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ABSTRACT

Molecular classification of breast cancer into clinically relevant subtypes 
helps improve prognosis and adjuvant-treatment decisions. The aim of this study 
is to provide a better characterization of the molecular subtypes by providing a 
comprehensive landscape of subtype-specific isoforms including coding, long non-
coding RNA and microRNA transcripts. Isoform-level expression of all coding and 
non-coding RNAs is estimated from RNA-sequence data of 1168 breast samples 
obtained from The Cancer Genome Atlas (TCGA) project. We then search the whole 
transcriptome systematically for subtype-specific isoforms using a novel algorithm 
based on a robust quasi-Poisson model. We discover 5451 isoforms specific to single 
subtypes. A total of 27% of the subtype-specific isoforms have better accuracy in 
classifying the intrinsic subtypes than that of their corresponding genes. We find 
three subtype-specific miRNA and 707 subtype-specific long non-coding RNAs. The 
isoforms from long non-coding RNAs also show high performance for separation 
between Luminal A and Luminal B subtypes with an AUC of 0.97 in the discovery set 
and 0.90 in the validation set. In addition, we discover 1500 isoforms preferentially 
co-expressed in two subtypes, including 369 isoforms co-expressed in both Normal-
like and Basal subtypes, which are commonly considered to have distinct ER-receptor 
status. Finally, analyses at protein level reveal four subtype-specific proteins and two 
subtype co-expression proteins that successfully validate results from the isoform 
level.

INTRODUCTION

One in eight women will develop an invasive 
breast cancer during their lifetime and, despite the 
implementation of screening and prevention programs 
[1], more than 131,000 women died of breast cancer in 
Europe in 2012 [2] and approximately 40,000 deaths 
are expected in the United States in 2016 [3]. These, 
respectively, represent the first and second most-common 
cause of cancer-related deaths among women. Reasons 
include the fact that breast cancer is such a complex and 
heterogeneous disease in terms of molecular alterations 
and clinical outcomes [4] that it should be considered not 

as a single disease but rather as a group of molecularly 
distinct neoplasms [5].

In the last decade many studies have investigated 
the distinct breast-cancer subtypes through their 
characteristic molecular profiles, and their clinical 
correlation to prognosis and response to therapy. These 
molecularly defined subtypes differ in expression of 
well-known and therapeutically important receptors: 
estrogen receptor (ER) and human epidermal growth 
factor receptor 2 (HER2). Based on gene expression 
signatures at least five independent intrinsic molecular 
subtypes: Normal-like, Luminal A and B (mostly ER+), 
Basal (mostly ER- and HER2-) and Her2/ERBB2 (mostly 
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ER- and HER2+) have been consistently reported in 
different cohorts [6–10]. When progesterone receptor 
(PR) expression is also considered, the Basal subtype is 
close, though not identical, to the so-called triple-negative 
subtype. Luminal A cancers, exhibiting high ER and PR 
expression, are early stages and have generally better 
prognosis, with little extra benefit from conventional 
chemotherapy. On the other hand, Basal cancers have 
poor prognosis and tend to show low levels of all three 
receptors, leading to limited options for targeted therapy, 
but they seem to respond to conventional chemotherapy 
[11]. While molecular subtyping has been translated in an 
individualized therapeutic approach, we are still far from 
the implementation of an effective personalized medicine 
[12].

Recent development of next generation sequencing 
(NGS), especially in transcriptomics through RNA-
sequencing, provides an accurate estimation of transcript- 
or isoform-level expression and potentially gives more 
insight into the disease. More than 95% of human 
genes encode splice variants [13], and even though 
isoforms of the same gene may produce proteins which 
are very similar in their sequence, differences induced 
by alternative splicing can influence the function of the 
variants [14, 15]. Indeed some variants might exert non-
redundant and sometimes antagonistic functions and 
might have a substantially different association with 
tumor characteristics [16–20]. For example, comparing 
the different isoforms of p53 (TP53) in breast cancer, 
Avery-Kiejda et al. [20] observed that isoform D40p53 
was up-regulated in tumor compared to normal tissue, 
and was associated with an aggressive triple negative 
subtype. On the other hand, over-expression of isoform 
p53b was associated with less aggressive tumors with 
smaller size and longer disease-free survival. In a recent 
paper [21], PELP1, a well-known proto-oncogene whose 
dysregulation is implicated in oncogenesis and therapy 
resistance, was found to be involved in alternative splicing 
modulation, which in turn might lead to the activation of 
pathways supporting tumor progression.

