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ABSTRACT
Recently, studies have reported that long noncoding RNAs (lncRNAs) can act as 

modulators of mRNAs through competitively binding to microRNAs (miRNAs) and have 
relevance to tumorigenesis as well as other diseases. Identify lncRNA competitively 
regulated subpathway not only can gain insight into the initiation and progression 
of disease, but also help for understanding the functional roles of lncRNAs in the 
disease context. Here, we present an effective method, Subpathway-LNCE, which 
was specifically designed to identify lncRNAs competitively regulated functions 
and the functional roles of these competitive regulation lncRNAs have not be well 
characterized in diseases. Moreover, the method integrated lncRNA-mRNA expression 
profile and pathway topologies. Using prostate cancer datasets and LUAD data sets, 
we confirmed the effectiveness of our method in identifying disease associated 
dysfunctional subpathway that regulated by lncRNAs. By analyzing kidney renal 
clear cell carcinoma related lncRNA competitively regulated subpathway network, 
we show that Subpathway-LNCE can help uncover disease key lncRNAs. Furthermore, 
we demonstrated that our method is reproducible and robust. Subpathway-LNCE 
provide a flexible tool to identify lncRNA competitively regulated signal subpathways 
underlying certain condition, and help to expound the functional roles of lncRNAs in 
various status. Subpathway-LNCE has been developed as an R package freely available 
at https://cran.rstudio.com/web/packages/SubpathwayLNCE/.

INTRODUCTION

In recent years, with the development of next 
generation sequencing technologies, large scale long 
non-coding RNA (lncRNA) have been identified [1, 2]. 
It has been reported that lncRNA play crucial roles in 
various key biological processes [3–5], including post-
transcriptional regulation [6], tumorigenesis and human 
disease [7, 8]. Increasing evidence indicated that lncRNAs 
can competitively regulate mRNAs expression levels by 
sharing common miRNA binding sites with mRNAs, 
which is an important widespread layer of RNA regulation 

[9, 10]. The first confirmation for ceRNA hypothesis in 
mammalian cells is about PTEN and its pseudogene [11]. 
PTENP1, which is a PTEN pseudogene and contains 
many seed matches for PTEN-targeting miRNAs, has 
been experimentally validated that it can act as a ceRNA 
for PTEN gene [11, 12]. The study of Wang et al. suggest 
that lincRNA-RoR may function as a endogenous miRNA 
sponge to regulate stemness factors (Oct4, Sox2, and 
Nanog) and then mediate the ESC maintenance and 
differentiation processes [13]. It has been demonstrated 
that H19 which is an oncogenic genes in multiple cancers, 
function as a competing endogenous RNA to inhibit miR-
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138 and miR-200a and further led to the de-repression 
of core genes for mesenchymal cells such as ZEB1/
ZEB2 in colorectal cancer [14]. In addition, the study of 
Sumazin et al. proposed that the RNA-RNA competing 
interaction network could regulate oncogenic pathways in 
glioblastoma [15]. As the RNA competitive interaction can 
impact important functions in disease, identifying lncRNA 
competitively regulated pathways is thus not only can gain 
insight into the underlying mechanism and also help for 
exploring the functional roles of lncRNAs in disease. 
However, there are few methods can systematically 
predict dysfunctional pathways competitively regulated 
by lncRNAs under disease conditions.

Recently, several useful tools that investigate 
lncRNA function has been developed [16, 17]. For 
example, Linc2GO annotated lincRNA function based 
on the competing endogenous RNA hypothesis [16]. 
LncRNA2Function predicted lncRNA function based 
on their co-expression protein coding genes across 19 
normal tissues [17]. However, currently, the function 
of lncRNAs underlying certain disease condition have 
not be well characterized. Additional strategy that 
explore lncRNA functional roles in the disease context is 
needed. In addition, Li et al. demonstrate that key local 
subregions, rather than completely pathways, is more 
subtly explainable to the etiology of diseases [18, 19].  
It suggest that concentrating more attention on 
subpathways rather than entire pathways might be more 
meaningful in identification of disease-relevant pathway 
and explain the functional roles of lncRNAs in disease.

In this article, we proposed a novel method 
called Subpathway-LNCE, to identify lncRNAs 
competitively regulated signal subpathways underlying 
certain conditon. Firstly, KEGG signal pathways were 
converted into undirected graphs with genes as nodes 
and regulated relations as edges. Then, we reconstructed 
condition-specific lncRNA competitively regulated 
signal pathways (LRSP) based on matched lncRNA-
mRNA expression profiles and their shared miRNAs. 
We mapped interesting lncRNAs and genes into LRSP, 
then located subpahtways within pathways according to 
the “lenient distance” similarity method [19]. Finally, 
the significance of candidate subathways was evaluated 
by using the Wallenius approximation [20]. In the 
result section, we firstly applied Supathway-LNCE on 
prostate data set and LUAD data set to demonstrate the 
effectiveness of our method. Then we analyzed kidney 
renal clear cell carcinoma(KIRC) data set to detect 
kidney cancer key competitively regulated lncRNAs that 
were biologically meaningful. Meanwhile, our results 
displayed reproducible by analyzing there independent 
prostate cancer data sets from different data sources. We 
also tested robust of our method by randomly disturbing 
matched expression profiles and LRSP. 

