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ABSTRACT

To understand the heterogeneity of prostate cancer (PCa) and identify novel 
underlying drivers, we constructed integrative molecular Bayesian networks (IMBNs) 
for PCa by integrating gene expression and copy number alteration data from 
published datasets. After demonstrating such IMBNs with superior network accuracy, 
we identified multiple sub-networks within IMBNs related to biochemical recurrence 
(BCR) of PCa and inferred the corresponding key drivers. The key drivers regulated a 
set of common effectors including genes preferentially expressed in neuronal cells. 
NLGN4Y—a protein involved in synaptic adhesion in neurons—was ranked as the top 
gene closely linked to key drivers of myogenesis subnetworks. Lower expression of 
NLGN4Y was associated with higher grade PCa and an increased risk of BCR. We show 
that restoration of the protein expression of NLGN4Y in PC-3 cells leads to decreased 
cell proliferation, migration and inflammatory cytokine expression. Our results suggest 
that NLGN4Y is an important negative regulator in prostate cancer progression. More 
importantly, it highlights the value of IMBNs in generating biologically and clinically 
relevant hypotheses about prostate cancer that can be validated by independent 
studies.

INTRODUCTION

Prostate cancer (PCa) is the most frequently 
diagnosed cancer in American men [1]. However, it 
is a very heterogeneous disease, with a phenotype 
ranging from indolent behavior lasting decades to highly 
aggressive metastatic cancer which can be lethal in just a 
few years. Although most patients with advanced disease 
initially respond to surgical or chemical depletion of serum 
testosterone, PCa invariably progresses, a clinical state 
known as castration-resistant prostate cancer (CRPC). 
With the emergence of new treatment options, survival 
of patients with CRPC has significantly improved in the 
past few years. However, CRPC remains highly lethal, and 
a thorough understanding of the genetic drivers of PCa 

progression will help in the clinical management of the 
disease.

Some of the key challenges of PCa research include 
how to identify patients at high risk for early progression 
and how to prevent it. The key pathways leading to 
prostate cancer progression are not fully understood. Large 
scale genomic studies have been conducted to uncover 
novel genetic drivers of aggressive PCa [2] through 
analyzing gene expression datasets [3–7], identifying 
copy number alterations (CNAs) [8–10] and gene fusions 
[11–13], and detecting somatic mutations [14]. However, 
most of these studies focused on only one type of data, 
and when multiple data types were profiled, analysis was 
generally conducted for individual genes separately or 
within known pathways [15]. Since multiple genes and 
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pathways are involved in cancer progression, systems level 
analysis is needed to understand how such genes interact 
with and/or regulate each other, and also how multiple 
genes and pathways work together to determine clinically 
meaningful endpoints such as disease recurrence.

We previously developed an analytical procedure, 
RIMBANET [16], to construct integrative molecular 
Bayesian networks (IMBNs) by integrating genetic and 
genomic profiling data under the framework of a Bayesian 
network. This integrative approach has been successfully 
used in dissecting causal relationships in complex human 
diseases such as breast cancer [17], hepatocellular 
carcinoma [18], diabetes and obesity [19], as well as in 
other diseases [16]. Integration of diverse types of data 
with gene expression data can improve network accuracy 
[16] with the directed network representing biologically 
meaningful causal relationships [20] as opposed to sheer 
statistical relationships. In this study (the workflow 
shown in Figure 1), we developed a similar approach to 
integrating gene expression and CNA data and applied 
it to two of the largest comprehensive genomic datasets 
available for PCa. We leveraged the constructed IMBNs 
for PCa to identify novel genes and pathways underlying 
PCa recurrence.

RESULTS

Construction of IMBNs from two independent 
PCa datasets

We reconstructed IMBNs for PCa based on two of 
the largest published PCa datasets—the Taylor dataset 
(150 samples) [15] and the TCGA PRAD dataset (432 
samples) [21]. The two datasets differed significantly in 
terms of patient characteristics (Table 1), and detailed 
description can be found in Supplementary Methods. For 
example, more than half (53.7%) of patients in Taylor’s 
dataset have a Gleason score <=6, while the fraction is 
only 8.6% for the TCGA dataset. On the other hand, 26.3% 
of patients in the TCGA dataset have a Gleason score >=9; 
the fraction is only 6% for Taylor’s dataset. The median 
follow-up time for Taylor’s dataset is much longer than 
the TCGA dataset. As a result, the percentage of patients 
with BCR (25.7%) is much higher for TCGA (15.4%), 
even though most of patients in Taylor’s dataset are in 
better prognosis groups (as defined by Gleason scores). 
The platforms used to generate the datasets were also 
different (Table 1). mRNA expression was profiled using 
Affymetrix Exon array in the Taylor dataset, and Illumina 

Figure 1: The workflow of the study.
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HiSeq for RNA-seq in the TCGA dataset, respectively. 
The CNA was profiled using Agilent CGH array in the 
Taylor dataset, and Affymetrix SNP array for the TCGA 
dataset, respectively.

Due to the obvious difference of the two datasets, 
we didn’t combine them in the network reconstruction 
process. Instead, we reconstructed IMBNs from each 
of the two datasets separately by integrating its gene 
expression and CNA data. The basic characteristics of 
the two reconstructed IMBNs are listed in Table 1. 6,798 
and 8,896 informative genes (Supplemental Methods) 
were included in reconstructing IMBNs for the Taylor and 
the TCGA datasets, respectively. Among the informative 
genes, 3609 genes were common (Fisher’s exact test
p 1 10 )52= × − . More cis-CNAs (Supplemental Methods) 
were identified in the TCGA dataset compared to Taylor’s 
dataset (Table 1). Among 157 cis-CNAs identified in 
the Taylor’s dataset, 127 were identified in both datasets 
(Fisher’s exact test p 1.2 10 ),51= × −  suggesting that the 
difference of numbers of cis-CNAs identified in the two 
datasets is due to a higher statistical power of the TCGA 
dataset as there were more samples in the TCGA dataset.

Comparison of IMBNs reconstructed from the 
two PCa datasets

Although the two PCa datasets differ considerably 
in multiple aspects, the IMBNs reconstructed from the two 
datasets share significant similarities. First, the degrees of 

each gene (defined as the number of close neighbors; see 
Supplemental Methods for details) in the two networks 
are significantly correlated (Spearman’s correlation r= 
0.28, p 8.5 10 ).69= × −  Second, for the majority (59.9%) of 
genes common in the two IMBNs, their network neighbors 
significantly overlap (Fisher’s exact test p<0.05) with 
each other in the two networks (Noted in Supplemental 
Methods). The fraction is even higher for genes with 
higher degrees (Supplementary Figure S1). For the top 
20% genes ranked by node degree, 81% share significantly 
overlapping network neighbors between the two IMBNs.

