of the RS dataset.

Figure 1: Trends of the clustered age-associated significant probes. Scatter plots showing the trends of the mRNA expression 
profiles of the age-associated significant probes clustered using k-means algorithm. Clustering includes only probes with FDR < 0.05 and 
FC ≥ 1.2 in absolute value. Panel (A) shows the clusters identified using Euclidean distance as metric in the clustering algorithm, in the RS 
dataset (left) and in the SHIP-TREND dataset (right). The number of probes per cluster is depicted on top of every plot. Panel (B) shows 
the results of the k-means clustering using absolute correlation as distance metric. This facilitates the grouping of the probes presenting a 
symmetric expression profile. The arrowhead indicates the identified age-position in the RS dataset (left) and in the SHIP-TREND dataset 
(right).
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dysregulated without a specific dysregulation direction 
(Supplementary Figure S4).

The most consistent genes and gene networks were 
then identified by overlapping the significant probes 
between the two initial datasets. In total 378 dysregulated 
genes overlapped between the two datasets and for 375 
genes dysregulation direction was the same as in the 
parental dataset (Figure 2A). The overlapping probes 
were enriched in the immune and defense responses, and 
in the translation machinery groups (Figure 2B). The 
genes associated with the translation network showed an 
age-associated down-regulation, whereas genes associated 
with the immune system presented a higher expression 
level with age (Figure 2B). 

Next, we verified the molecular changes during the 
age-position. The RS dataset was split into two subsets 
with the age of 65 years being selected as a cut-off point. 
At 65 years the age-position was found in the two age-
matched datasets (Supplementary Table S2). The younger 

group (< 65 years) comprised 606 individuals, whilst 
the older group (≥ 65 years) included 156 individuals 
(Supplementary Table S4). In the younger group, only 
128 probes were found to be significantly age-associated 
and those were not enriched in any functional group 
(Figure 2C). Those probes were not found among the 
overlapping genes between RS and SHIP-TREND datasets 
(Supplementary Table S5). This suggests that molecular 
changes in blood prior to 65 years are neither robust nor 
consistent. In contrast, in the older age group 1319 probes 
were age-associated (FDR < 5% and absolute FC ≥ 1.2) 
and those were mapped to the immune system, translation 
and the defense response functional groups (Figure 2C). 
65% of those genes overlapped with the significant probes 
from the SHIP-TREND (Supplementary Table S5). This 
indicates that major expression profile alterations in blood 
occur from the seventh decade onwards. This procedure 
was conducted in the RS study only as less subjects of 
older age are found in the SHIP-TREND dataset.

Figure 2: Gene network of the overlapping significant genes. (A) Venn diagram showing the overlap of the significant (FDR < 0.05 
and FC ≥ 1.2) age-associated probes in RS (blue) and SHIP-TREND (green) datasets. Up- or down- regulated genes are depicted in red 
or black text colour, respectively. In parentheses, the probe overlap in percentages is indicated, out of the RS dataset. (B) Cytoscape 
enrichment maps of enriched Gene Ontology (GO) groups in the overlapping genes from RS and SHIP-TREND. GO groups are denoted 
with the ID number of each term, and the size of the nodes is proportional to the number of genes associated to the node. Gene networks 
are connected with blue lines, a thicker line representing a stronger connection. Down regulated gene modules are gated black and the up 
regulated are gated red. (C) A schematic representation of the dysregulated genes in datasets subdivided for 46–65 years and 65–89 years. 
Numbers in parentheses show the percentages from the overlapping genes (in A), and indicates up or down regulated genes in each age 
group. Gene network clusters for each age group are specified. 
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DISCUSSION

