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ABSTRACT
Heme oxygenase (HO) isoforms catalyze the conversion of heme to carbon 

monoxide (CO) and biliverdin with a concurrent release of iron, which can drive the 
synthesis of ferritin for iron sequestration. Most of the studies so far were directed at 
evaluating the protective effect of these enzymes because of their ability to generate 
antioxidant and antiapoptotic molecules such as CO and bilirubin. Recent evidences 
are suggesting that HO may possess other important physiological functions, which 
are not related to its enzymatic activity and for which we would like to introduce 
for the first time the term “non canonical functions”. Recent evidence suggest that 
both HO isoforms may form protein-protein interactions (i.e. cytochrome P450, 
adiponectin, CD91) thus serving as chaperone-like protein. In addition, truncated 
HO-1 isoform was localized in the nuclear compartment under certain experimental 
conditions (i.e. excitotoxicity, hypoxia) regulating the activity of important nuclear 
transcription factors (i.e. Nrf2) and DNA repair. In the present review, we discuss 
three potential signaling mechanisms that we refer to as the non-canonical functions 
of the HO isoforms: protein-protein interaction, intracellular compartmentalization, 
and extracellular secretion. The aim of the present review is to describe each of this 
mechanism and all the aspects warranting additional studies in order to unravel all 
the functions of the HO system.

INTRODUCTION

Heme oxygenases catalyze the degradation 
of heme into biliverdin, carbon monoxide (CO) and 
ferric iron [1-5] (Figure 1A). Heme functions as the 
prosthetic group in hemoproteins, e.g., nitric oxide 
synthase, cyclooxygenases, soluble guanylate cyclase, 
cytochrome P450, peroxidase, and catalase and since HO 
is the sole physiological pathway of heme degradation. 
It consequently plays a critical role in the regulation of 
cellular heme-dependent enzyme levels [6-10] (Figure 
1B). To date, two HO isoforms have been shown to be 
catalytically active in heme degradation and each is 
encoded by a different gene [2, 11]. HO-1 is expressed 

at low levels under basal conditions and it is induced by 
polyphenols [12-18], statins [19], metals [20-23] and a 
variety of stimuli such as inflammation, oxidative stress, 
hyperoxia, hypoxia and trauma [24-30]. Such upregulation 
represents an intrinsic defense mechanism to maintain 
cellular homeostasis and enhance cell survival [31-34]. In 
particular, HO-1 is considered to play a major role as an 
essential survival factor, protecting against chemotherapy-
induced reactive oxygen species (ROS) increase [27, 35-
39]. Most of the studies so far were directed at evaluating 
the protective effect of these enzymes because of their 
ability to generate antioxidant and antiapoptotic molecules 
such as CO and bilirubin [40-47]. In contrast, HO-2 is 
responsible for the most HO constitutive activity [48-
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51]. Interestingly, recent evidence suggests that HO may 
possess other important physiological functions, which 
are not related to its enzymatic activity and for which we 
would like to introduce for the first time the term “non 
canonical functions” (Figure 2). In particular, we discuss 
three potential signaling mechanisms that we refer to as 
the non-canonical functions of the HO isoforms: protein-
protein interaction, intracellular compartmentalization, 
and extracellular secretion. The aim of the present review 
is to describe each of this mechanism and the aspects 
warranting additional studies in order to unravel all the 
functions of the HO system.

PROTEIN-PROTEIN INTERACTION

The first paper reporting the possibility that HO 
isoforms may form protein-protein interaction was 
suggested in the elegant description of HO-1 purification 
where a 68-kDa protein was identified [4]. It is now known 
that the molecular mass of HO-1 is 32 and HO-2 36 kDa. 
Therefore, it is conceivable that a complex of the two 
proteins was initially isolated under partially denaturing 
conditions. On the basis of this simple observation, 