RESULTS

We evaluated Subpathway-LNCE method using 
prostate cancer data sets and KIRC data set. Firstly, 
we demonstrated the effectiveness of our method by 
identifying lncRNAs competitively regulated subpathways 
for prostate cancer. We then detected KIRC key 
competitively regulated lncRNAs that were biologically 
meaningful. Meanwhile, our results displayed reproducible 
by analyzing there independent prostate cancer data sets 
from different data sources. We also tested robust of 
our method by randomly disturbing matched expression 
profiles and LRSP.

Identifying signal subpathways competitively 
regulated by LncRNAs for prostate cancer 

We first applied Subpathway-LNCE with SRA data 
set of prostate cancer to assess the effectiveness [21]. 
Subpathway-LNCE identified 28 significant lncRNAs 
competitively regulating subpathways involved 26 complete 
pathways with FDR < 0.01 (Supplementary Table S1), of 
which up to 20 were reported to be associated with cancers, 
and well reported to be associated with tumor occurrence, 
development and metastasis (Supplementary Table S1). 
Furthermore, Subpathway-LNCE located key subregions 
which were more effective. It is obvious that Subpathway-
LNCE can detect LncRNAs competitively regulated 
pathways that are biologically meaningful. 

In further analysis, we focused on three 
subpathways that competitively regulated by lncRNAs 
(Figure 1). The first is the most significant subpathway 
path: 04020_1, which was a subregion of calcium 
signaling pathway (Figure 1A, Supplementary Table S4). 
Calcium signaling as an intracellular messenger had been 
confirmed participate in many biological process, which 
had closely associated with cancers [22]. We then further 
explored this subpathway, and found that this subregion 
was competitively regulated by 8 lncRNAs. Among these 
lncRNAs, RP11-1398P2.1.1, which was a differential 
lncRNA, was compititive regulator of PPIF. Apoptosis 
regulator PPIF, deletion or reduction the expression 
levels of it could suppress cell proliferation and promote 
cell migration and invasion [23]. Down regulation of 
lncRNA MEG3 had been reported closely associated with 
several cancers, such as lung cancer, gastric cancer, etc 
[24–26]. Moreover, MEG3 played an important role in the 
molecular etiology of prostate cancer, which suggested the 
potential application of MEG3 in prostate cancer therapy 
[27]. The second significant subpathways was path: 
04510_1, an important sub region within focal adhesion 
pathway (Figure 1B, Supplementary Table S5). In this 
subpathway, extracellular matrix (ECM) was the protein 
located in the upstream, which played an important role in 



Oncotarget69859www.impactjournals.com/oncotarget

Figure 1: The pipeline overview of Subpathway-LNCE.
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different metastatic contexts in cancers [28, 29]. Notably, 
it was coordinately regulated by four lncRNAs, MIAT, 
MEG8, AC005682.5.1, and AC078937.4.1. Among these 
lncRNAs, MEG8 and AC078937.4.1 were differentially 
expressed. Another significant differently expressed 
lncRNA was LINC00087, which competitively regulated 
vascular endothelial growth factor (VEGF) and cyclin 
D2 (CCND2). Overexpression of the differential gene 
VEGF could promote angiogenesis and tumourogenesis 
in prostate cancer, and targeting the VEGF receptor 
pathway had shown promising early clinical application 
[30, 31]. Although CCND2 was a non-differential gene, 
LINC00087 which competitively regulated it were 
differentially expressed. CCND2 had an inhibitory 
potential on the proliferation of androgen receptor (AR)-
dependent prostate cancer cells [32]. A high Cyclin D2 
methylation levels was related with clinicopathologic 
features of tumor aggressiveness in prostate cancer [33]. 
LINC00087 that competitively regulated VEGF and 
CCND2 suggested that it may play an important role in 
prostate cancer. Additional, DLEU2 and HOTAIRM1 were 
involved in this subpathway. These two lncRNAs had been 
reported play important role in the leukemia cells [34–
36]. In addition, DLEU2 was the host gene of miR-15a 
and miR-16-1 which were important tumor suppressors 
[37]. DLEU2 and HOTAIRM1 competitively regulated 
PPP1CC and ROCK1 respectively. It was notable that 
downstream of PPP1CC and ROCK1 was MYL9, which 
was a famous hallmark tumor gene [38]. Moreover, it 
had been reported that MYL9 may efficiently predict 
recurrence-free survivals in prostate cancer patients [39]. 
In summary, these result suggest that our method can not 
only identify biological meaningful subpathways, but 
also highlight some critical lncRNAs underlying disease 
condition.