Despite the growing evidence that isoform-level 
expression pattern might be more informative than gene-
level expression, at present little work has been done 
towards characterization of breast-cancer subtypes using 
genome-wide isoform-level expression data [22]. The 
Cancer Genome Atlas (TCGA) has profiled a large number 
of breast cancers at DNA, RNA and protein levels using 
several platforms. As reported in Koboldt et al [23], the 
integration of multiple sources of information confirmed 
the existence and assisted the further characterization of 
the intrinsic subtypes. However, while providing new 
insights into the subtype molecular profiles, the work by 
Koboldt et al still relied on mRNA quantification at gene 
level. To our knowledge, all studies that explored breast-
cancer subtypes based on genome-wide mRNA expression 
have done so at gene level. Although several researches 

[24–27] investigated the isoform-level expression in 
breast-cancer subtypes, their studies usually focus on 
isoforms of single genes, rather than whole transcriptome-
wide analyses.

Non-coding RNAs [28] such as microRNAs 
(miRNAs) and long non-coding RNAs (lncRNAs) do 
not encode proteins, but they are highly involved in gene 
regulation. MiRNAs are well-known, but the role of 
lncRNAs in different human cancers [29, 30], including 
breast cancer [31], have also been widely investigated. In 
contrast to miRNAs, lncRNAs are commonly defined as 
non-protein coding molecules longer than 200 nucleotides 
[32]. Thus the main aim of this article is to take advantage 
of RNA-seq data of 914 TCGA breast cancer samples 
to provide a comprehensive molecular subtype-specific 
characterization in terms of isoform-level expression 
of all mRNA and lncRNA, and miRNA transcripts. We 
particularly aim to establish the subtype-specificity and the 
subtypes co-expression patterns.

RESULTS

An isoform is said to be specific to a single subtype 
if it satisfies these two conditions: (i) it is significantly 
over-expressed in that subtype compared to all the other 
subtypes, and (ii) the other subtypes cannot be separated 
based on that isoform. If we have more than two subtypes, 
differential expression alone is not enough to guarantee 
subtype-specificity. “Subtypes co-expression” is an 
extension of subtype-specificity, where we consider a 
pair of subtypes with similar expression for a particular 
isoform. The pipeline for systematic identification of 
subtype-specific isoforms and subtype co-expression 
patterns is presented in Figure 1. More details are given in 
Materials and Methods.

Subtype-specific isoforms analysis

Examples of isoform-level distributions

To highlight the value of isoform-level information, 
Figure 2 shows the boxplots of the isoform expression of 
the estrogen receptor-alpha ESR1, a fundamental gene 
in breast cancer biology. The figure shows that ESR1 
expression is dominated by three isoforms: NM_000125, 
NM_001122740 and NM_001291241. These isoforms 
have similar expression patterns, with high expression 
in Luminal A and B, low expression in Normal-like and 
almost no expression in Basal and Her2 subtypes. The 
pattern of these isoforms is more obvious in the color map 
given in the Supplementary Figure S1, where they present 
a highly positive correlation.

From Figure 3, three isoforms of AGTR1 
(angiotensin II receptor, type 1) are over-expressed in 
primarily the Luminal A and Normal-like, but not in 
the Luminal B or other subtypes. The gene codes for a 
potent vasopressor hormone and a primary regulator 
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Figure 1: Pipeline of systematic identification of subtype-specific isoforms and subtype co-expression isoforms from 
breast cancer TCGA RNA-seq data. T1 is a statistic to compare a single subtype against all other subtypes. Statistic T2 is used to 
compare the corresponding other subtypes to each other.