Aging-associated molecular changes are highly 
prominent and are widespread across the genome. 
However, their progression and the rate of change are 
poorly understood, in part because linear models are 
most often applied for age-associated datasets. Here, 
we applied a quadratic model on two population-based 
datasets and found that in whole blood major expression 
profile changes occur during the seventh decade. This 
age-position was verified and was found to be robust 
and consistent. This age-position is in agreement with a 
recent study showing that the number of immune cells and 
T-cell receptor reduces from the seventh decade onwards 
[17]. Our analyses revealed that the most consistently and 
prominently affected gene networks are of the immune 
system and of the translation machinery. Those molecular 
signatures were also found in the RS dataset using a 
linear regression model [18]. We show that genes of the 
translation machinery showed reduced expression levels 
with age, suggesting reduced protein translation during 
aging in blood. Reduced total protein expression during 
the seventh decade was reported from proteomic studies 
in blood [19]. Moreover, slower rate of protein synthesis 
during aging was also reported [20, 21]. This suggests 
that the age-associated expression profiles reflect aging-
associated functional changes in blood. 

Whether or not the rate of molecular aging is similar 
between tissues is poorly understood. In whole blood, we 
identified only a single age-position during the seventh 
decade. A single age-position was found in kidney cortex, 
also during the seventh decade [9]. However, in brain 
frontal cortex and in Vastus lateralis muscle two age-
positions were identified, the first during the fifth decade 
and a second one during early eighth decade [9]. This 
suggests that in humans the age at which major molecular 
changes occur differs between tissues. This conclusion in 
agreement with physiological studies suggesting that the 
rate of age-associated tissue deterioration differs between 
tissues [8]. Moreover, the prominent aging-associated 
gene networks also differ between tissues: translation and 
the immune system gene networks from blood were not 
identified in brain cortex or skeletal muscles tissues [9]. An 
age-position could indicate an aging-associated disease risk 
for tissue-specific disorders and could be a consideration 
for treatments and interventions during aging. 

This methodology holds several limitations. Despite 
the fact that it is able to overcome the differences between 
the dataset platforms and identify the age-positions at 
which major changes in expression profiles occur, we 
note that the results from a quadratic regression model can 
fluctuate due to variations in the age range covered by the 
dataset and the age-dependent distribution of the samples. 
This effect is acknowledged, explained and quantified in 
our previous study on two different datasets from brain 
frontal cortex and Vastus lateralis muscle [9]. 

In population-based studies, the subjects are often 
not selected or filtered. This can cause a bias in the results, 
if certain confounders are not evenly distributed across 
age. For example, subjects are likely to differ in health 
features, lifestyle and socioeconomic status. We did not 
identify major outliers, suggesting that socioeconomic 
differences may not have a major contribution to the 
transcriptome in whole blood. We did not find an uneven 
gender distribution across the age, in both datasets. 
This indicates that the age-associated pattern we report 
here would not be caused by differences in the gender 
distribution across age. However, molecular aging highly 
differs between genders [7]. How the age-position differs 
between genders should be addressed in future studies. 
We found that subject distribution is skewed in the old 
age, and applied sample weighting that compensates 
for the uneven sample distribution across age. With this 
procedure, two independent datasets can be compared 
[4]. Sample weighting resulted in an increased number of 
age-associated transcripts that pass the p-value threshold. 
However, the majority of transcripts had an absolute 
FC < 1.2. To increase selectivity, we applied a fold change 
filter, but a confident fold change threshold for aging 
studies should be determined in future studies using an 
independent procedure. 

MATERIAL AND METHODS

Datasets

We performed a differential expression study 
in human peripheral blood samples from two cross-
sectional datasets from two independent large prospective, 
population-based cohort studies. The Rotterdam Study 
(RS) [13, 22] consists of an ethnically homogenous 
group of 762 Caucasian subjects aged 46–89 years in the 
district of Rotterdam, the Netherlands. The SHIP-TREND 
(Study of Health in Pomerania) [14, 15] contains 991 
individuals with available gene expression and phenotype 
data aged 21 to 81 years from the German region of West 
Pomerania. The initial analysis was carried out in the 
RS dataset and replication was performed in the SHIP-
TREND dataset. RS participants (aged 46 years and older) 
were all examined in some detail at baseline: they were 
interviewed at home and then had an extensive set of 
examinations in a specially built research facility in the 
center of their district. These examinations were repeated 
every 3–4 years in characteristics that could change over 
time. The participants in RS are followed for a variety 
of diseases that are frequent in the elderly. The study 
has been approved by the Medical Ethics Committee of 
the Erasmus MC and by the Ministry of Health, Welfare 
and Sport of the Netherlands, implementing the Wet 
Bevolkingsonderzoek: ERGO (Population Studies Act: 
Rotterdam Study). All participants provided written 
informed consent to participate in the study and to obtain 
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information from their treating physicians. Sample 
collection and data generation are detailed in [13]. The 
RS cohort III expression dataset is available at the GEO 
repository under the accession GSE33828. 