The third subpathway, path: 04070_1, was a part 
of Phosphatidylinositol signaling system (Figure 1C, 
Supplementary Table S6). In this subpathway, phosphatase 
and tensin homologue deleted on chromosome-10 (PTEN) 
was a tumor suppressor gene that was competitively 
regulated by three LncRNAs, FDG5-AS1, WDFY3-
AS2 and CTD -2302E22.2.1. PTEN inactivation had a 
correlation with many different types of cancer including 
prostate cancer [40, 41]. Moreover, PTEN negatively 
regulated activity of the PI3K/Akt/mTOR pathway, which 
played a prominent role in prostate tumor development 
[42, 43]. We then further focused on the underlying 
miRNAs that shared by PTEN and these three lncRNAs. 
We found that most miRNAs were associated with tumor. 
For example, among them miR-214 was shared by 
PTEN and all three lncRNAs of competitive regulators, 
was reported to be diagnostic potential biomarker 
in prostate cancer urine specimens with qRT-PCR  
experiment [44]. Mir-17 family were known as oncomiRs 
and had essential functions for tumorigenesis [45].  

In particular, by targeting miR-17-5p and miR-106a-5p, 
PTEN expreesion were rescued resulting in reducing 
tumor growth in vivo of prostate cancer [45]. Though 
functions of FDG5-AS1, WDFY3-AS2 and CTD 
-2302E22.2.1 were unclear, Subpathway-LNCE reveals 
that they may play important role in prostate cancer by 
competing cancer related miRNAs with PTEN to disturb 
the phosphatidylinositol signaling system.

Identifying signal subpathways competitively 
regulated by LncRNAs for LUAD dataset

To examine the utility of Subpathway-LNCE for 
diseases, we applied Subpathway-LNCE with TCGA data 
set of LUAD. Subpathway-LNCE identified 28 significant 
lncRNAs competitively regulated subpathways in LUAD 
data sets with FDR<0.01 (Supplementary Table S3), of which 
up to 15 were well reported to be associated with tumor 
occurrence, development and metastasis (Supplementary 
Table S3). It was note that Small cell lung cancer was on 
the top rank in the Supathway-LNCE result list. In this 
subregion, HCG-18 competitively regulated gene CCND1, 
which was an oncogene acted as a driver of multiple types 
of human malignancies [46, 47]. CCND1 dysregulation was 
associated with cellular proliferation and tumor growth of 
lung tumor [48]. Furthermore, Subpathway-LNCE located 
key subregions which were more effective. It is obvious 
that Subpathway-LNCE can detect lncRNAs competitively 
regulated pathways that are biologically meaningful.

Dissecting key lncRNAs in KIRC-
relevant lncRNA competitively regulated 
signal subpathways network

In this section, we focused on applying our method 
to dissect key lncRNAs that implicated with disease and 
further explore its functional roles under disease condition. 
To do this, we performed Subpathway-LNCE on KIRC 
dataset. Firstly, we constructed the KIRC-relevant lncRNA 
competitively regulated signal subpathways network, 
in which the top rank 20 subpathways in Supathway-
LNCE result list and lncRNA that competitively 
regulated these subpathways were considered. These 20 
subpathways belonging to 19 complete pathways of which 
up to 14 had been well reported associated with cancers 
(Supplementary Table S2). Hub nodes are always very 
important in the biological network as the connectivities 
of which are extremely high. We thus focused on 
hub lncRNAs in the lncRNA competitively regulated 
signal subpathways network. We selected the top 10% 
of lncRNAs with the highest degrees in the lncRNA-
subpathway network as the hub lncRNAs. We then 
merging 20 subpathways including relevant mRNAs and 
lncRNAs to construct KIRC relevant modulatory network. 
Finally, we obtained the KIRC relevant modulatory 



Oncotarget69861www.impactjournals.com/oncotarget

network involved 19 pathways, 14 hub LncRNAs and 48 
gene/proteins (Figure 2A).

 The modulatory relationship HCG18- EGFR 
appeared up to 10 pathways, of which 7 pathways were 
cancer-related such as focal adhesion, such as MAPK 
signaling pathway and etc. EGFR was a receptor tyrosine 
kinase, its signaling ultimately increased angiogenesis and 
decreases apoptosis [45]. Overexpressed gene EGFR was 
a famous driver gene in mass of human tumors and had 
well be used as targeted therapy [49, 50]. Furthermore, 
it had experiments demonstrated dysregulation of the 
EGFR pathway was associated with growth and invasion 
in cancer [51]. HCG-18 competitively regulated another 
gene CCND1, which was an oncogene acted as a driver of 
multiple types of human malignancies [46, 47]. CCND1 
dysregulation was associated with cellular proliferation 
and tumor growth of kidney tumor [52]. Another 
differential hub lncRNA PVT1 was also competitively 
regulated CCND1 and some other cancer related genes to 
disturb cancer hallmark pathways including p53 signaling 
pathway. It had been reported that PVT1 was associated 
with multiple types of human malignancies, including 
prostate cancer, pancreatic ductal adenocarcinoma, 
ovarian cancer etc [37, 53–55]. In addition, the hub 
lncRNA DLEU2 competitively regulated pathway up to 
14 pathways. It was a critical host gene of miR-15a and  
miR-16-1 which inhibited tumorigenicity both in vitro 
and in vivo and frequently deleted in malignancy [37]. 
The above result suggest that these hub lncRNAs such as 
HCG-18, DLUE2 and PVT1 may play key roles in the 
initiation and progression of kidney cancer. 