Figure 2: Isoform-level expression distribution of ESR1 gene across 5 molecular subtypes. X-axis labels are transcripts ids. 
The figure shows that ESR1 expression is mostly contributed by three isoforms: NM_000125, NM_001122740 and NM_001291241, and 
these isoforms have similar expression patterns.
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of aldosterone secretion. Recently Rhodes et al [33] 
reported that AGTR1 overexpression defines a subset of 
estrogen-receptor (ER)-positive breast cancer and confers 
sensitivity to losartan, an AGTR1 antagonist. Our analysis 
here shows that the expression is specific to the luminal A 
and Normal-like subset of the ER-positive patients, but not 
the luminal B, and that the isoform NM_032049 is likely 
the best marker for this subgroup.

In general there is a large heterogeneity in the 
expression profiles across the isoforms of the same gene, 
as well as across different subtypes. Therefore there might 
potentially be additional information hidden at isoform-
level expression.
Identification of subtype-specific isoforms

The subtype assignment of the TCGA samples is 
used for identifying subtype-specific isoforms. Here, 
we are interested in isoforms which are not only highly 
significant in one group/subtype, but also have similar 
expression across the rest of the groups/subtypes. An 
example is presented in Figure 4, where the isoform 
NM_024792 from gene FAM57A is over-expressed in the 
Basal subtype but has 2-fold lower expression across the 
rest of the subtypes. We identify 4960 subtype-specific 
isoforms with t-statistics FDR< 0.01, chi-squared FDR> 
0.10. Besides, we compensate for the difference between 
the four remaining subtypes (allowing a slightly lower chi-
squared FDR) by the fold-change between medians of the 
specific subtype and the rest. We discover 469 additional 

subtype-specific isoforms with t-statistics FDR< 0.01, 
chi-squared FDR> 0.01 and fold-change > 5. The list of 
a total of 5451 subtype-specific isoforms is available in 
Additional file 3. These isoforms are from 4533 genes of 
which 67.02% are multiple-isoform genes. A summary 
of the number of isoforms per gene from this gene list is 
presented in the Supplementary Figure S2.

The top 5 isoforms of each subtype are given in 
Table 1. For these top 5 mRNA isoforms, the Normal-like 
subtype achieves a median AUC of 0.96, and this also 
obtains the highest median AUC of 0.92 in the validation 
set (Table 2). The Her2 and Basal- have median AUCs of 
>0.87, while the lowest median AUC of 0.76 is achieved 
by the Luminal A. The results of lncRNA isoforms are 
similar to mRNA isoforms but slightly lower AUCs for 
all subtypes.

The color map of the top 125 isoforms (25 isoforms 
from each subtype) in the discovery set is presented in 
Figure 5(a). A similar pattern can be observed in Figure 
5(b) from the validation set. These 125 isoforms come 
from 113 genes, so only a few isoforms from the same 
genes contain similar information. Thus there is no great 
redundancy of information among the isoforms from the 
same gene, but it also means that for these marker genes it 
is often sufficient to consider a single dominant isoform. 
We observe that the Basal- and Normal-like- specific 
isoforms are the most distinct expression in both the 
discovery and validation sets, although the Her2-specific 
isoforms found in the discovery set are also observed in 

Figure 3: Boxplots of isoforms of gene AGTR1. Three isoforms in this gene are over-expressed in primarily the Luminal A and 
Normal-like, but not in the Luminal B subtype.
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the validation set. This is not the case for the Luminal A- 
and Luminal B-specific isoforms, where the expression of 
the isoforms in the validation data seems not as high as in 
the discovery set. The list of these 125 subtype-specific 
isoforms is given in the Additional File 4.

The Luminal A and B subtypes are the most easily 
confused with each other, but there are many potential 
subtype-specific isoforms. So, to distinguish these two 
subtypes, we use a panel of rather than single isoforms, 
starting with 1807 isoforms that are specific for Luminal 
A and B. Using penalized L1-logistic regression method, 
72 isoforms are selected. To further refine the variable 
selection, isoforms are sorted in the order of their 
regression coefficients, and the AUCs of ROC curves 
are calculated from fitted values of logistic regression 
(that can be considered as composite marker) for an 
increasing number of features included in the model; see 
Supplementary Figure S3. The ROC curves in Figure 6 
show that 5 isoforms give sufficiently high performance 
(AUC = 0.90) to distinguish the Luminal A and B. The 
AUC in the validation dataset is 0.96 using a set of 72 
isoforms.