Advantage of integrating CNA data in 
reconstructing IMBNs

To assess the accuracy of reconstructed networks, we 
compared our IMBNs with several widely used databases 
of gene networks and gene sets (Supplemental Methods). 
Specifically, we calculated the percentage of our inferred 
gene-gene regulations that are in existing protein/gene 
network databases, or within the same pathway in gene 
set databases. For all the reference databases considered, 
the estimated accuracy of our IMBNs is significantly 
better than random networks (by permuting gene names 
in the IMBNs) (Supplementary Table S1). Furthermore, 
the accuracy of the TCGA PRAD IMBN reconstructed by 
integrating gene expression and CNA data is consistently 
higher than that of the IMBN reconstructed from 
gene expression data only (Supplementary Table S1). 

Table 1: Characteristics of the two prostate cancer datasets and the corresponding networks

Taylor TCGA

Sample Size 150& 498*

Gleason Score <=6 80 (53.7%) 37 (8.5%)

Gleason Score =7 50 (33.6%) 224 (51.3%)

Gleason Score =8 10 (6.7%) 58 (13.3%)

Gleason Score >=9 9 (6.0%) 118 (27.0%)

Median follow-up time 45.5 months 16.2 months

Percentage of patients with BCR 25.7% 15.4%

Gene expression platform Affymetrix Human Exon 1.0 ST array Illumine HiSeq RNAseq

CN platform Agilent 244K comparative genomic 
hybridization array Genome wide SNP Array 6

IMBNs

#Genes included 6,798 8,896

#Cis genes 153 3,003

#Gene-gene regulations 8,064 14,418

&Number of patients with gene expression data available in Taylor’s dataset. Gleason score was not available for 1 of them, 
and BCR data was not available for 10 of them.
*Number of patients with gene expression data available in TCGA dataset. Gleason score was not available for 61 of them, 
and BCR data was not available for 114 of them.
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However, the contribution of CNA data is inconsistent 
for the Taylor dataset (Supplementary Table S1) due to 
a small number of cis-CNAs included in reconstructing 
the IMBN (Table 1). Interactions in the STRING database 
[22] are biased to coexpressed gene pairs. One of our 
goals in integrating CNA data is to distinguish gene-gene 
coexpression due to co-localization in the same CNA 
blocks or due to transcriptional regulation [23]. On the 
other hand, interactions in the HumanNet database [24] 
are selected taking over 20 different types of “-omics” 
data into consideration. The Taylor IMBN with CNAs 
is slightly better with regard to the HumanNet database, 
but slightly worse with regard to the STRING database 
than the IMBN without CNAs, which is consistent with 
what was expected. It is worth noting that overlap between 
our IMBNs and the HPRD, HumanNet, and STRING 
databases, which are based on protein-protein interactions, 
is much lower than the overlap between our IMBNs and 
the KEGG [25], MSigDB [26], and GO [27] databases, 
which are based on biological pathways (Supplementary 
Table S1), suggesting that regulation inferred in our 
IMBNs is very different from physical interaction. In 
summary, these results indicate that integrating gene 
expression and CNA data in reconstructing cancer 
networks improves the accuracy of resulted networks. 
Thus, we used only the IMBNs with CNAs integration in 
our further analyses.

Evaluation of IMBNs using known PCa causal 
genes: ERG, AR and others

Known prostate cancer genes (Supplemental 
Methods) have significantly higher node degrees compared 
with others (Wilcoxon rank sum test p= 1.3 10 5× −

and 0.005 for TCGA and Taylor IMBN, respectively). 
We compiled a list of “high confidence” cancer genes 
associated with prostate cancer progression or metastasis 
from multiple studies (Supplementary Table S2 and S3; 
see Supplemental Methods for details). The node degree of 
these prostate cancer genes is significantly higher than that 
of the others (Wilcoxon rank sum test p= × −9.9 10 13 and 

× −1.1 10 6  for TCGA and Taylor IMBN, respectively). It is 
worth noting that the p-values above are more significant 
for IMBNs reconstructed by integrating gene expression 
and CNA data, as compared to IMBNs reconstructed from 
gene expression only.

There are 408 and 308 key regulators in the 
TCGA and Taylor IMBNs, respectively (Supplemental 
Methods). They are enriched for prostate cancer genes 
(Fisher’s exact test p= × −5.0 10 9  and 0.002 for TCGA 
and Taylor IMBN, respectively). In contrast, genes 
with cis-CNAs don’t significantly overlap with prostate 
cancer genes (Fisher’s exact test p=1.0  and 0.3 for 
TCGA and Taylor IMBN, respectively). ETS-related 
gene (ERG) is an oncogene whose activation is one of the 
most common oncogenic alterations in PCa, occurring 

in over 50% of prostate tumors [28]. ERG is one of the 
key regulators in both IMBNs, and ERG has the largest 
number of direct connections in the TCGA IMBN. The 
ERG subnetworks (Figure 2A and 2B) for the TCGA and 
Taylor IMBNs consist of 136 and 104 genes, respectively. 
The two subnetworks overlap significantly with 15 genes 
in common, excluding ERG itself (Fisher’s exact test
p 1 10 ).10= × −  When compared with known biological 
pathways, the “neuronal system” is the most enriched 
pathway in both subnetworks (Fisher’s exact test p=6e-
3 and 0.01 for TCGA and Taylor IMBN, respectively) 
(Supplementary Table S4). It has been shown that ERG 
increases expression of neurotransmitter reporters [29] 
and TMPRSS2-ERG fusion blocks neuroendocrine cell 
differentiation to allow prostate cancer proliferation 
[30]. ERG activation/overexpression is mainly due 
to fusion with regulatory sequences of the androgen 
receptor related prostate cancer genes, predominantly 
TMPRSS2. The TMPRSS2-ERG fusion is a well-known 
PCa driver alteration [13]. The TMPRSS2-ERG gene 
fusion signature identified by comparing PCa patients 
with and without the fusion [31] was significantly enriched 
in the ERG subnetworks (Figures 2A and 2B, Fisher’s 
exact test p= × −1 10 9  and × −7 10 5  for TCGA and Taylor, 
respectively). For instance, HDAC1, which is associated 
with the TMPRSS2-ERG gene fusion [32], is in the ERG 
subnetwork extracted from TCGA IMBNs (Figure 2A). 
HDACs play major roles in PCa progression [33]. ERG 
activation results in a large transcriptional response, 
which is reflected in our IMBNs. More specifically, we 
varied the specificity of ERG subnetworks by including 
more genes distantly connected to ERG in the network 
(1-specificity=number of genes in a subnetwork/number 
of genes in an IMBN), and calculated the sensitivity of 
each ERG subnetwork overlapping with the TMPRSS2-
ERG gene fusion signature (sensitivity=number of genes 
in the overlap/number of genes in the subnetwork), 
resulting a significant receiver-operating characteristic 
(ROC) curve (Figure 2C). The network accuracy is defined 
as a partial area under the curve (AUC) in the ROC plot 
with specificity>90%. IMBNs have significantly higher 
accuracies than random permutated networks and IMBNs 
with CNA overlap better with the TMPRSS2-ERG gene 
fusion signature (p=0.002 for Taylor IMBN without CNA, 
and p<0.001 for the other three networks estimated based 
on 1000 permutations).