The Study of Health in Pomerania (SHIP-
TREND) was conducted between 2008 and 2012. The 
SHIP population-based epidemiological study aims at 
investigating the risk factors of common, population-
relevant diseases. The study design and the sampling 
methods as well as genotyping and gene expression 
measurement and methods (Illumina HumanHT-12 v3 
Expression Beadchips) have been described elsewhere 
[14, 15, 23]. The medical ethics committee of the 
University of Greifswald approved the study protocol, and 
oral and written informed consents were obtained from all 
study participants. The SHIP-TREND expression dataset 
is available at the GEO repository under the accession 
GSE36382: 991 samples are available for analysis. 

Both gene expression datasets have been obtained 
using the Illumina HumanHT-12 Expression Beadchip, 
but on different microarray platforms: v3 for SHIP-
TREND and v4 for the RS-III respectively. The dataset 
demographics of both studies are summarized in (Table1). 

Pre-processing

The gene expression levels were quantile-
normalized and log2-transformed. Subsequently, probe and 
sample means were centered to zero. In the available RS 
dataset, probes were pre-filtered and declared significantly 
expressed when the detection p-values calculated by 
Illumina’s GenomeStudio were < 0.05 in more than 10% 
of all samples. For the SHIP-TREND dataset, there was no 
filtering of the samples prior to analyses, thus all probes 
were available for analysis (Table 1). No further correction 
for other covariates or diseases was performed on the 
datasets, as it is not the purpose of this study. In order to 
discard possible outliers, a principal component analysis 
(PCA) was performed on both datasets using the R-base 
packages of the statistical environment R (Supplementary 
Figure S1). Eventually, no samples were discarded. Both 
datasets equally passed all processing steps with the same 
parameter settings in the models involved, as described 
below.

Sample weighting

Prior to the selection of the most significant age-
associated probes, the samples were chronologically 
ordered. The RS dataset is skewed towards the elderly, 
thus the distribution of samples across age is uneven 
(Supplementary Figure S2). This is caused by the design of 
the RS cohort (RS-III is the youngest cohort of RS: most 
of the older individuals already participated in RS-I or 
RS-II). In order to compensate for this uneven distribution 
and reduce the likely influence upon the statistical tests, 

sample weighting [24] using a dynamic age window was 
applied using the following procedure: each sample was 
assigned to an age group that consisted of samples in the 
range of ± 5 years from the age represented by the current 
sample. The weight value for each sample was calculated 
as being inversely proportional to the number of samples 
in its age group, following the equation:

w
N
xi

i
i=

1

    (1)

where xi is a sample from the dataset and Ni represents the 
number of samples present in the age group of a sample:

N s xi j i
j

n

= = ±
=
∑ [ ]
( )

5
1    (2)

with sj being the number of samples xi for subject j in its 
designated age group.

Probe smoothing

In order to reduce the inter-individual variation and 
facilitate the identification of age associated expression 
trends, the data was smoothed probe-wise. To achieve 
this, a simple quadratic regression model was used. The 
motivation behind this choice and a detailed description of 
the model used can be found in [9]. The calculated weights 
for each sample represented a parameter in the regression 
model, following the equation:

E x w x wij i j j j j iji
= = + + +α β γ ε( ) ( )2

 (3)

where Eij is the intensity of probe intensity i for subject 
j, xj the age of subject j, wj the weight for subject j, αi, βi, 
γi are probe-specific regression parameters, and εij is the 
residual error.