To further detect key lncRNAs of competitive 
regulation in the KIRC relevant modulatory network, 
we applied K-mean clustering method for survival 
analysis on hub lncRNAs in the network. The kidney 
cancer samples were divided into two groups basing 
on the expression quantity of the corresponding 
lncRNAs with p value = 0.0378 (Figure 2C), 
related Gene ID and sample ID of Figure 2B were 
in Supplementary Files (Supplementary Table S6).  
Meanwhile, each hub lncRNA have been applied for 
survival analysis separately (Supplementary Figure S4, 
Supplementary Table S3). Then, two groups of patients 
including high expression and low expression group were 
divided based on the mean value of the expression quantity 
of each hub lncRNA. The results showed that most hub 
lncRNA can’t divide two groups very well for survival 
analysis separately. It suggested that these hub lncRNAs 
may play a coordinately regulated role in KIRC. We have 
applied survival analysis for TCGA data set of prostate 
cancer, as the same method with KIRC dataset. We applied 
K-mean clustering method for survival analysis on hub 
lncRNAs in the PRAD regulated network. The prostate 
cancer samples were divided into two groups basing on 
the expression quantity of hub lncRNAs in the network 
with p value = 0.0118 (Supplementary Figure S5). 

Furthermore, we performed the survival analysis for each 
hub lncRNA separately. Firstly, we divided the patients 
into two groups based on the mean value of the expression 
quantity of each hub lncRNA. Then, we applied survival 
analysis for the two groups of patients. As a result, all 
the hub lncRNA can’t divide two groups very well for 
survival analysis separately (Supplementary Figure S6). It 
suggested that these hub lncRNAs may play a coordinately 
regulated role, the results showed consistency with the 
KIRC data set. These indicate that expression of these 
lncRNAs were associated with kidney cancer patient 
survival. Furthermore, most of hub lncRNAs exhibit 
high expression in the high risk group comparing with 
that in the low risk group (Figure 2B). The above result 
provided further evidence for the potential key roles of 
hub lncRNAs in kidney cancer.

Reproducibility and robustness analyses

Reproducibility analysis
In this section, we aim to evaluated the 

reproduciblity of Subpathway-LNCE, we applied 
Subpathway-LNCE with three independent prostate 
cancer data sets from three different resource, including 
Sequence Read Archive (SRA), TCGA Data Portal 
(TCGA) and Gene Expression Omnibus (GEO), details 
see methods. We focused on pathways that rank on top 
15 of the result list from these three different data sets. 
Hypergeometric test was used to evaluate the significance 
of shared pathways between any two data sets from 
different resource. We found that pathways shared between 
SRA and TCGA with p value = 5.66e-10, and the pathways 
up to 80% were associated with cancers. Hypergeometric 
test of shared pathways between TCGA and GEO under 
a threshold of p = 8.56e-7, whereas pathways shared 
between SRA and GEO with p value= 1.84e-5 (Figure 3).  
Futhermore, the number of pathways shared among 
SRA, GEO and TCGA data sets result was up to 6, and 
outstandingly, all shared pathways had been well reported 
associated with cancers. We further restriction to top  
10 pathways in the result list (Supplementary Figure S2),  
the results were above all, though three independent 
prostate the data sets was from three different resource. 
We have further analyzed the results of subpathway-LNCE 
based on different P value of differential expression gene 
(0.05, 0.1, 0.2) in the same data sets for all three different 
data resources. And we focused on pathways that rank on 
top 15 of the result list from different P value of differential 
expression gene in the same data sets for all three different 
data sets. The number of pathways shared under different 
P value was up to 10 in the TCGA data set, and in the 
other data set the number also up to 8 and 7, respectively 
(Supplementary Figure S7). In any two different  
P value, the hypergeometric test of shared pathways was 
significant. All above indicated that the results obtained 
using Subpathway-LNCE were reproducible.
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Robustness analysis

We used two methods to test the stability of 
Subpathway-LNCE, namely randomly introducing noise 
in the matched mRNA-lncRNA expression profiles and 
disturbing LRSP. We firstly randomly deleted mRNAs 
and lncRNAs from mached mRNA-lncRNA expression 
profiles, and deleted percentage from 5% to 30%, at 
5% intervals. Then we repeated the deleted process  
100 times and applied the Subpathway-LNCE method on 
noisily matched mRNA-lncRNA expression profiles. We 
calculated the mean ratio of recall significant pathways 
comparing to original significant pathways (FDR < 0.01). 
In general, the deleted percentage increased, the overlap 
of significant pathways fell slowly. The Subpathway-
LNCE shown the best stability when the deleted ratio was 
5%, recalling more than 90% of the pathways. Even after 

removal of up to 15% of the expression data, the recalling 
still more than 70%. It indicated that Subpathway-LNCE 
was robust when the expression data was noise.