AR is one of most critical effectors in prostate cancer 
development and progression. Ligand-activated ARs bind 
to DNA of target genes and induce their transcription. 
The transcriptional activity of AR is affected by multiple 
co-regulators that influence a number of functional 
properties of AR [34]. AR expression level itself may not 
correlate well with its transcriptional activity. Instead 
of testing whether AR’s network neighborhoods are 
enriched for AR signature genes, we searched through 
IMBNs and identified genes whose neighborhoods are 
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enriched for AR signature genes. The top candidate is 
DHCR24, a FAD-dependent oxidoreductase involved 
in cholesterol biosynthesis (Fisher’s exact test
p 3 10 ,10= × −  its subnetwork in TCGA IMBN is shown 
Supplementary Figure S2A). The DHCR24 subnetwork 
in the Taylor IMBN is also enriched for AR signature 

genes (Supplementary Figure S2B, Fisher’s exact test
p 8 10 ).67= × −  DHCR24 is shown to be regulated by AR 
in prostate cancer [35].

In summary, our analysis demonstrates that IMBNs 
recapitulate important known biological interactions in 
PCa.

Figure 2: A and B. ERG subnetworks extracted from TCGA IMBN (A) and Taylor IMBN (B). Nodes of yellow color represent previously 
identified ERG fusion signature genes. Genes known to be cancer related are labeled in larger font size with blue color (nodes with thicker 
boarder). Square nodes represent genes regulated by cis CNA. C. The accuracy of ERG subnetworks is assessed using previously identified 
ERG fusion signature genes.
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Identification of subnetworks associated with 
BCR of PCa

After demonstrating that our IMBNs are able to 
recapitulate previously recognized markers of PCa, we 
next tried to use these networks to identify new molecular 
mechanisms of PCa progression. Based on BCR data in the 
Taylor dataset, we identified an initial list of 189 and 378 
genes positively and negatively associated with BCR (Cox 
regression p-value <0.01 after multiple testing correction). 
Using the same threshold, there was no gene associated 
with BCR in the TCGA PRAD data set, which is likely due 
to shorter follow-up time in TCGA compared to the Taylor 
dataset (Table 1). Nevertheless, BCR-associated genes 
identified in the Taylor dataset rank significantly higher 
in their associations with BCR in the TCGA PRAD data 
set compared to the rest of the genes (Wilcoxon rank sum 
test p= × −1 10 47  and × −5 10 69  for positive and negative 
associated BCR genes, respectively), indicating similarity 
between the two datasets. As expected, the BCR genes are 

significantly enriched for previously identified prostate 
cancer genes (Supplementary Table S3) (Odds ratio=9.7, 
Fisher’s exact test p 1 10 ).19= × −  We then projected BCR 
genes onto IMBNs and constructed BCR subnetworks 
(Supplemental Methods). Compared to the initial BCR 
gene list, the BCR subnetworks contain almost twice as 
many genes (a total of 989 genes for Taylor IMBN and 
1003 for TCGA IMBN). The BCR subnetworks are even 
more significantly enriched for known prostate cancer 
genes (Odds ratio=17.0 and 11.0, Fisher’s exact test p=
× −2 10 48 and × −5 10 31  for Taylor and TCGA IMBN, 

respectively). The two BCR subnetworks derived from 
TCGA and Taylor IMBN are similar in terms of enriched 
pathways (Supplementary Table S5). We combined the 
two subnetworks together in further analyses. The positive 
BCR subnetwork (Figure 3) is enriched for the cell cycle 
related pathways (Supplementary Table S5), such as G2M 
checkpoint, E2F targets, and mitotic spindle. The negative 
BCR subnetwork (Figure 4) is enriched for the biological 

Figure 3: Subnetworks positively associated with BCR in PCa. Nodes of varied colors represent different pathways enriched in 
the subnetwork. Genes known to be cancer related are labeled in larger font size with blue color (nodes with thicker boarder). Key driver 
genes are labeled in larger front size with red color. Square nodes represent genes regulated by cis CNA. Edges directly associated with key 
drivers and NLGN4Y are colored blue and red, respectively.
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processes TNFα signaling, EMT transition, myogenesis, 
and apoptosis pathways (Supplementary Table S5).

There are 12 and 63 key regulators for the positive 
and negative BCR subnetworks, respectively. However, 
many key regulators are close to each other in the 
subnetworks. To find distinct key regulators and regulated 
biological pathways, we filtered out key regulators that 
are directly regulated by other key regulators with higher 
degree, resulting only one distinct key driver, TPX2, and 
7 distinct key drivers, MYLK, FAT4, TNS1, OSMR, TP63, 
ACSL4, and CACHD1, for positive and negative BCR 
subnetworks, respectively (Figure 3 and Figure 4). For a 
detailed description and discussion on these key drivers, 
please refer to Discussion.

Most of the key regulators (MYLK, FAT4, TNS1, 
TP63, and CACHD1) in negative BCR networks are 
involved in closely related biological processes such 
as myogenesis, epithelial-mesenchymal transition, and 
apical junction/surface. To understand how the signals 
from these key drivers are integrated together, we tried 
to identify a set of common mediators [36] or signal 
integrators of these key drivers. There are multiple 
approaches for identifying common mediators, such as 
random walk [37], PageRank-liked propagation [38], and 
shortest path-based methods. Here we used the shortest 

path method for identifying common mediators as 
following: for each gene in the negative BCR network, 
we calculated its mean shortest distance to the above 5 
key regulators (the distribution shown in Figure 5A). 
We defined the top 10% genes with the shortest distance 
as the common downstream genes of key regulators. 
When analyzed tissue expression of these common 
downstream genes using human tissue atlas (see for 
Methods details), we found that the common downstream 
genes are preferentially expressed in fat (adipocytes and 
subcutaneous preadipocytes), muscle-related tissues 
(cardiac and skeletal muscle), reproductive specific 
tissues (uterus and ovary), neuron-related tissues (superior 
cervical ganglion, prefrontal cortex, and caudate nucleus), 
and conjunctiva (Figure 5B). Adipocytes have been shown 
to drive prostate cancer progression in many studies [39]. 
Genes preferentially expressed in reproductive specific 
tissues among the common downstream genes may be the 
result of variations of estrogen receptor regulated genes. 
The connection to neuron-related tissues is unexpected. 
It has been shown that the severity of prostate cancer 
is associated with increase of nerve cells in and around 
the tumor [40]. However, we found genes preferentially 
expressed in neuronal cells were actually down-regulated 
in severe prostate cancers, including APP. Particularly, 

Figure 4: Subnetworks negatively associated with BCR in PCa. The node annotation is the same as in Figure 3.
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among the 12 common downstream genes preferentially 
expressed in prefrontal cortex (Figure 5B), NLGN4Y ranks 
the first in terms of the mean shortest distance to the 5 key 
drivers. NLGN4Y encodes a protein involved in synaptic 
adhesion in neurons, and its expression level is the highest 
in prostate and followed by neuronal system according to 
two tissue gene expression studies [41, 42] (Figure 5C and 
5D).