Classification using the corresponding gene-
level expression is also performed. The median AUC of 
isoform-level expression (0.65) is slightly lower than that 
of gene-level expression (0.67), see Supplementary Table 
S3. Note that to compare with isoform-level classification 
we must account for the level of contribution of the 
isoform to the total gene expression. Indeed as we expect, 
when a few dominant isoforms are the main contributors 

of the corresponding gene expression, the isoform- and 
gene-level classification will perform similarly; see 
Supplementary Figure S4. As illustrated by the ESR1 
gene (Figure 1), this does not mean that isoform-level data 
carries no additional information, since even in this case 
we may still gain more specific biological information. 
Also from Supplementary Figure S4, for less dominant 
isoforms, we observe greater differences in classification 
performance. Of the subtype-specific isoforms, 27% 
(1468) have better classification than their genes. Focusing 
on the top 10% isoforms with large differences in isoform- 
and gene-level AUCs, we then check if they perform 
similarly in the validation set. For instance, for the Basal 
subtype, from 103 isoforms with AUC difference larger 
than 90th percentile, 68 isoforms show similar pattern in 
the validation set (Supplementary Table S4).
Subtype-specific miRNA and lncRNA isoforms

We first investigate subtype-specific isoforms 
from the miRNA molecules, which are short non-coding 
RNA of about 21-25 nucleotides in length. We find three 
isoforms from miRNAs identified as subtype-specific 
(Supplementary Figure S5). Two isoforms NR_024607 and 
NR_001458 are the unique isoform of genes MIR503HG 
and MIR115HG respectively. Gene MIR22HG contains 
isoform NR_028503 and three others. Most of the isoforms 
have low expression, with over-expression in Normal-
like and Basal subtypes only. However, these patterns 
are also consistent with previous studies at gene-level. 
For example, in a study of 51 human breast cancer cell 

Figure 4: Isoform NM_024792 of the FAM57A gene is specific for the Basal subtype.
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lines [34], MIR22HG and MIR155HG are demonstrated 
to be significantly higher expressed in normal-like cells 
and basal-like cells respectively. Another recent study [35] 
suggests that expression of MIR503HG is significantly 
downregulated in breast cancer tissues and cells.

A total of 707 lncRNA isoforms are subtype-specific. 
We keep 210 isoforms that are specific for Luminal A and 
B and select 40 isoforms by using penalized L1-logistic 
regression. Supplementary Figure S6 shows that the top 
5 lncRNA isoforms achieve worse AUC than the top 5 
isoforms of full transcriptome in the previous section, but 
still high AUC=0.84 in the discovery set and AUC=0.77 
in the validation set. The full set of 40 isoforms obtains a 
greater performance with a high AUC (0.90) in validation 
set. Thus, the lncRNAs are also potentially markers of 
separation between the Luminal A and B subtypes. We take 
isoforms of gene DSCAM-AS1 (Supplementary Figure S7) 

in the top 5 lncRNA isoforms in Luminal B subtype for 
further discussion. That three of the four isoforms of gene 
DSCAM-AS1 are in the top 5 lncRNA isoforms indicates a 
strong signal in the gene. In a recent publication [36], Miano 
et al. studies these isoforms to investigate the relation of 
gene DSCAM-AS1 with Estrogen Receptor alpha (ERα) in 
luminal breast cancer cells. The results show that the four 
isoforms are similarly down-regulated after the silencing 
of Estrogen Receptor alpha (ER α). Moreover, the gene 
expression is significantly higher in Luminal B and they 
report DSCAM-AS1 as a major discriminant of the luminal 
subtype in breast cancer [36].

Subtype co-expression patterns

Co-expression of the same isoform by two subtypes 
may reveal some underlying molecular similarities; 

Table 2: Median AUC of the top 5 subtype-specific isoforms in the discovery and validation sets

mRNA lncRNA

Discovery Validation Discovery Validation

Basal 0.93 0.88 0.88 0.87

Her2 0.87 0.81 0.78 0.65

Luminal A 0.76 0.72 0.75 0.75

Luminal B 0.78 0.72 0.75 0.68

Normal-like 0.96 0.92 0.96 0.90

Table 1: Top 5 subtype-specific isoforms for each subtype

Subtype mRNA isoforms lncRNA isoforms

Basal
NM_173587(RCOR2),NM_178562(TSPAN33), 
NM_021154(PSAT1),NM_058179(PSAT1),NM_ 

003412(ZIC1)