We next randomly deleted the edges within LRSPs 
from 5% to 30%, at 5% intervals, then we repeated the 
deleted process 100 times and applied the Subpathway-
LNCE method on SRA prostate data sets for each disturbed 
LRSP. The mean ratio of recall significant pathways was 
calculated comparing to original significant pathways (FDR 
< 0.01). We found that as the deleted percentage increased, 
the overlap of significant pathways fell slowly (Figure 3), 
and the recalling still more than 60% even after disturbing 
up to 25% edges of LRSPs. Furthermore, Robustness 
analysis of the KIRC dataset was consistent with the above 
result (Supplementary Figure S1). Above all, it suggested 
that Subpathway-LNCE method was robust in resisting the 
disturbance of expression data and LRSPs.

Figure 2: Subpathways identified using the subpathway-LNCE method. Ellipse, triangle and hexagon nodes represent genes, 
lncRNAs and miRNAs, respectively. Red and balck node labels represent differential and non-differential genes/lncRNAs, respectively, and 
gray node labels represent miRNAs. (A) Calcium signaling subpathway (path: 04020_1, FDR= 7.87E-14). (B) Focal adhesion subpathway 
(path: 04070_1, FDR= 7.19E-12). (C) Phosphatidylinositol signaling system subpathway (path:00030_1, FDR=0.20E-2).
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DISCUSSION

Recently, lncRNAs have been found can function 
as competitors of mRNAs for miRNA binding, thereby 
competitively regulating mRNA expression levels and 
maintain normal biological functions [9, 10, 14]. This 
regulatory mechanism may help understand biological 
problems and organism complexity. Disturbances of these 
lncRNA competitively regulated functions may led to 
diseases, but on the other hand, a better understanding 
this regulation may offer opportunities for new therapies. 
However, to the best of our current knowledge, there are 
few methods specifically designed to identify lncRNAs 
competitively regulated functions and the functional roles 
of these competitive regulation lncRNAs have not be 
well characterized in diseases. In this study, we proposed 
a novel method called Subpathway-LNCE, to identify 
lncRNAs competitively regulated signal subpathways 
underlying certain conditon, providing a powerful tool for 
exploring the regulation function of lncRNAs in human 
disease. 

Subpathway-LNCE which integrated lncRNA-
mRNA expression profile and pathway topologies was 
specifically designed to identify lncRNAs competitively 
regulated functions. It considers several important aspects 
as follows. Firstly, lncRNA, which play important roles 
in various biological processes [5, 6], represent a new 
regulatory layer and should be included in the pathway 
analysis. Second, when locating candidate subregions we 
take advantage of pathway topologies along with lncRNAs 
competitively regulated genes embedded in different 
pathways, which was better to reflect the transmission of 
disease signals. LncRNAs have sponge features which can 
competitively regulated biological pathways and thus play 
critical roles in the initiation and progression of diseases 
such as tumor [14], it is thus necessary to integrative analyze 
the joint effect of genes and lncRNAs that competitively 
regulated them by considering pathway topologies. 
Third, we have adopted a strategy of subpathway, rather 
than completely pathways, is more subtly explainable to 
the etiology of diseases. Moreover, concentrating more 
attention on subpathways rather than entire pathways 

Figure 3: (A) KIRC-relevant lncRNA competitively regulated signal subpathways network. Circle and triangle nodes represent 
genes and lncRNAs, respectively, and square represent subpathway. The lncRNA/subpathway node size is proportional to the number of 
directly interacted subpathways/lncRNAs, and the gene node size is proportional to the number of appeared subpathways. The edge width 
of lncRNA-gene pair is proportional to the number of subpathways they involved in. (B) The expression quantity of key LncRNAs (rows) 
for two groups patients (colums). (C) Kaplan-Meier survival analysis of two groups of patients with different clinical outcomes. Survival 
days are shown along the X axis. Overall survival rates are shown along the Y axis.
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might be recall and identify more biologically meaningful 
pathways and dissect the functional roles of lncRNAs. The 
input data of Subpathway-LNCE method needs matched 
lncRNA-mRNA expression profiles, Subpathway-LNCE 
provide a flexible tool to identify lncRNA competitively 
regulated signal subpathways underlying certain condition, 
and help to expound the functional roles of lncRNAs in 
various status.