Lower expression of NLGN4Y is associated with 
higher grade PCa and higher risk for BCR

NLGN4Y expression is significantly lower in tumor 
tissues compared to the normal tissues in the TCGA dataset 
(Figure 6A, p-value=2×10-13). NLGN4Y expression is also 
lower in high grade tumors (Gleason score >8) compared 
to lower grade disease (Gleason score <=8) with borderline 
significance (Figure 6A, p-value=0.061). Compared with 
NLGN4Y expression in the normal tissues, 20.0% tumor 
samples in the TCGA set expressed significantly lower 
level of NLGN4Y (p<0.01 under the normal distribution 
with mean and standard deviation estimated from the 
normal tissues). The NLGN4Y-low group was associated 

with higher risk for BCR in the TCGA set (Figure 6B, 
HR=1.7 and p=0.054). Since the Taylor dataset doesn’t 
consist of any normal samples, we used the distribution of 
NLGN4Y expression in the TCGA data set as a reference 
for categorizing its expression in the Taylor data set. Given 
the Taylor data containing more patients of lower disease 
grade than those in the TCGA dataset, we assume the 
percentage of NLGN4Y-low patients is less than 20%, the 
percentage in the TCGA dataset. Figure 6C and 6D show 
the survival curves when the percentage cutoff is set to 
be 10% and 20%. In both cases, the NLGN4Y-low group 
was associated with significantly higher risk for BCR 
(HR=3.96 and 2.14, p=0.0011 and 0.045, respectively).

NLGN4Y expression is undetectable in more 
than half of PCa cell lines tested

NLGN4Y is specifically expressed in prostate 
and neuron-related tissues (Figure 5C and 5D). To test 
whether the above association is due to higher tumor 
purity in tumors of higher grade and/or due to NLGN4Y 
expression change in prostate cancer cells, we checked 
NLGN4Y transcript expression by qPCR in a panel of 

Figure 5: NLGN4Y as a common downstream gene (mediator) of the 5 key drivers in the negative BCR network. A. 
The distribution of the average shortest distance to the 5 key drivers. NLGN4Y is among the top 10% of genes closest to the 5 key drivers, 
noted as common downstream genes of the 5 key drivers. B. The number of common downstream genes preferentially expressed in each 
tissue, suggesting that common downstream genes are preferentially expressed in reproductive, muscle, fat, and neuron related tissues. C 
and D. NLGN4Y, which is expressed highest in prostate tissue, is preferentially expressed in neuron-related tissues according to the HPA 
dataset (C) and the GTEX dataset (D).
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benign and malignant prostate cell lines. The probe is 
specific to NLGN4Y and does not detect NLGN4X mRNA, 
which shares 97% sequence homology with NLGN4Y. 
The results show that NLGN4Y is expressed in primary 
normal prostate epithelial cells (hPrEpiC), primary normal 
prostate fibroblast cells (HPrF) and prostatic intraepithelial 
neoplasia cells (PIN), but its transcript could not be 
detected in 8 of 11 cancer cell lines (i.e. VCaP, LNCaP 
104S, MDA-PCa-2b, DU145, PC-3, PC-3M, ARCaPM 
and LNCaP 104R2) (Supplementary Figure S3). Due to 
lack of a NLGN4Y-specific antibody, protein expression 
in these cell lines could not be evaluated. There is no 
association between androgen sensitivity and NLGN4Y 
expression status in these cell lines (p-value=0.85, chi 
square test).

NLGN4Y negatively controls cell proliferation

To further understand the role of NLGN4Y in PCa 
progression, we ectopically expressed the protein in 

NLGN4Y-null PC-3 cells and in LNCaP cells, in which 
low endogenous NLGN4Y mRNA can be detected by 
qPCR at high amplification cycles, but protein expression 
is hardly detectable by western blot (Supplementary 
Figure S4A). Cell lines stably expressing NLGN4Y (PC-
3/N and LNCaP/N) and vector control cells (PC-3/C and 
LNCaP/C) were generated through viral transduction 
followed by puromycin selection. The protein expression 
of exogenous NLGN4Y was confirmed by Western blot 
using an antibody against the DDK tag (Figure 7A) and 
an additional NLGN4 antibody (R&D Systems) which 
recognizes both NLGN4X and NLGN4Y (Figure 7A). 
We derived monoclonal PC-3 cells (namely C9 and 
C15) which express relatively high level of NLGN4Y 
(Supplementary Figure S5A).

PC-3/N cells grow slower than vector control, 
as reflected by significantly decreased colony sizes in a 
clonogenic assay using polyclonal PC-3/N cells (Figure 
7B). Cell proliferation data obtained from monoclonal 
PC-3/N cells (Supplementary Figure S5B) also support 

Figure 6: NLGN4Y is a regulator of BCR. A. Boxplot of NLGN4Y expression in PCa samples with different gleason scores (gs) as 
well as normal prostate samples. B-D. Kaplan-Meier curves of BCR for patients with lower and higher expression of NLGN4Y in the TCGA 
dataset (B) and the Taylor dataset using different splitting of low and high (C and D). P-values were calculated by log rank test.
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Figure 7: Expression of NLGN4Y decreases cell proliferation and pro-inflammatory cytokine expression. A. NLGN4Y 
expression decreased ERK phosphorylation in PC-3 and LNCaP cells. B. NLGN4Y expression decreased colony formation of PC-3 cells. C. 
Treatment of PC-3 cells with decoy receptor NRXN1β/Fc for 1 hour abolished the effect of NLGN4Y expression on ERK phosphorylation. 
D. NLGN4Y expression downregulated pro-inflammatory cytokine expression in PC-3 cells. E. NLGN4Y shRNA upregulated these cytokine 
expression in 22Rv1 cells.
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this observation. Clone C9 and C15 displayed a longer 
doubling time compared to vector control. Because these 
monoclonal cells expressed higher NLGN4Y levels 
than polyclonal cells (Supplementary Figure S5A), 
the inhibitory effect on cell proliferation appears to be 
more pronounced. We next examined the activation of 
the ERK pathway in these cells by Western blot (Figure 
7A). NLGN4Y expression significantly diminished 
phosphorylation of ERK, which is a major cellular 
pathway involved in regulation of cell proliferation. AKT 
phosphorylation was not changed by NLGN4Y; however 
due to the fact that both cell lines harbor PTEN loss, 
the effect of NLGN4Y on AKT pathway remains to be 
further characterized. To further support the observation, 
we knocked down NLGN4Y transcript expression by 80% 
using shRNA in 22Rv1 cells and observed enhanced ERK 
phosphorylation and colony formation (Supplementary 
Figure S6). Thus, NLGN4Y overexpression negatively 
regulates ERK phosphorylation.