Weng Y. et al [52] showed an interaction between HO-2 
and HO-2 and demonstrated the effect of the HO-1/
HO-2 protein complex on HO activity. The authors 
elegantly concluded that this interaction serves to limit 
HO activity in certain tissues where the two co-enzymes 
co-localize and such negative regulation of HO activity 
may be important to ensure a cytoprotective range of HO 
expression. However this intriguing evidence and possible 
non-canonical functions of HO isoforms remained 
unexplored for several years until when our research group 
was able to demonstrate the presence of HO-1 isoform in 
the extracellular compartment (i.e. human milk) [53]. The 
presence of the protein in such biological fluid was not 
particularly surprising given the apocrine nature of the 
mammary gland. However, since the enzymatic activity 
was undetectable in human milk, we were wondering on 
the possible biological significance of such protein in the 
extracellular compartment. To this regard, basing on the 
HO-1 amino acidic sequence homologies with Hsp70, we 
identified CD91 as a possible interactor of HO-1 in the 
extracellular space. To this regard, PatchDock molecular 
docking algorithm and FireDock analysis showed that the 
charged and polar residues observed on HO-1 are Glu63, 
Tyr78, Glu81, Glu82, His84, Lys86, Glu90, Gln91 and 

Figure 1: A. Schematic representation of enzymatic reaction catalyzed by HO isoforms and B. mechanism of heme dependent protein 
regulation.
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Gln102. The charged and polar residues observed on 
CD91 in the region are Arg571, Thr576, Thr536, Arg553, 
Trp556 and Ser565. Hydrogen bond interactions were 
observed between Glu90 and Gly571, between Glu63 and 
Thr576, and between Gln102 and Thr536. Furthermore, 
hydrophobic-hydrophobic interactions were observed 
between Tyr55, Val59 (HO-1) and Val535 (CD91). Salt 
bridges were also observed between Lys177 (HO-1) and 
Glu332 (CD91) outside of this region. Our successive 
studies also showed the possibility to form protein-protein 
interaction also for the HO-2 isoform. In particular, this 
observation derived again from a casual observation 
of HO-2 -/- animals exhibiting a metabolic syndrome 
phenotype and reduced circulating levels of adiponectin 
[54]. Our data showed that pharmacological upregulation 
of HO-1 rescued such phenotype and restored adiponectin 
levels. This adipokyne is formed in the endoplasmic 
reticulum and requires specific chaperone activity in 
order to maturate and be secreted in the extracellular 
space in its active form [55]. Given the endoplasmic 
reticulum localization of HO-2 and the possibility that it 
may form protein-protein interaction with other proteins 
we decided to test the hypothesis that HO-2 may serve 
as a chaperone for physiological secretion of adiponectin 
from the endoplasmic reticulum. In particular, our in silico 

analysis showed two hypothetical symmetrical binding 
regions making contact with two different regions of 
adiponectin were identified. Multiple structural motifs 
appear to be involved in both the recognition and binding 
process between HO-2 and adiponectin. In particular, 
an extended and structured area of 13 amino acids (a.a. 
235-247) in HO-2 seems to interact with a specific 
sequence of adiponectin (a.a. 238-246). Interestingly one 
single Arginine residue on the HO was found in the two 
hypothetical contact regions. These results were further 
validated in vivo by using the Bacteriomatch two-hybrid 
system.

Similar results were also obtained for HO-2 isoform 
by Spencer AL et al. [56] by Fluorescence Resonance 
Energy Transfer. In particular, the authors showed that 
this protein may form a protein-protein interaction with 
cytochrome P450 reductase leading to the formation of a 
dynamic ensemble of complex(es) that precede formation 
of the productive electron transfer complex. Finally, 
Williams SE et al showed that HO-2 is part of the calcium-
sensitive potassium (BK) channels complex and enhances 
channel activity in normoxia [57]. In particular, the 
authors showed that inhibition of BK channels by hypoxia 
was dependent on HO-2 expression and was augmented 
by HO-2 stimulation.

