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ABSTRACT
Aminoacyl tRNA synthetases (ARSs) are a class of enzymes with well-conserved 

housekeeping functions in cellular translation. Recent evidence suggests that ARS genes 
may participate in a wide array of cellular processes, and may contribute to the pathology 
of autoimmune disease, cancer, and other diseases. Several studies have suggested a 
role for the glutamyl prolyl tRNA synthetase (EPRS) in breast cancers, although none has 
identified any underlying mechanism about how EPRS contributes to carcinogenesis. In 
this study, we identified EPRS as upregulated in estrogen receptor positive (ER+) human 
breast tumors in the TCGA and METABRIC cohorts, with copy number gains in nearly 
50% of samples in both datasets. EPRS expression is associated with reduced overall 
survival in patients with ER+ tumors in TCGA and METABRIC datasets. EPRS expression 
was also associated with reduced distant relapse-free survival in patients treated with 
adjuvant tamoxifen monotherapy for five years, and EPRS-correlated genes were highly 
enriched for genes predictive of a poor response to tamoxifen. We demonstrated the 
necessity of EPRS for proliferation of tamoxifen-resistant ER+ breast cancer, but not 
ER- breast cancer cells. Transcriptomic profiling showed that EPRS regulated cell cycle 
and estrogen response genes. Finally, we constructed a causal gene network based on 
over 2500 ER+ breast tumor samples to build up an EPRS-estrogen signaling pathway. 
EPRS and its regulated estrogenic gene network may offer a promising alternative 
approach to target ER+ breast cancers that are refractory to current anti-estrogens.

INTRODUCTION

ARSs are enzymes that charge tRNAs with their 
cognate amino acids. In higher eukaryotes, however, 
ARSs contain additional domains that allow them 
functions beyond their canonical roles in translation, and 
several studies have reported dysregulation of ARSs and 
their noncanonical functions in disease [1]. It is unclear, 
however, if this dysregulation contributes to or is a 
byproduct of disease-driving processes.

The glutamyl prolyl tRNA synthetase (EPRS) was 
identified as a tumor immunogen in human breast and 
gastrointestinal cancers [2], as well as in spontaneous 

tumors in neu-transgenic mice [3]. Kim et al. identified 
EPRS copy number gains in lung, esophageal, 
hepatocellular, skin and breast cancers tumors [4]. EPRS 
has also been implicated in engrailed 1 (EN1)-mediated 
survival of triple-negative breast cancer cells [5], but 
not in ER+ breast cancers. EPRS protein is comprised of 
N-terminus glutamyl-tRNA synthetase (ERS) domain, a 
C-terminus prolyl-tRNA synthetase (PRS) domain, and 
linker composed of three 50-amino-acid-long WHEP 
domains. While the ERS and PRS domains carry out the 
canonical and functions of EPRS – aminoacylation of 
cognate tRNAs – the WHEP domains have been implicated 
in transcript-specific regulation of translation, particularly 
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of the genes ceruloplasmin and VEGFA [6, 7]. While this 
suggests EPRS may play a role in tumor angiogenesis, a 
functional link between EPRS and angiogenesis has not 
been established in tumors.

In this study, we examined the role of EPRS in the 
pathogenesis of ER+ breast cancers, which comprise over 
70% of breast cancers and which are treated primarily 
with anti-estrogen drugs, such as tamoxifen. We showed 
elevated EPRS transcript levels in ER+ breast cancer 
samples compared to adjacent normal breast tissue, and 
EPRS copy number gain in ER+ breast cancers. EPRS 
expression was associated with reduced overall survival 
in patients with ER+, but not ER- breast cancers and was 
associated with reduced distant relapse-free survival in 
patients treated with tamoxifen adjuvant monotherapy. 
EPRS-correlated transcripts in ER+ breast cancer samples 
were highly enriched for genes predictive of relative 
resistance to tamoxifen, and EPRS inhibition induced a 
G1/S arrest in tamoxifen-resistant MCF7 cells, but not 
in ER- breast cancer cells. Using RNA-sequencing and 
Bayesian network inference, we demonstrated that EPRS 
is a critical regulator of ERα expression and activity. Our 
findings raise the possibility that EPRS inhibition may 
be an alternative approach to suppressing the growth of 
ER+ breast cancers refractory to tamoxifen treatment. 
To our knowledge, we are the first to implicate EPRS in 
ER+ breast cancer and the first to describe an underlying, 
tumor cell-intrinsic mechanism through which EPRS may 
contribute to ER+ breast tumorigenesis.