NLGNs are characterized as ligands to β-neurexins 
(NRXNs), another group of membrane adhesion proteins 
located in the pre-synaptic neuron [43]. To examine if 
the inhibitory effect of NLGN4Y on ERK is mediated 
through membrane NRXN receptors in prostate cancer 
cells, we treated PC-3 cells with soluble NRXN1β/Fc 
(R&D Systems) which served as a decoy receptor to 
inhibit NLGN4Y binding to membrane NRXNs [44]. We 
found that NLGN4Y overexpression inhibited p-ERK 
in the absence of NRXN1β/Fc; however, this inhibition 
can be relieved by treating PC-3/N cells with increasing 
concentrations of soluble NRXN1β/Fc (Figure 7C). 100 
ng/ml NRXN1β/Fc could almost completely abolish 
the effect of NLGN4Y overexpression on p-ERK, 
suggesting that soluble NRXN1β/Fc could prevent the 
binding of NLGN4Y to membrane bound NRXNs and 
inhibit the effect of NLGN4Y overexpression on ERK 
phosphorylation. In PC-3/C control cells, NRXN1beta/Fc 
showed a slight effect on p-ERK, which could be due to 
the effect of soluble NRXN1β/Fc on other NLGNs (such 
as NLGN2). Similar observation was made in LNCaP 
cells (Supplementary Figure S4). But the details of this 
interaction remain to be further elucidated.

Previously, inflammatory cytokines such as IL-6 
and IL-8 have been reported to stimulate the growth of 
prostate cancer cells, especially androgen-independent 
prostate cancer cells [45–49]. To understand if NLGN4Y 
regulates cell proliferation by altering the expression of 
these cytokines, we examined the expression of several 
cytokines by qPCR and found that mRNA of IL-6, IL-
8, GM-CSF and several other inflammatory cytokines 
were significantly downregulated in PC-3/N cells 
(Figure 7D). Since LNCaP cells have very low levels 
of endogenous IL-6 and IL8 expression, the negative 
effect of NLGN4Y on the cytokine expression could 
not be assessed accurately. However, when we knocked 
down NLGN4Y in 22Rv1 cells, the mRNA levels of these 

cytokines were upregulated to differing extents, with 
IL-6 and IL-8 displaying the most significant changes 
(Figure 7E). The results altogether show that NLGN4Y 
is involved in the regulation of inflammatory cytokine 
expression. In addition, we also found that the expression 
of several neurotropic factors was regulated by NLGN4Y 
(Supplementary Figure S7), the impact of which on these 
prostate cancer cells is unknown.

NLGN4Y expression decreased cell migration 
through modifying small Rho GTPase activities

Since NLGN4Y is a well-known membrane protein 
involved in synaptic membrane adhesion [43, 44, 50], 
we speculated that it may also play roles in cancer cell 
adhesion and mobility. Indeed, we observed that PC-
3/N cells displayed abnormalities in cell attachment. 
While control cells appeared flat and well-attached 24 
hours after seeding, >50% of PC-3/N cells were still 
round, loosely attached to culture vessel and displayed 
extensive membrane blebs (Figure 8A and 8B). Forty-
eight hours after seeding, ~80% PC-3/N cells eventually 
appeared fully attached and the remaining cells were 
still showing membrane blebbing. The monoclonal 
cells C9 and C15, which expressed higher levels of 
NLGN4Y (Supplementary Figure S5A), spent longer in 
cell attachment (Supplementary Figure S8A). Even 48 
hours after seeding, >50% of cells were still in the stage 
of membrane blebbing. Membrane blebbing is an early 
step in cell attachment but is also observed in multiple 
cellular processes including early apoptosis [51, 52], 
we ruled out the possibility that cells were undergoing 
apoptosis by negative results in an annexin-V/PI apoptosis 
assay (data not shown). It is more likely that PC3/N cells 
display a prolonged membrane blebbing stage during cell 
attachment.

Although membrane blebbing has been associated 
with various conditions of cells, i.e. apoptosis, cytokinesis, 
cell spreading viral infection and cell motility [51, 52], 
activation of Rho-GTPase underlies virtually all types 
of membrane blebbing [52–55]. To further examine 
if NLGN4Y-induced extensive membrane blebbing is 
mediated through abnormal small Rho GTPase activity, we 
performed small Rho GTPase assays. The result showed 
that PC-3/N cells had elevated RhoA and Rac1 activity 
but unchanged Cdc42 activity (Figure 8C), suggesting that 
a disturbance in small GTPase activities may contribute 
to the prolonged membrane blebbing stage during cell 
attachment.

The small Rho-GTPase proteins, Cdc42, Rac and 
Rho, coordinate cell migration by regulating cytoskeletal 
reorganization [52]. We next examined the distribution 
of filamentous (F) actin using phalloidin-rhodamine 
staining in these cells. In PC-3/C cells, actin was highly 
polymerized into stress fibers and well-defined filopodia 
and lamellipodia (Figure 8D). However, in PC-3/N cells, 
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Figure 8: Expression of NLGN4Y in PC-3 leads to changes in cell morphology, cell motility and small Rho GTPase 
activities. A and B. NLGN4Y expression induced prolonged membrane blebbing stage during attachment to culture vessel. C. NLGN4Y 
expression caused changes in small Rho GTPase activities. D. NLGN4Y expression induced abnormal F-actin organization as shown by 
phalloidin-rhodamine staining. E. NLGN4Y expression significantly decreased cell migration in a transwell migration assay using serum as 
a chemo-attractant. *: p<0.05; **: p<0.01 and ***: p<0.001.
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few stress fibers or lamellipodia were observed and the 
number of filopodia was dramatically decreased (Figure 
8D and Supplementary Figure S8B). Instead, actin 
staining was prominent around the plasma membrane to 
form extensive membrane blebs, altogether suggesting 
NLGN4Y expression induced abnormal F-actin 
organization.