Figure 2: A. Canonical and non-canonical B. functions of the HO isoforms at a glance and possible biological significance of their 
byproducts.
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INTRACELLULAR COMPARTMENTA-
LIZATION OF HEME OXYGENASES

As above mentioned the HO isoforms were 
identified and localized in the endoplasmic reticulum 
where they exert their enzymatic function. However, 
later studies were devoted at investigating the subcellular 
compartmentalization of these two isoforms [58]. As far as 
concerning the HO-2 isoform, no studies so far identified 
the presence of this enzyme in other cellular compartment 
rather than the endoplasmic reticulum. On the contrary, 
HO-1 isoform was found to be compartmentalized 
(i.e. nuclei, mitochondria, caveolae) intracellularly 
under various experimental conditions and different 
cell types. The most studied and fascinating aspects 
of the non-canonical functions of HO-1 are related to 
nuclear translocation. Such possibility is substantiated 
by bioinformatic analysis demonstrating the nuclear 
import sequence into the amino acidic sequence of HO-1 
(Figure 3A-3D). Successive studies demonstrated nuclear 
translocation under various experimental conditions. 
In particular, Suttner DM et al. [59] showed that HO-1 
migrated into the nuclear compartment following oxygen 
toxicity in lung cells and such translocation may account 
for the regulation of cytoprotective pathways. Similarly, 
we also demonstrated that excitotoxic injury leads to 
a significant increase of HO-1 protein expression in 
primary astroglial cell cultures and a concomitant nuclear 
translocation of this protein [60]. However, at that time 
we were not able to identify any possible role of nuclear 
HO-1 and we proposed only that nuclear HO-1 may 
still possess the ability to bind heme and may therefore 
serve as a regulator of heme dependent transcription 

factor [61]. Since then, several other reports evaluated 
the presence of HO-1 into the nuclear compartment. In 
particular, Lin Q et al [62] elegantly showed that HO-1 
translocate into the nuclear compartment under hypoxic 
condition and this is associated with increased activation 
of antioxidant responsive promoter and activation of 
transcription factors such as AP-1 and NFkB which are 
also known transcription factors of HO-1 itself [63-65] 
(Figure 4). These results were also confirmed by the 
same group in a transgenic animal model of lung injury 
following hyperoxia [66] in which the authors showed 
that nuclear translocation overexpression inhibits repair 
from hyperoxic lung injury by inhibiting DNA repair, 
which may predispose the lung to later malignant 
transformation. Consistently with these data, our docking 
analysis showed that HO-1 might interact with p65 
subunit of NFkB (Figure 5). According to simulations 
p65 interacting surface seems not to involve DNA binding 
domains suggesting that the inhibitory control may be 
exerted by allosteric control. Successive reports showed 
that nuclear localization of HO-1 was associated with 
cancer stadiation or chemoresistance. As far as concern 
clinical stadiation of cancer, Gandini NA et al [67] showed 
that nuclear HO-1 increases with tumor progression in a 
mouse model of squamous cell carcinoma and in human 
head and neck squamous cell carcinoma. Interestingly, the 
same authors showed that no association of HO-1 nuclear 
localization with glioblastoma patients survival was 
detected [68] thus suggesting that nuclear translocation of 
this protein occurs only under certain specific pathological 
conditions. Consistently with these results Wegiel B et 
al. [69] also showed that nuclear HO-1 exhibits reduced 
enzymatic activity and correlates with poorer prognosis 

Figure 3: A. 3D structure of HO-1 (Structural Biology Knowledgebase: 3TGM, UniProtKB AC: P09601). In red the predicted monopartite 
Nuclear Localization Signal (NLS) and in yellow the predicted bipartite NLS. Molecular graphics and analyses were performed with the 
ChimeraX package; B. Amino acid sequence of HO-1 (GenBank: CAG30391.1); C. Prediction of monopartite NLSs specific of HMOX1 
(cNLS Mapper tool); D. Prediction of bipartite NLSs of HMOX1 (cNLS Mapper tool).



Oncotarget69079www.impactjournals.com/oncotarget

in prostate cancer. As far as concern chemoresistance our 
research group showed that nuclear translocation confers 
resistance to imatinib in chronic myeloid leukemia cells 
[70]. Interestingly, we showed that inhibition of nuclear 
HO-1 translocation by E64d, a cysteine protease inhibitor, 
restores sensitivity to imatinib, whereas HO byproducts 
CO or bilirubin had no effects. Similarly, we have recently 
shown that HO-1 nuclear translocation is also associated 
to chemoresistance to Bortezomib, a proteasome inhibitor, 
in various multiple myeloma cell lines [71]. Interestingly, 
we showed that nuclear translocation of HO-1 was 
associated to genetic instability thus suggesting that other 
functions, beside interaction with nuclear transcription 
factors, could be associated with nuclear HO-1 (Figure 5). 
Therefore, it becomes of great importance to identify the 
precise mechanisms underlying HO-1 cleavage allowing 
its possible nuclear localization in order to overcome 
chemoresistance. To this regard, the signal peptide 
peptidase (SPP) catalyzes the intramembrane cleavage 
of HO-1 allowing nuclear translocation and promoting 
cancer cell proliferation and invasion independently from 
its enzymatic activity [72]. 