In the result section, we applied Subpathway-LNCE 
with SRA data set of prostate cancer and choose three 
different sub region from different aspects to elaborate 
the effective of our methods. The first is the significant 
subpathway was path:04020_1, which was a subregion of 
calcium signaling pathway. Down regulation of lncRNA 
MEG3 had been reported closely associated with several 
cancers [25, 26]. Moreover, MEG3 played an important 
role in the molecular etiology of prostate cancer, which 
suggested the potential application of MEG3 in prostate 
cancer therapy [27]. The second was path: 04510_1, an 
important sub region within focal adhesion pathway. We 
focused the upstream protein of this sub region, which 
were more important because it influenced other genes/
proteins downstream. Interestingly, the regulator of the 
upstream protein was four lncRNAs, which may play an 
important role for coordinated regulation and function. 
The third subpathway, path: 04070_1, was a part of 
Phosphatidylinositol signaling system. In this subpathway, 
we concerned the miRNAs behind PTEN and lncRNAs 
which was regulator of PTEN, and most miRNAs were 
associated with cancers. Meanwhile, We have supplied the 
other information of miRNA for the other two subpathways 
in Supplementary Files. (Supplementary Tables S4, S5).  
To further explore key LncRNAs of competitive regulation 
concerted to multiple subpathways, we constructed KIRC 
relevant modulatory network. In the KIRC relevant 
modulatory network, the modulatory relationship HCG18- 
EGFR appeared up to 10 pathways, of which 7 pathways 
were cancer-related such as focal adhesion, such as MAPK 
signaling pathway and etc. TCGA data set include miRNA 
expression data, we further analyzed the expression 
relationship between lncRNA, miRNA and mRNA. 
The miR-146a-5p was the micRNA shared by HCG18- 
EGFR, we found that the expression relationship between 
both HCG18-EGFR and miR-146a-5p was significantly 
negative. Moverer, miR-146a-5p have differential effects 
on growth and metastatization on cancer [56]. The 
differential hub lncRNA PVT1 was also competitively 
regulated CCND1 and some other cancer related genes to 
disturb cancer hallmark pathways including p53 signaling 
pathway. It had been reported that PVT1 was associated 
with multiple types of human malignancies, including 
prostate cancer, pancreatic ductal adenocarcinoma, 
ovarian cancer etc [53–55]. We found that PVT1 was 
the target of miR-106a-5p and miR-20b-5p, and the 
expression relationship between PVT1 and both miRNAs 
were significantly negative. Then we applied K-mean 

clustering method for survival analysis on hub lncRNAs 
in the network to detected key LncRNAs of competitive 
regulation in the KIRC relevant modulatory network. The 
kidney cancer samples were divided into two groups based 
on the expression value of the corresponding lncRNAs 
with log rank p value = 0.0378. It suggested LncRNA may 
be responsible for explaining disease processes thereby 
presenting opportunities for new therapies.

In this study, there are differences among three 
data sets, including experimental method, operational 
approach etc. So we considered false discovery rate (FDR) 
to identify differentially expressed genes in different data 
sets. Actually, many researchers took different threshold 
values among different data sets for identifying differential 
genes. For example, Liang et al. applied different FDRs 
in their study [57]. We then further explored the fold 
change of these differential genes in each dataset, the 
mean value of fold change among three different data sets 
all >= 1.5 (Supplementary Figure S3). We used Pearson 
Correlation Coefficient to evaluate co-expression for any 
pair of relations in the candidate lncRNA-mRNA network 
based on matched lncRNA and mRNA expression profiles. 
And there are some convenient tools can evaluate co-
expression. However, any other suitable method, such as 
Weighted Gene Co-Expression Network Analysis [58], 
can be used to calculate this co-expression coefficient. 

In order to ensure the reliability of data, the 
mRNA-miRNA interactions were experimentally 
validated, collected from TarBase [59], mirTarBase [60], 
mir2Disease [61], miRecords (V4.0) [62]. The lncRNA-
miRNA interactions were predicted using TargetScan 
(v.6.0) [63], PITA (March 2007 version) [64] , miRanda 
(Nov. 2010 version) [65] and RNAhybrid (v.2.1.1) [66] 
with default parameters. Then we have integrated the 
AGO-CLIP-seq data set into the pipeline to identify 
miRNA-binding sites on lncRNA sequences which 
have experimentally supported. By integrating genome 
coordinates of CLIP-seq peaks and predicted miRNA-
binding sites, the reliability of data was further ensured. 
We have used published scientific documentation 
confirming the results from Subpathway-LNCE. For 
example, in the KIRC relevant modulatory network, the 
differential hub lncRNA PVT1 was also competitively 
regulated CCND1 and some other cancer related genes to 
disturb cancer hallmark pathways including p53 signaling 
pathway. It had been reported that PVT1 was associated 
with multiple types of human malignancies, including 
prostate cancer, pancreatic ductal adenocarcinoma, 
ovarian cancer etc [53–55]. The hub lncRNA DLEU2 
was a critical host gene of miR-15a and miR-16-1 which 
inhibited tumorigenicity both in vitro and in vivo and 
frequently deleted in malignancy [37]. Although we didn’t 
use experiments to confirm the results, we have supplied 
specific binding sites about lncRNA-miRNA data to guide 
a further experiment to verify the predicted results for 
researchers (Supplementary Table S7).
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In summary, Subpathway-LNCE, a novel method 
that designed to identify lncRNAs competitively regulated 
signal subpathways, can not only help to understanding 
the molecular mechanism of diseases, but also will lead 
to important insight into the functional roles of lncRNAs 
in pathological states. Moreover, we have implemented 
Subpathway-LNCE method as an R-based package, 
which is publicly available on https://cran.rstudio.com/
web/packages/SubpathwayLNCE/, and our tool provided 
a flexible usage for changing the significant positive 
threshold of r value.