Abnormal cytoskeleton organization often have a 
negative impact on cell motility [51]. We next performed 
a transwell migration assay to examine whether abnormal 
cytoskeleton organization was accompanied by any 
defect in cell migration. The migration was assessed in 
the absence and presence of FBS. In FBS-free condition, 
random cell movement was measured. In FBS-containing 
condition, chemoattractant stimulated directional cell 
migration was measured. PC-3/N cells showed slightly 
decreased random cell movement in the absence of FBS; 
however directional cell migration induced by FBS was 
significantly down by ~50% in PC-3/N cells compared 
to PC-3/C (p-value<0.001), indicating that NLGN4Y 
overexpression negatively impacted prostate cancer cell 
migration (Figure 8E). The same result was obtained for 
the monoclonal C9 and C15 cells in a wound healing assay 
(Supplementary Figure S8C).

In summary, overexpression of NLGN4Y 
upregulated RhoA and Rac1 activities, which lead 
to abnormal F-actin organization and decreased cell 
migration.

DISCUSSION

In this study, we reconstructed IMBNs by 
integrating gene expression and CNA profiling data 
from two published studies and showed that CNA data 
integration improved IMBN accuracy. The reconstructed 
IMBNs recapitulated the known biology of PCa. We 
constructed subnetworks associated with BCR and 
identified multiple key regulators in the BCR subnetworks, 
such as TPX2, MYLK, FAT4, TNS1, OSMR, TP63, ACSL4, 
and CACHD1. We analyzed the correlations of the 8 key 
regulators with other clinical variables known to have 
prognostic power in Taylor’s dataset, i.e., Gleason score, T 
stage and N stage. As shown in the Supplementary Figures 
S9-S11, all 8 key drivers are significantly correlated 
with N stage, 5 of them are significantly correlated 
with Gleason score and 2 are significantly correlated 
with T stage (F test p<0.05). We then tested the residual 
association between each key driver gene and BCR when 
the above three clinical variables are considered in the 
multivariable cox regression model. 5 of the key drivers 
become insignificant (Wald test p>0.1), likely due to their 
correlation with the three clinical variables or insufficient 
power for multi-variable analysis given the sample size. 
However, 3 of them remain significant or marginally 
significant, i.e., OSMR (p=0.026), TP63 (p=0.028) and 
CACHD1 (p=0.081), suggesting they carry additional 

prognostic power. We note that the main purpose of this 
study is not to find genes carrying prognostic power, 
but more to understand the biological mechanisms and 
pathways underlying prostate cancer progression.

Literature and previous studies highlight the 
potential pathways through which the 8 key regulators 
affect cancer progression. TPX2 is a microtubule 
associated protein, which is required in forming mitotic 
spindles during cell cycle. The TPX2 subnetwork (Figure 
3) significantly enriched for the biological process G2M 
checkpoint (Fisher’s exact test = × −p 3.1 10 ).42  TPX2 
overexpression is a biomarker of poor prognosis in 
brain, breast, colorectal, and lung cancers [56]. TPX2 
knockdown reduced prostate-specific antigen (PSA) 
expression in PCa cell lines, indicating that TPX2 
regulates AR signaling in PCa [57], and induced cell cycle 
arrest, apoptosis, and the inhibition of cell proliferation 
and invasion in multiple other cancers [58, 59]. MYLK 
(also known as MLCK), myosin light chain kinase, is the 
top key regulator for the negative BCR subnetwork. It is 
shown as the best discriminator for prostate cancer [60]. 
MYLK subnetwork (Figure 4) is significantly enriched 
for genes involved in the pathways myogenesis and 
epithelial-mesenchymal transition (Fisher’s exact test 
p= 3.2 10 8× −  and 7.5 10 ,4× −  respectively). MYLK is 
down-regulated by androgens in human prostate cancer 
cells [61], and acts as a central mediator of migration, 
proliferation and invasion of prostatic adenocarcinoma 
cell line [62]. FAT4, a member of the protocadherin family, 
plays a role in regulating planar cell polarity and inhibit 
neuroprogenitor cell proliferation and differentiation. 
FAT4 subnetwork (Figure 4) is enriched for the biological 
process epithelial-mesenchymal transition (Fisher’s 
exact test p 1.6 10 ).8= × −  FAT4 is identified as a tumor 
suppressor gene in breast cancer [63], and lung cancer 
only in males [64]. The TNS1 subnetwork (Figure 4) is 
enriched for the biological pathway, myogenesis (Fisher’s 
exact test × −4.9 10 13). TNS1 encodes tensin 1, which 
localizes to focal adhesion and acts as a tumor suppressor 
in PCa [65]. Expression of TNS1 decreased the migration 
and invasion of triple-negative breast cancer cells [66]. 
OSMR, oncostatin M receptor, is a member of the type I 
cytokine receptor family. The OSMR subnetwork (Figure 
4) is enriched for the biological process TNF signaling 
via NFKB (Fisher’s exact Test p 4.1 10 ).20= × −  OSMR 
forms a heterodimer with IL6ST and plays a role in PCa 
progression [67]. TP63 is a member of the p53 family of 
transcription factors. The TP63 subnetwork (Figure 4) is 
enriched for genes involved in apical junction (Fisher’s 
exact test × −1.3 10 4). Low expression of TP63 is associated 
with PCa progression [68, 69]. ACSL4 is an isozyme of 
the long-chain fatty-acid-coenzyme A ligase family. The 
ACSL4 subnetwork (Figure 4) is not enriched for any 
hallmark biological process. CACHD1’s function is not 
clear. Mouse homolog Cachd1 is predicted to involve 
in the biological process establishment of localization. 
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The CADHD1 subnetwork (Figure 4) is enriched for the 
biological process forming apical surface (Fisher’s exact 
test p 6.8 10 ),4= × −  consistent with its predicted function 
in mouse.

To further validate the constructed BCR sub-
networks in their involvement in BCR, we analyzed 
a third independent dataset [70]. The dataset contains 
281 cases from the population-based Swedish-Watchful 
Waiting cohort. The cohort consists of men with localized 
prostate cancer (clinical stage T1-T2, Mx, N0), which are 
quite different from patient characteristics in the TCGA 
or Taylor datasets. Their gene panel only contains 6100 
genes. Despite the obvious differences, we observed 
significant overlap of BCR genes in this dataset and our 
BCR network. For instance, among the total 6100 genes 
profiled, 6.7% (412) are negatively correlated with BCR 
in this dataset (p<0.05). If focused on genes within our 

negative BCR sub-networks, 16.1% are negatively 
correlated with BCR (Odds Ratio=3.3, p= 1 10 ).21× −  The 
percentage further increases to 25.7% (Odds Ratio =5.0, 
p= 7 10 )10× −  when only common downstream genes of the 
key regulators are considered.