NR_026877(MGC2889),NR_120532(LOC10192
9427),NR_027793(LINC00518),NR_002947(TCA

M1P),NR_028406(FXYD5)

Her2
NM_001085437(C2orf54),NM_001291730(PGA

P3),NM_001030002(GRB7),NM_001165938 
(STARD3),NM_001165937(STARD3)

NR_103466(NBPF13P),NR_110717(LINC01351), 
NR_109896(MFSD2A),NR_110167(LINC01213),

NR_072994_6(PPP1R10)

Luminal A
NM_001083536(FGD3),NM_001378(DYNC1I2), 
NM_001193288(SLC24A2),NM_198485(TPRG1)

,NM_001160173(NAT1)

NR_036537(RAB6C-AS1),NR_109862(LOC10050
6674),NR_024559(MAPT-AS1),NR_104018(PMP

22),NR_040090_5(CYP21A1P)

Luminal B
NM_000946(PRIM1),NM_020748(INTS2),NM_1
98463(C3orf67),NM_181725(METTL2A),NM_02

1215(RPRD1B)

NR_038896(DSCAM-AS1),NR_038900(DSCAM-
AS1),NR_038899(DSCAM-

AS1),NR_038341(STK4-
AS1),NR_024063(ZSCAN12P1)

Normal-like
NM_002380(MATN2),NM_001130005(ACTN1),
NM_021902(FXYD1),NM_002055(GFAP),NM_1

73833(SCARA5)

NR_024011(LOC286367),NR_108046(LINC008 
44),NR_001284(TNXA),NR_024359(LINC00086),

NR_015423(PGM5-AS1)
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Figure 6: Separating Luminal A and Luminal B subtypes: ROC curves for the top 5 and 74 isoforms in the discovery 
and validation sets.

Figure 5: Color-map of the top 125 subtype-specific isoforms (25 from each subtype) from (a) the discovery and (b) 
validation sets. Red and green indicate expression levels above and below median, respectively. The isoforms in each subtype are ordered 
by AUC from bottom to top and right to left.



Oncotarget68858www.impactjournals.com/oncotarget

for example, the Basal and Her2 subtypes have low 
expression of estrogen receptor gene. We discover 1500 
isoforms that are co-expressed in two subtypes (t-statistic 
FDR< 0.01 and chi-squared test FDR> 0.1); the full 
list is in Additional file 5. It is interesting that most of 
isoforms, 9 of 12, in the top 12 (ranked by t-statistics) 
in Supplementary Figure S8 are highly expressed in 
the Basal and Normal-like subtypes, despite the fact 
that these subtypes have typically distinct ER-receptor 
status. Of the remaining three, isoform NM_013409 from 
gene FST overexpresses in Luminal A and Normal-like 
subtypes, and two other isoforms NM_004923 of MTL5 
and NM_017843 of gene BCAS4 have overexpression in 
Luminal A and Luminal B subtypes.

We further investigate isoforms belonging to genes 
LDHB and FST from the top 12 isoforms, as they have 
been previously reported at gene level. The boxplots of 
isoform-level expression of these genes are presented in 
Supplementary Figures S9 and S10, respectively. Gene 
LDHB encodes for the lactate dehydrogenase B protein 
that was highly expressed in Basal subtype and reported 
to be a metabolic marker of response to neoadjuvant 
chemotherapy in breast cancer [37]. This gene has 2 
isoforms that are dominated by isoform NM_002300; 
both are under-expressed in the Her2, Luminal A and 
Luminal B groups. For the follistatin gene FST, Bloise et 
al. [38] suggest a role in benign breast disease through a 
differential expression in stromal cells. The role of FST 
in breast disease is mentioned again in a recent study 
[38] on breast cancer patients. Two isoforms NM_006350 
and NM_013409 show high expression in Luminal A and 
Normal-like subtypes, and the former is likely the best 
marker for this co-expression pattern.