Probe filtering

Filters were put in place in order to identify the 
significant age-associated probes. The p-value of each 
probe was calculated, testing the null hypothesis of no age 
association versus the quadratic regression model used 
in the prior step. The p-values were adjusted for multiple 
testing using the Benjamini-Hochberg false discovery rate 
(FDR) method. The probes presenting a FDR < 0.05 were 
considered statistically significant and kept for further 
analysis. Due to the large number of probes passing the 
p-value threshold (Figure 3 and Supplementary Table S2), a 
second filter set a threshold on the absolute value of the fold 
change (FC) [25]. There is no consensus on a FC threshold, 
but literature shows that an absolute FC ≥ 1.2 renders the 
results more likely to be reproducible [16]. Therefore, only 
probes that presented a FC ≥ 1.2 in absolute value were 
kept for the subsequent steps of the analysis.
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Table 2: Trends of the significant probes
Dataset Positive regulation Negative regulation Total

RS 546 477 1023
SHIP-TREND
Overlap

464
210

526
165

990
378

Table shows the number of filtered (FDR < 0.05 and absolute FC ≥ 1.2) significant age-associated probes per trend of the 
expression profile, as well as the total for each of the datasets. The overlap of significant probes between the two datasets 
is also shown. The total overlap is higher than the sum of the overlapping probes, which present a positive regulation and 
of the probes presenting a negative regulation, as some probes can present a positive regulation in one of the datasets and a 
negative regulation in the other.

Figure 3: A volcano plot of all the probes from the RS dataset (A) and from the SHIP-TREND dataset (B):Volcano plots 
of the -log10 p-value (Y-axis) against the fold change (X-axis) show an association in the RS dataset (A) and in the SHIP-
TREND dataset (B). In yellow, the probes with FDR < 0.5% and in red, the probes with FDR < 5% and an absolute fold change  
(FC) ≥ 1.2. In black are depicted the probes that did not pass the prior filters.
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Clustering

The resulting set of significantly age-associated 
smoothed probes was standardized by subtracting the 
average intensity value of a probe from each of its data 
points. This allowed the probes to group based on the trend 
similarity rather than intensity. Grouping of the probes based 
on similarities in their expression profiles was achieved 
using K-means clustering as Euclidean distance measure 
of similarity. K-means clustering using absolute correlation 
as distance metric was used to identify the age-position. A 
detailed description of the clustering mechanism, as well 
as the statistical evaluation for confidence of the resulting 
clusters can be found in [9]. Major age-associated trends 
were identified after merging of the redundant clusters and 
exclusion of the single-gene clusters. 

Enrichment maps

The enrichment analysis was performed using the 
Entrez gene identifiers. The mapping of the probes to their 
Entrez gene identifiers was made with Illumina Human 
HT-12 v3 and v4 arrays platforms. From the significant 
probes, 2.8% were without annotation and were excluded. 
Enrichment maps were carried out using the entire set of 
probes as background in the DAVID 6.7 online analysis 
tool [26]. DAVID 6.7 analyses of the molecular functions 
and the biological processes of the gene ontology (GO) 
were performed. The analysis was carried out for each 
dataset separately, on the entire set of significant probes, 
as well as for the up or down regulated probes separately. 
Subsequently, the significant (p <0.05, FDR) GO terms 
were used as input in the Cytoscape 3.2.0 open source 
platform [27] and enrichment maps were created for up- 
and down-regulated genes separately. 

Supporting Data

The entire list of significantly age-associated genes 
for each dataset, as well as a list of the overlapping 
significant genes between the two datasets can be found 
in text format as supplementary material (Supplementary 
Tables S6–S8). These lists include the detected p-value 
after FDR, and the direction of regulation of each probe.

Accession numbers

The accession number for the RS cohort III dataset 
used in this paper is GEO:GSE33828.

The accession number for the SHIP-TREND dataset 
used in this paper is GEO:GSE36382.
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