We further showed that key regulators for biological 
processes myogenesis and epithelial-mesenchymal 
transition regulated a common set of downstream genes 
and identified NLGN4Y, a gene highly expressed in 
neurons, as a novel regulator of biochemical recurrence of 
prostate cancer. NLGN4Y expression is lost in more than 
half of the PCa cell lines examined, while restoration of 
NLGN4Y led to decrease in cell proliferation, inflammatory 
cytokine expression and cell migration (Figure 9). Our 
analysis showed that lower expression of NLGN4Y is 
associated with higher risk for BCR in both TCGA and 
Taylor datasets. Our studies also suggest that NLGN4Y 

Figure 9: A model to illustrate NLGN4Y signaling in prostate cancer cells. NLGN4Y binds to membrane-bound NRXNs to 
regulated small Rho-GTPase activities, inflammatory cytokine expression and ERK phosphorylation. Soluble NRXN/Fc blocks to the 
binding of NLGN4Y to membrane NRXN, thus inhibiting NLGN4Y signaling. Currently, it is not known if NLGN4Y downregulates 
ERK phosphorylation directly and/or indirectly through controlling inflammatory cytokine expression (eg. IL-6 and IL-8). NLGN4Y 
expression elevates RhoA-GTPase and Rac1-GTPase activities, which cause abnormal in F-actin organization and subsequently decrease 
cell migration.
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may negatively impact PCa metastasis potential through 
regulating cytoskeleton organization and cell migration; 
thus it is a novel mediator of PCa prognosis.

NLGNs are a family of transmembrane adhesion 
proteins expressed in the postsynaptic neurons [71]. They 
are characterized as ligands to β-neurexins (NRXNs), 
another group of membrane adhesion proteins located in 
the pre-synaptic neuron. The interaction between NLGNs 
and NRXNs is essential for stabilization of synaptic 
contacts and vesicle clustering and maturation [43]. In our 
study, addition of soluble NRXN1β as a decoy receptor 
abolished the effect of NLGN4Y expression on ERK, 
indicating that the effect of NLGN4Y is mediated at least 
through NRXN1β. So far, there are 5 NLGN genes and 
3 NRXN genes identified in human. Each gene product 
has overlapping as well as unique influences on synaptic 
transmission [72]. Our study demonstrated an initial 
link between a synaptic adhesion protein expression and 
prostate cancer recurrence. In future study, the role of and 
complicated interaction of these NLGNs and NRXNs in 
prostate and other cancer remain to be illustrated.

Inflammatory cytokines such as IL-6 and IL-8 have 
been reported to stimulate the growth of prostate cancer 
cells especially androgen-independent prostate cancer 
cells [45–49]. Our study showed that NLGN4Y knockdown 
by shRNA significantly upregulated several important 
pro-inflammatory cytokine expression in 22Rv1 cells, 
whereas restoration of NLGN4Y expression in PC3 cells 
dramatically downregulated them. Thus NLGN4Y will 
have a negative effect on ERK signaling indirectly through 
downregulation of IL-6 and IL-8 production (Figure 9). 
It remains unknown if NLGN4Y will direct regulated 
ERK signaling independent of IL-6 and IL-8 production. 
In addition to its role in controlling cell growth and 
motility, loss of NLGN4Y expression in cancer cells may 
lead to a more inflammatory tumor microenvironment. 
The upregulated cytokines may modify host immune 
response and activate angiogenic programs to promote 
cancer progression [73, 74]. To date, the pathways leading 
to decreased cytokine upregulation by NLGN4Y remain 
unknown.

Restoration of NLGN4Y expression in PC-3 cells 
rendered prolonged membrane blebbing during cell 
attachment. Although membrane blebbing has been 
associated with various conditions of cells, i.e. apoptosis, 
cytokinesis, cell spreading viral infection and cell motility 
[51, 52], activation of Rho-GTP and its effector kinase 
ROCK underlies virtually all types of membrane blebbing 
[52–55]. Our observation that NLGN4Y expression 
altered Rho GTPase activities and subsequently caused 
extensive membrane blebbing is consistent with reports 
in the literature. Our study is the first to link NLGN4Y 
to the regulation of Rho GTPase activity. Whether the 
same interaction exists in neurons remains an interesting 
question. Given the pivotal role of Rho in regulating 

axonal outgrowth and cell migration during neural 
development [75–78], it is likely that NLGN4Y also 
regulates neuron migration and growth in a Rho-dependent 
way.

NLGNs and NRXNs are well-characterized 
synaptic cell adhesion molecules [43]. Mutations in 
these genes are associated with cognitive diseases such 
as schizophrenia and autism spectrum disorders [43, 79]. 
However, the function of NLGNs outside of the nervous 
system has been rarely described. Bottos et al reported 
that NRXNs and NLGNs are produced and processed by 
endothelial and vascular smooth muscle cells throughout 
the vasculature [80]. NLGN4 mRNA is found with the 
highest relative expression in heart tissue with lower 
expression levels detected in liver, skeletal muscle 
and pancreas [81]. This widespread tissue expression 
indicates potential novel functions of this synaptic protein 
outside of the CNS. NLGN4Y is not the only neuron-
derived protein that plays a role in cancer. Plexin B1, the 
cellular receptor for semaphorins [a family of soluble and 
membrane associated proteins that play a critical role in 
axonal guidance [82]], is often mutated or overexpressed 
in primary and metastatic PCa [83]. The mutations hinder 
Rac and R-Ras binding and R-RasGAP activity, resulting 
in an increase in cell motility, invasion, adhesion, and 
lamellipodia extension. The roles these neuron-derived 
proteins play in PCa remain an interesting question. PCa 
is well-known for the importance of perineural invasion, a 
phenomenon of cancer spreading to the space surrounding 
a nerve [84, 85]. The prostate is densely innervated with 
hypogastric and pelvic nerves that plays an important 
role in regulating the growth and function of the prostate 
gland [86]. Being a common component of the tumor 
microenvironment, nerves and nerve-derived substances 
may actively participate in normal, benign and malignant 
PCa growth. Studies have shown that autonomic nerve 
development may contribute to PCa progression [87]. 
Chemical or surgical sympathectomy inhibited prostate 
tumorigenesis in animal models. In our study, several 
neurotropic factors were negatively regulated by NLGN4Y 
(Supplementary Figure S7). Thus, it remains an interesting 
question whether NLGN4Y loss has any effect on the 
surrounding nerves in PCa and how this interaction will 
impact tumor progression in vivo.