Supplementary Table S5 shows that most of the 
significant isoforms are Luminal A–Normal-like specific. 
We sort the isoforms based on the t-statistics, and for 
groups with more than 25 isoforms the best 25 are 
selected. A color map of these genes in the discovery and 
validation sets is presented in Supplementary Figure S11. 
Distinct profiles of the Basal–Normal-like, Luminal A–
Luminal B, Luminal A–Normal-like and Basal-Luminal 
B specific isoforms can be clearly observed. The same 
patterns can be seen also in the validation set.

Subtype-specific validation by protein expression

The same analysis is then applied to systematically 
identify subtype-specific proteins from a TCGA protein-
expression dataset. The dataset generated using Reverse 
Phase Protein Array (RPPA) includes 280 proteins from 
668 patients. The distribution of subtypes in the protein 
validation set is presented in Supplementary Table S2. 
We discover 38 subtype-specific proteins. Four of these 
proteins validate the results from subtype specific isoforms 
by sharing the same corresponding genes and specific 
subtypes. Specifically, the proteins encoded by genes 
G6PD, ACACA, CDKN2A and ARAF are specific to Her2, 
Luminal B, Basal and Luminal A, respectively.

Gene G6PD encodes glucose-6-phosphate 
dehydrogenase, which is an important cytosolic enzyme 
involved in a metabolic pathway leading to cellular 
reducing energy in the form of NADPH [39]. In Figure 
7, Her2 subtypes of these proteins and isoforms of 
gene G6PD are significantly overexpressed to the other 
subtypes. The plots of other genes are also available in 
Supplementary Figures S12-S14 of the Supplementary 

Figure 7: Expression at protein level a. and isoform level b. of G6PD gene. Isoform NM_001042351 and the protein are specific to 
Her2 subtype.
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report. As reported in GeneCards [40], there is high 
confidence that G6PD protein is found in extra-cellular 
compartment (confidence=5), and fairly high confidence 
(confidence=4) it is in the cytosol and membrane. 
Furthermore, it is normally not found in serum or plasma. 
So if the over-expressed G6PD protein in HER2 tumors is 
leaked out to the blood stream, it is an excellent candidate 
for a serum or plasma-based marker.

Finally, we explore 14 subtype co-expression 
proteins and find that two have the same pair of 
overexpressed subtypes to at least one isoform of the 
corresponding genes: ESR1 for Luminal A and Luminal 
B subtypes (Supplementary Figure S15) and MYH11 for 
Luminal A and Normal-like subtypes (Supplementary 
Figure S16).

Availability

The results of subtype-specific isoform analysis in 
this research are available for use in an interactive website 
at https://nghiavtr.shinyapps.io/BRCAsubtypes/.

DISCUSSION

We have demonstrated a detailed analysis of 
isoform-level patterns based on 914 RNA-seq TCGA 
samples in relation to the known intrinsic molecular breast 
cancer subtypes. Using a novel statistical methodology, 
we have systematically identified and validated numerous 
subtype-specific isoforms. Many of the subtype-specific 
isoforms are shown to give better accuracy in classifying 
intrinsic subtypes than that obtained using the whole-gene 
expression. We highlight the fact that expression profiles 
across the isoforms of the same gene vary substantially. 
So, particularly for key breast-cancer genes, such as ESR1, 
isoform-level data are more informative than gene-level 
data, allowing us to determine how variants contribute to 
the hormone dependence and treatment response of the 
tumor [41, 42].

For non-coding RNAs, we discover three miRNA 
isoforms that are overexpressed in the Basal and Normal-
like subtypes. In addition, we find 707 long non-coding 
RNAs that are subtype-specific isoforms. The long non-
coding RNA isoforms perform well in classification 
between two subtypes Luminal A and Luminal B.

Regarding subtypes co-expression, for the most 
part the same isoforms express similarly in subtypes 
with similar characteristics, such as the Luminal A and 
Normal-like. However, isoforms that are over-expressed 
in two rather distinct subtypes, such as the Normal-like 
and Basal, are worth investigating further. The hormone-
sensitive tumors Luminal A and B have different 
treatments, but the histopathological diagnosis of these 
tumors is difficult. We have identified a panel of classifier 
isoforms that can classify these two types with high 
power in both discovery and validation sets. Intriguingly 

we have found very limited numbers of isoforms that are 
co-expressed in the Basal–Luminal A or Her2–Luminal A 
pairs, indicating deep molecular distinction between these 
pairs of subtypes.