Other subcellular localizations have been 
described for HO-1 and may be related to its non-
canonical functions. In particular, Converso DP et al. 

[73] demonstrated for the first time the localization of 
HO-1 protein in mitochondria suggesting its important 
biological roles in regulating mitochondrial heme protein 
turnover and in protecting against conditions such as 
hypoxia, neurodegenerative diseases, or sepsis, in which 
substantially increased mitochondrial nitric oxide and 
oxidant production have been implicated. Similar results 
were obtained by Slebos DJ et al. [74] showing that HO-1 
localized to mitochondria in a primary culture of human 
small airway epithelial cells following cigarette smoke 
extract exposure. Interestingly, the authors showed that 
such translocation was accompanied by a significant 
increase of the HO mitochondrial activity. These results 
were confirmed by Bindu S et al. [75] showing that 
mitochondrial translocation of HO-1 also resulted in 
time-dependent inhibition of apoptosis during gastric 
mucosal injury following indomethacin treatment. 
The mitochondrial significance of HO-1 was further 
supported by the interesting observations of Bolisetty 
S et al [76], which were able to target specifically renal 
epithelial cell mitochondria with HO-1 protein. In these 
set of experiments the authors showed that specific 
mitochondrially targeted HO-1 under acute pathological 
conditions may have beneficial effects, but the selective 
advantage of long-term expression is constrained by a 

Figure 4: Possible significance of HO-1 nuclear translocation. The proteolytic cleavage allows the translocation of HO-1 into the 
nucleus probably by interaction with importin. In the nucleus HO-1 loses enzyme activity and regulates the transcriptional factors activity 
interacting with p65, AP-1 and Nrf2.
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negative impact on the synthesis of heme-containing 
mitochondrial proteins. This latter observation was 
further confirmed by Bansal L et al [77] showing that cells 
expressing mitochondria targeted HO-1 exhibited higher 
ROS production leading also to increased autophagy and 
reduction of cytochrome c oxidase activity. Finally, HO-1 
was also demonstrated in caveolae, the small flask-shaped 
and detergent insoluble invaginations in plasma membrane 
and are implicated to function in the vesicular transport 
processes and the transduction of receptor generated 
signals. To this regard Jung NH et al. [78] showed that 
HO-1 is localized in caveolae of mouse mesangial cells 
where it may co-localize with important proteins such as 
caveolin-1 and caveolin-2. In addition, Wang XM et al 
showed that such translocation is dependent on p38MAPK 
and it may regulate the interaction between caveolin-1 and 
Toll Like Receptor-4 [79]. 

THE HEME OXYGENASES IN THE 
EXTRACELLULAR SPACE

Several reports evaluated so far the presence of 
HO-1 in extracellular compartments and biological 
fluids thus suggesting that HO-1 may serve as a possible 
biomarker of disease [80, 81] or may play additional 
roles in the extracellular space as a receptor ligand [82]. 
Interestingly, no reports reported the presence of HO-2 
in such compartments thus suggesting that the presence 
of HO-1 is not the results of cell necrosis and passive 

release in extracellular compartments but could be related 
to a still unknown specific mechanism of secretion. In 
the following sections we will therefore evaluate the 
significance only of HO-1 in various biological fluids.