MATERIALS AND METHODS

 Materials

Prostate cancer datasets
We analyzed three independent prostate data sets, 

the three prostate data sets was obtained from different 
data sources: Sequence Read Archive (SRA, SRP002628) 
[21], The Cancer Genome Atlas dataset (TCGA, https://
tcga-data.nci.nih.gov/tcga/) and Gene Expression Omnibus 
(GEO, GSE23316) [67], and each of them included cancer 
samples and normal samples. 

(i) SRA data set of prostate cancer 
 To obtain transcription level of lncRNAs and 

mRNAs, firstly we used TopHat mapping reads to the 
reference genome (hg19) [68], next we estimated the 
relative abundances of each transcript using Cufflinks with 
transcript annotation file [69]. Thus, we obtained RPKM 
lncRNA and mRNA expression profiles. Whereas, to get 
read counts expression profiles, RNA-Seq reads were 
mapped to the reference genome (hg19) using Tophat [68], 
then expression level was extracted using easyRNAseq 
method [70]. We used DESeq method to identify 
differentially expressed mRNAs based on read count 
expression profies [71]. The matched lncRNA and mRNA 
expression profiles, which included 10 normal samples and 
20 cancer samples. MRNAs and lncRNAs were considered 
differentially expressed under a threshold of FDR = 0.1. 

(ii) TCGA data set of prostate cancer
The PRAD data set was download from TCGA, 

and corresponding clinical information was also obtained. 
The matched mRNA/lncRNA expression profile for 
prostate cancer were extracted according to our previous 
study [72]. In brief, RNA-seqV2 data were downloaded 
from TCGA level 3 data sets, and RPKM (Reads Per 
Kilobase per Million mapped reads) values for lncRNA/
mRNA were recalculated using the following method: 
RPKM = (raw read count × 10^9)/(total reads ), where 
raw read counts = sum of raw read counts in all exons 
mapped entirely within the lncRNA/mRNA locus; total 
reads = sum of raw read counts calculated for all exons 
of a single sample; = sum of length of exons mapped the 
LncRNA / mRNA locus. Annotation of exons mapping to 

lncRNA/mRNA was extracted from GENCODE (V19). 
Finally, the matched lncRNA and mRNA expression 
profiles included 494 cancer samples and 42 normal 
samples. We used DESeq method to identify differentially 
expressed mRNAs based on read count expression 
profiles [71]. A mRNA was considered to be differentially 
expressed with false discovery rate (FDR) < 1e-4.

(iii) GEO data set of prostate cancer
 We mapped 604 258 probe sequences (25 bp in 

length) to annotated files from GENCODE (GRCH37) 
with BLAST under probe re-annotation pipeline (see 
Supplementary Files), resulted with 17254 mRNAs and 
3495 lncRNAs. We obtained matched lncRNA and mRNA 
expression profiles, which included 6 normal samples and 
12 cancer samples. MRNAs were considered differentially 
expressed under a threshold of FDR = 0.1 of Student's t test.

KIRC datasets

The KIRC data set was download from TCGA, and 
corresponding clinical information was also obtained. 
Details of these data sets were processed similar with 
TCGA data set of prostate cancer, which has described 
above. And the matched lncRNA and mRNA expression 
profiles included 71 normal samples and 255 cancer 
samples.

LUAD datasets

The LUAD data set was download from TCGA. 
Details of the data-set were processed similar with TCGA 
data set of prostate cancer, which has described above. 
And the matched lncRNA and mRNA expression profiles 
included 52 normal samples and 494 cancer samples.