Validation at protein level reveals four proteins 
that have at least one isoform of the corresponding genes 
sharing the same specific subtypes. Moreover, G6PD 
protein which is specific to HER2 subtype, is potentially 
an excellent candidate for serum or plasma-based marker. 
For subtype co-expression, two proteins also validate the 
results from the isoform-level analysis.

Our RNA-seq study has strengths and weaknesses. 
As far as we know this is the largest study of 
comprehensive isoform-level analysis of breast cancers. As 
its weakness, we have to rely on the existing transcriptome 
annotation, which is incomplete. This problem can be 
solved in the future when the technology, particularly 
the read lengths, improves, so that instead of relying on 
transcriptome annotation, one can perform transcriptome 
assembly of each genome. In addition, the study also 
might suffer the common issue of the accuracy of current 
quantification methods for hundreds of genes described in 
a recent study [43]. The accuracy mainly depends on the 
degree of the unique information that allows mapping of 
the reads to the correct transcripts and genes. In that report 
[43], the authors discovered 958 problematic transcripts/
genes that are difficult to measure accurately. Fortunately, 
none of them are in the top discovered subtype-specific 
or subtype-coexpression isoforms in our study. Although 
Sequgio used in our study shows better accuracy than 
many common isoform quantification methods [44], 
issue of the problematic genes might still happen. For 
convenience, we supply the information of problematic 
isoforms in the RShiny app so that users can make further 
checks.

We have more detailed characterization of the 
intrinsic molecular subtypes based on isoform-level 
expression of all coding and non-coding RNAs. Since 
identification of the molecular subtypes helps prognosis 
and therapy decision, this isoform-level information may 
be used as therapeutic markers.

MATERIALS AND METHODS

TCGA RNA-sequence data

The raw data in this study comprise 1168 invasive 
breast carcinoma (BRCA) downloaded (June 2014) from 
The Cancer Genome Atlas (TCGA) after approval from 
the TCGA data access committee. All TCGA samples 
have been collected following strict human subjects 
protection rules, informed consent and Institutional 
Review Board approval of the protocols; see the project 
website at http://cancergenome.nih.gov for more details. 
We keep 1137 unaligned samples after eliminating all 
tissues that are sequenced more than once. The samples 
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come from 29 different hospitals, but were all sequenced 
at the University of North Carolina (UNC) using Illumina 
HiSeq. This platform uses paired-end reads with read 
length of 50 bp, and 6-100 million reads were generated 
per sample. Reads were mapped to human hg19 UCSC 
annotation reference using Tophat [45] and Bowtie [46] to 
create the bam files.

Isoform-level expression is estimated using Sequgio 
analysis pipeline [44] (following the instruction of its 
webpage http://fafner.meb.ki.se/biostatwiki/sequgio/), 
which reports expression values in units of fragments 
per kilobase of transcript per million mapped reads 
(FPKM). Gene-level FPKM is defined as the sum of the 
isoform-level expression. We extract the list of all non-
coding RNAs from the reference annotation and define 
the transcripts longer than 200 nucleotides as lncRNA 
isoforms. There is a total of 48,009 RNA isoforms in the 
reference annotation, including 37,990 coding mRNAs, 
7649 lncRNAs, 1755 miRNAs and 615 other non-coding 
RNAs. After removal of 5 potential outliers using the 
principal component analysis (PCA) plot and 218 samples 
with missing PAM50-subtype information, the final 
dataset contains 914 samples. PAM50 is a minimal gene 
set derived by Parker et al. [4] for classifying “intrinsic” 
subtypes of breast cancer and commonly used for breast 
cancer subtype research including the TCGA breast cancer 
project. In the TCGA breast cancer project, the 50-gene 
PAM50 model [4] is applied to mRNA expression data to 
classify each sample [47]. These samples are then split, 
according to sample-tissue source, almost equally into 
a discovery set (n=451) and a validation set (n=463) as 
shown in Supplementary Table S1. The distributions of the 
molecular subtypes in both discovery set and validation 
set (Supplementary Table S2) are similar. The discovery 
set is used for systematic identification of subtype-specific 
isoforms and subtype co-expression patterns; see Figure 1 
for an overview.