HO-1 in plasma and serum

Most of the reports evaluating the presence of 
HO-1 in extracellular space refer to serum or plasma. In 
particular, Eide IP et al. [83] showed that serum HO-1 
levels were significantly higher among pre-eclampsia 
patients compared to controls supporting the role of 
oxidative stress and excessive maternal inflammatory 
response in the pathogenesis of pre-eclampsia. Other 
clinical studies reported the increase of serum HO-1 under 
other pathological conditions such as Alzheimer disease. 
In particular, Mueller C et al [84] showed that serum HO-1 
among other proteins is increased in Alzheimer’s disease 
and such levels correlated to cognition impairment grade. 
Similarly plasma HO-1 is increased in patients resuscitated 
from out-of-hospital cardiac arrest [85] or suffering from 
peripheral artery disease [80]. These results were further 
confirmed in an animal model of lung injury induced by 
Ischemia/reperfusion [86] in which the authors showed 
increased serum HO-1 during the 3h observation period. 

As far as concern the possible release mechanism(s) 
of HO-1 in serum or plasma, no data are so far available. 
However, it is possible that HO-1 requires proteolytic 

Figure 5: Docking simulation for p65/HO-1 interaction. According to the predicted molecular complex structure, p65 (upper 
structure) and HO-1 (lower structure) binding is defined by and extended surface of molecular complementarity. Interaction surface is 
represented by solid red area while residues involved in protein contacts are represented in blue. The local estimated energy of the binding 
is -31.65 kcal/mol.
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cleavage in order to be secreted. To this regard, Zager 
RA et al. [87] showed that plasma HO-1 is increased in 
patients suffering acute kidney injury and interestingly 
the western blot showed a 16Kda band rather than the 
canonical 32Kda of the full-length protein. Taken all 
together, these data suggest that HO-1 is increased in 
plasma or serum in those all conditions in which oxidative 
stress is increased. Therefore, even though the release of 
HO-1 in the extracellular space may be of some biological 
importance, its possible use as a potential biomarker for 
a particular disease could be limited by its specificity. 
Furthermore, the evidence that liraglutide treatment 
resulted in a significant reduction of plasma HO-1 
levels in type-2 diabetes mellitus patients supports the 
idea that extracellular HO-1 should be considered as an 
active secretory mechanism. Furthermore, the hypothesis 
that plasma HO-1 is the results of an active mechanism 
of secretion and not the consequence of cell necrosis 
is supported by previous work showing that HO-1 is 
increased in patients with acute myocardial infarction 
independently of cell necrosis biomarkers (i.e troponin 
and creatine phosphokinase) [25].

HO-1 in cerebrospinal fluid

Cerebrospinal fluid is often used for the evaluating 
central nervous system specific markers and as a diagnostic 

routine (i.e. multiple sclerosis) [88]. To this regard, the 
biological significance of HO-1 in such biological fluid 
could be of particular interest. To this regard, Schipper 
HM et al [89] showed that HO-1 protein is decreased of 
cerebrospinal fluid of Alzheimer’s disease patients. On the 
contrary, HO-1 is increased in cerebrospinal fluid from 
infants and children after severe traumatic injury [90-
92]. Similarly, a successive study also showed that HO-1 
protein is increased in cerebrospinal fluid in patients with 
Fisher Grade III aneurysmal subarachnoid hemorrhage 
and this may serve also as an effective outcome indicator 
in patients with Fisher Grade III aneurysmal subarachnoid 
hemorrhage [93]. 

Conclusions and future perspectives

Taken all together, the above-mentioned studies 
suggest that the HO system may possess important 
biological functions beyond its enzymatic activity. 
In the present review, we reported what we called 
the non-canonical function of the heme oxygenases. 
Three different effects should be included in such class 
of functions: protein-protein interaction, subcellular 
compartmentalization and secretion into the extracellular 
space. However, several issues are still open and warrant 
future studies. In particular the most important questions 
needing to be addressed are related to the mechanism(s) 

Figure 6: Possible significance and release mechanism of HO-1 in the extracellular space.
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underlying proteolytic cleavage of HO-1 allowing the 
protein to be mobilized from the endoplasmic reticulum. 
Another important aspect requiring further investigation 
regards the extracellular release of the protein. As 
previously discussed, it was reported that the plasma 
HO-1 is cleaved to a 16 KDa fragment. However, 
no mechanisms are reported and even hypothesized 
regarding on how HO-1 is exported in the extracellular 
compartment. In particular, future studies should be 
directed in evaluating the presence of HO-1 in exosomes 
or cellular microvescicles (Figure 6). 
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