Methods

Subpathway-LNCE was developed to identify 
lncRNA competitively regulated signal subpathways 
underlying certain conditon. The schematic overview is 
shown in Figure 4. It includes four main parts: (i) Firstly, 
we constructed candidate lncRNA-mRNA competitively 
regulated network; (ii) KEGG signal pathways were 
converted into undirected graphs with genes as nodes and 
regulated relations as edges, we reconstructed condition-
specific lncRNA competitively regulated signal pathways 
(LRSP) based on matched lncRNA and mRNA expression 
profiles and lncRNA-mRNA competitively regulated 
network; (iii) We mapped competing lncRNAs and 
interesting genes into LRSP, then locates subpahtways 
within pathways according to the “lenient distance” 
similarity method; (iv) We evaluated the significance 
of candidate subpathways by using the Wallenius 
approximation. The details are displayed below. 
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Constructing candidate lncRNA-mRNA 
interaction

 Firstly, we collected lncRNA-associated competing 
triplets (lncRNA-miRNA-mRNA relationships). The 
lncRNA-miRNA interactions were obtainted from our 
previously work and StarBase, whereas experimentally 
validated mRNA-miRNA interactions were collected 
from TarBase [59], mirTarBase [60], mir2Disease [61], 
miRecords (V4.0) [62]. Then, we constructed candidate 
LncRNA-mRNA competitively regulated relationships 
based on their shared miRNAs. For each lncRNA, we 
identify its candidate competing mRNAs as follows: (i) 
hypergeometric test of shared miRNAs under a threshold 
of p = 0.05 (ii) Jaccard Coefficient of shared miRNAs 
rank at top 20%. In order to ensure the reliability of data, 
those relationships which satisfied with both criteria were 
retained. Finally, we obtained candidate LncRNA-mRNA 
competitively regulated network included 6722 lncRNA-
mRNA interactions among 1527 genes and 798 LncRNAs.

Reconstructing condition-specific LncRNA-
regulated signal pathways

Linking LncRNAs to regulated-mRNAs within 
pathway graphs

We converted 191 KEGG signal pathways into 
undirected graphs kept original pathway structural 

information using our previously developed R packages 
[19]. We used Pearson Correlation Coefficient to evaluate 
co-expression for any pair of relations in the candidate 
lncRNA-mRNA network based on matched lncRNA and 
mRNA expression profiles, those r value had reached a 
significant positive threshold were retained (p < 0.05) 
based on Fisher’s Z transform [73]. Then, these lncRNAs 
were embedded into pathway graphs as nodes by linking 
to their regulated-mRNAs. Finally, we obtained condition-
specific lncRNA competitively regulated signal pathways 
(LRSP), which included lncRNA nodes and lncRNA-
mRNA competitively regulated edges.

Locate subpathways competing regulated by 
lncRNAs 

LncRNAs involved in the competing regulation 
and genes of interests were regarded as signature nodes. 
These nodes combined with topology of LRSP can help 
us efficiently positioning lncRNA-regulated subregions. 
We first mapped signatures nodes into LRSP, then 
locating subpathways competing regulated by lncRNAs 
used “lenient distance” similarity combined with network 
topology structure. In brief, we calculated the shortest 
path between any two signature nodes, if the number of 
molecules between each signature pairs was no longer 
than n, then they were merged into one nodes. Finally, 
the number of nodes in the molecule sets within pathway 

Figure 4: Reproducibility and robustness analyses. (A) Robustness analysis. Pink line shows the mean ratio of recalled pathways 
using Subpathway-LNCE method for prostate cancer data set after randomly deleting N% of genes and miRNAs from the corresponding 
profiles, where N = 5, 10, ..., 30. Light green line shows the mean ratio of for prostate cancer data set recalled pathways using Subpathway-
LNCE after randomly deleting N% of the edges in each RMPG, where N = 5, 10, ..., 30. (B) Reproducibility analysis. Venn diagram depicts 
top 15 pathways identified by Subpathway-LNCE in three independent prostate cancer data sets from three different resource, including 
Sequence Read Archive (SRA), TCGA Data Portal (TCGA) and Gene Expression Omnibus (GEO). 
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no less than s were regarded as candidate subpahtways 
competing regulated by LncRNAs. The n and s parameters 
control the intensity of regulated signals and the size of 
candidate subpathways, respectively. We used n = 1 and 
s = 8 as default parameters. 

Evaluated the significance of candidate 
subathways

To estimate whether the candidate subpathways 
were competing regulated by lncRNAs comparing 
random, we used the Wallenius approximation methods 
to estimate the significance of candidate subpathways. 
The following parameters were needed: (i) the number 
of interesting mRNAs (x); (ii) the number of background 
mRNAs (n); (iii) the number of background mRNAs 
involved in this subpathways (m1); (iv) the number of 
interesting mRNAs annotated into this subpathway (m2); 
(v) the weight of this subpathway (w), which suggested the 
intensity of competing regulation by lncRNAs involved 
in this subpathways. The weight of the subpathway was 
computed as follows:

In above formula, parameter PG is the number of 
mRNAs of this subpathways, and parameter GL is the 
number of mRNAs competitively regulated by lncRNAs 
within this subpathway. β is parameter of control (In this 
study β = 1). The Wallenius approximation methods was 
executed using R package BiasedUrn [20].

Survival analysis

K-mean clustering was used to classify KIRC 
(PRAD) patients into two groups by expression of 
hub lncRNAs in the lncRNA competitively regulated 
subpathway network. Then, the Kaplan-Meier method 
was used to evaluate the difference of survival time 
between these two groups, and statistical significance was 
estimated by log-rank test. 
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