Systematic identification of subtype-specific 
isoforms

At gene-level expression, a gene may be over-
expressed in a specific subtype. However, this gene-level 
information may not translate to all isoforms of the gene. 
Expression of the gene could be dominated by a few 
isoforms, or generally different isoforms within the gene 
may behave differently. So isoform-level information 
from the RNA-seq data allows us to investigate deeper 
into the biology of the molecular subtypes. Identifying 
subtype-specific isoforms, which are significantly over-
expressed in a single subtype compared to the rest of the 
subtypes, is the next challenge. To be ‘subtype-specific’ 
it is not enough for the isoform to be over-expressed in 
one subtype, but it must also be the case that we cannot 
distinguish the other subtypes based on that isoform. The 
ideal subtype-specific isoform is one that is expressed in 

one isoform only (i.e. no expression otherwise), but for a 
comprehensive analysis we need a less strict definition.

The overview of the analytic pipeline is presented 
in Figure 1. When there are only two subtypes, systematic 
identification of subtype-specific isoforms is a standard 
statistical problem, i.e. by differential expression analysis. 
However, the problem is more difficult if we have more 
than two subtypes. If we simply test one subtype, say A, 
against all the others, a significant result does not imply 
that the isoform information is specific to subtype A. It 
only means that subtype A is different from all the others, 
but the rest could also be different from each other. So, to 
establish this subtype specificity, we also need to test that 
the other subtypes are not statistically different from each 
other. Thus two statistical tests are required. Specifically, 
for each isoform, we first fit a one-way ANOVA model 
assuming quasi-Poisson outcomes [48]. We then compute 
two statistics for each subtype:

(i) T1 that compares each single subtype against all 
other subtypes,

(ii) T2 that compares the corresponding other 
subtypes to each other.

For example, suppose there are 5 subtypes A, 
B, C, D and E; then we compute 5 pairs of statistics 
(T1,T2). The first T1 compares A vs (B,C,D,E), while the 
corresponding T2 jointly compares B, C, D and E. To get 
a subtype-specific isoform, T1 must be large but at the 
same time T2 must be small. More detailed description of 
the statistical method is presented in the Supplementary 
Methods.

As expected, there are many outlying FPKM values 
as well as zero values, so the use of a robust regression 
method is crucial. We find that standard robust regression 
procedures (such as rreg in R) fail to converge in a large 
proportion (roughly half) of the isoforms. Hence, we 
develop a new robust regression procedure for quasi-
Poisson outcomes and implement it using an iterative 
weighted least-square (IWLS) algorithm [48]. The 
algorithm is highly stable and works for all isoforms. 
Once the robust estimates and their standard errors (or 
estimated variance matrices) are obtained, we compute 
the two-statistics as explained above: in this case T1 is 
the robust t-test and T2 is the chi-squared test. To account 
for multiple testing, the significance is expressed in terms 
of false discovery rate (FDR). See the Supplementary 
Methods for more details.

Systematic identification of subtypes co-
expression

By ‘subtypes co-expression’ we search for a pair of 
subtypes with similar expression for a particular isoform. 
For example, it is well known that the Basal and Her2 
subtypes are characterized by low ER gene expression. So 
the subtype co-expression profile could reveal interesting 
biological information. The methodology is an extension 
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of the method for the single subtype-specific isoform 
above, also given in the Supplementary Methods. The 
R codes of the statistical tests for both subtype-specific 
isoforms and subtype co-expression isoforms are supplied 
in the Additional file 6.

Isoform-based subtype classification

The subtype-specific isoforms obtained in the 
previous section are then used for classifying the 
corresponding subtype using multiclass classification 
based on one-vs-all logistic regression, where every 
subtype is in turn compared with the remaining ones. The 
performance of each isoform is evaluated using the area 
under the receiver operating characteristic curve (AUC). 
For comparisons, the same procedure is also computed 
using gene-level expression. Although the Luminal A and 
B tumors have similar characteristics, particularly since 
both are ER+ tumors, they have different prognosis and 
are treated differently, so it is crucial to separate the two. 
Instead of using a single isoform for classification, a panel 
of isoforms is selected. We use L1 penalized logistic 
regression to select isoforms which can distinguish the 
Luminal A and B subtypes.
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