In summary, our preliminary studies in vitro 
support the role of NLGN4Y as a negative regulator 
of PCa progression. However, we recognize that there 
are limitations of cell line models which are incapable 
of recapitulating complicated tumor-host interactions. 
NLGN4Y may display a more profound role of regulating 
immune response and nerve cell activity by controlling 
inflammatory cytokine and neurotropic factor expression. 
Ultimately, these possibilities remain to be revealed in 
vivo.



Oncotarget68703www.impactjournals.com/oncotarget

MATERIALS AND METHODS

Constructing IMBNs for prostate cancer by 
integrating gene expression and CNA data

Two prostate cancer data sets were used in the study, 
the TCGA prostate adenocarcinoma (PRAD) study [15] 
and Taylor prostate cancer study [21]. For the TCGA 
PRAD dataset, the gene expression and gene-based CNA 
data were downloaded from the TCGA data portal (https://
tcga-data.nci.nih.gov/tcga/). For the Taylor dataset, gene 
expression and CNA data were downloaded from the 
GEO repository with accession numbers GSE21034 and 
GSE21035. Please see Supplemental Data for detailed 
network construction and analysis.

Cell culture and reagents

The human PCa cell lines LNCaP FGC, PC-3, 
DU145 and MDA-PCa-2b were acquired from ATCC. 
PC3M and PIN cells were obtained from Dr. Goutham 
Narla (Mount Sinai School of Medicine, NY). 22Rv1 and 
LAPC-4 cell lines were obtained from Dr. Liying Zhang 
(Memorial Sloan-Kettering Cancer Center, NY). LNCaP 
104S and 104R2 cell lines were provided by Dr. Shutsung 
Liao (Univ. of Chicago, IL). ARCaPM cell line was a gift 
from Dr. Josep Domingo-Domenech (Mount Sinai School 
of Medicine, NY). Human normal prostate epithelial 
cells (HPrEpiC) and human prostate stromal fibroblasts 
(HPrF) were purchased from the ScienCell and cultured 
in the Fibroblast Medium (ScienCell). All cell lines were 
maintained in complete growth medium with Pen-Strep 
Solution (Gemini Bio-Products) in a humidified incubator 
with 5% CO2 at 37°C. P-ERK, t-ERK, p-AKT and t-AKT 
antibodies were obtained from Cell Signaling Technology 
and actin antibody was purchased from Sigma. DDK 
antibody is from Origene and NLGN4 antibody is from 
R&D Systems.

We obtained the NLGN4Y cDNA with a DDK tag 
from OriGene Technology (Rockville, MD) and then fully 
sequenced the gene insert. DDK-tagged NLGN4Y cDNA 
was subcloned into pBabe-puro retroviral vector through 
BamHI and ECoR1 sites using PCR primers (NLGN4Y-F: 
TCGTCGACTGGATCCGGTA; NLGN4Y-R-ECORI: 
gaGAATTC GTTTAAACCTTATCGTCGTCATCC). 
Vector control cell lines (PC-3/C and LNCaP/C) and 
NLGN4Y expressing cells (PC-3/N and LNCaP/N) cells 
were generated by retroviral transduction followed by 
puromycin selection (1 μg/ml for PC-3 cells, and 4 μg/ml 
for LNCaP cells).

Realtime qRT-PCR analysis

Total cellular RNA was isolated by Trizol reagent 
(Life Technologies) and then used for cDNA synthesis 
by Superscript III platinum one-step qPCR kit (Life 

Technologies). Quantitative PCR analysis of mRNA 
expression was performed with inventory Taqman gene 
expression assays on ViiA7 realtime PCR instrument 
(Life Technologies). The gene expression levels were 
normalized to endogenous control RPLP0.

Immunoblotting

Cellular protein was harvested by lysing cells in 
RIPA lysis buffer containing protease inhibitor cocktail 
(Thermo Scientific), followed by centrifugation at full 
speed to collect the supernatant. The harvested protein 
was separated by SDS-polyacrylamide gel electrophoresis 
and transferred to Immobilon-P membranes (Millipore). 
Membranes were blocked with 5% nonfat milk or BSA 
in TBST buffer and incubated with the corresponding 
primary and secondary antibodies. Protein signals were 
visualized by Supersignal® West Pico Luminol/Enhancer 
Solution (Thermo Scientific).

F-actin staining and confocal imaging

Cells grown in Millicell® EZ SLIDES were 
fixed in 4% paraformaldehyde solution for 10 min at 
room temperature (RT) and then incubated in blocking/
permeabilizing solution (5% BSA and 0.5% Triton X-100 
in PBS) for 30 min at RT. Cells then were stained with 
phalloidin-rhodamine (Cytoskeleton) for 30 min according 
to manufacturer instruction at RT. After washing three 
times with PBS, slides were mounted in DAPI-containing 
Vectashield® mounting medium (Vector Laboratoryies, 
Inc., Burlingames, CA). Digital images were obtained 
with a Leica SP5 DMI inverted confocal microscope.

Clonogenic assay

2000 cells were seeded evenly into 6-well cell 
culture plate in triplicates. After 10-14 days of incubation, 
cells were fixed with 10% formalin and stained with 
0.005% crystal violet for 1 hour. Digital pictures were 
taken and the colony number, size and area of the colonies 
were analyzed with ImageJ software.

Cell counting

Five random images of cells were taken under 
microscope from control and NLGN4Y overexpressed 
PC-3 cells. The numbers of flattened and unflattened 
cells were counted manually and the percentages were 
calculated.

Small Rho GTPase assays

PC-3/N and PC-3/C cells were grown in 10-cm cell 
culture dishes in serum free medium. Total protein was 
harvested using RIPA lysis buffer containing protease 
inhibitor cocktail. The small Rho GTPase pull down 
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assays were performed using active Rho detection kit 
(Cell Signaling Technologies), active Rac1 pull-down and 
detection kit and active Cdc42 pull-down and detection 
kit (Thermo Fisher Scientific) according to manufacturer 
instructions.

Migration assay

Cell migration assay was performed using Corning 
96-well transwell insert with 8 μm pores according to 
manufacturer provided protocol. Transwell insert was not 
coated with any base membrane extract in the migration 
assay. Briefly, PC-3 cells were serum starved overnight and 
5x104 cells were seeded into the transwell insert containing 
serum free medium in 5 repeats. The transwell culture insert 
containing cells was then placed on top of a receiver plate 
containing complete cell culture medium with 10% FBS 
for 16-17 hours to allow cells to migrate to the receiver 
plate side. The cells migrated to the bottom of the transwell 
insert were dissociated from the insert into receiver plate 
by cell dissociation solution and stained with Calcium AM 
fluorescent dye. The fluorescent reading of the receiver 
plate was obtained on a SpectraMax Me microplate reader. 
The fluorescent reading of PC-3/C cells were set as 100%.
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