RESULTS

EPRS is upregulated in ER+ breast cancers and 
is associated with reduced overall survival

We compared expression of ARS genes in ER+ 
tumor and adjacent normal samples in TCGA and 
METABRIC cohorts (Supplementary Figure S1). Twenty-
eight of the 37 genes were differentially expressed in the 
TCGA cohort and 35 in the METABRIC cohorts at an FDR 
cutoff of 0.05 (Supplementary Figure S1). Meta-analysis 
of differential expression in the two cohorts, by summing 
–log10 p-values, identified EPRS as the most significantly 
differentially expressed ARS (TCGA: logFC = 0.39, 
student’s t-test p = 6.70e-14; METABRIC: logFC = 0.80, 
student’s t-test p = 1.04e-87) (Supplementary Figure S1) 
(Figure 1A and 1B). Interestingly, among ER+ tumors, 
EPRS mRNA expression was higher in the relatively more 
endocrine therapy resistant Luminal B tumors compared 
to Luminal A tumors in TCGA (logFC = 0.10, student’s 
t-test p = 0.05) and METABRIC (logFC = 0.10, student’s 
t-test p = 4.78e-05) cohorts (Figure 1A and 1B). EPRS 
expression is additionally upregulated in basal, Her2, and 
normal-like breast tumors (Figure 1A and 1B).

EPRS maps to chromosome 1q41, amplifications of 
which frequently occur in breast cancers [8, 9] and are 

associated with bone metastasis [10]. Single nucleotide 
polymorphisms in 1q41 have been linked in genome-wide 
association studies with increased risk of colorectal cancer 
[11]. Using COSMIC, we identified EPRS copy number 
gains in 68 of 151 (45.0%) ER+ breast cancer samples 
from the TCGA cohort (Figure 1C); EPRS copy number 
gains are present in 672 of 1505 (44.7%) of METABRIC 
ER+ breast cancer samples (Figure 1D). EPRS copy 
number gains may thus partially account for elevated 
EPRS mRNA expression in breast cancers compared 
to adjacent normal breast, and amplifications of 1q41 
involving EPRS may drive a subset of breast cancers. 

EPRS expression has prognostic significance. We 
found elevated EPRS expression to be associated with 
poorer overall survival in patients with ER+ breast cancers 
in both TCGA (KM p = 5.29e-03, Cox p = 1.04e-03; 
HR = 2.07) and METABRIC datasets (KM p = 7.73e-03, 
Cox p = 1.67E-02; HR = 1.23) (Figure 1E). We did not 
observe a significant association between EPRS transcript 
levels and outcomes for patients with ER− breast cancers 
(Figure 1F) in either cohort. Thus, EPRS may play a role 
specifically in promoting ER+ tumor growth and treatment 
sensitivity.

EPRS is associated with tamoxifen resistance

Endocrine therapies, such as the ER antagonist 
tamoxifen, are the mainstays of treatment for patients with 
ER+ breast cancer [12]. Given the prognostic significance 
of EPRS expression for ER+ breast tumors and the relatively 
higher expression of EPRS in Luminal B compared to 
Luminal A tumors, we hypothesized that EPRS expression 
may be associated with reduced sensitivity to endocrine 
therapy. In a cohort of 298 ER+ breast cancer patients 
who were treated with tamoxifen alone for 5 years 
[13], we observed a significant negative association 
between EPRS mRNA expression and recurrence-
free survival (KM = 2.82e-03, Cox p = 9.42e-03;  
HR = 2.08) (Figure 2A). The genes whose expression 
correlates with that of EPRS in TCGA and METABRIC 
ER+ tumor samples are significantly enriched for 
predictors of nonresponse to tamoxifen therapy [13–15]  
(TCGA: corrected FET p = 3.96-16, FE = 3.78; 
METABRIC: corrected FET p = 2.52-06, FE = 3.08) 
(Figure 2B). In the TCGA cohort, the genes anticorrelated 
with EPRS are significantly enriched for genes predictive 
of favorable tumor response to tamoxifen (corrected FET 
p = 1.43e-03, FE = 3.04). These data support a role for 
EPRS in endocrine therapy resistance of ER+ tumors. 

EPRS is necessary for proliferation of ER+ breast 
cancer cells

To determine the functional roles of EPRS in ER+ 
breast cancer, we downregulated EPRS expression in 
ER+ breast cancer cell lines using shRNA vectors or 
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siRNA. To determine if EPRS is critical for the growth 
of endocrine therapy-resistant ER+ breast cancer cells, 
we downregulated EPRS in MCF7 TamR cells, an MCF7 
variant that was in vitro selected for Tamoxifen resistance 
by continuous culture in the presence of increasing 
concentrations of Tamoxifen. EPRS downregulation 
inhibited MCF7 TamR growth in 3D Matrigel™ cultures 
(Figure 3A). As the growth inhibition may be due to 
differences in survival and/or proliferation, we assessed 
cell cycle progression by flow cytometry. When compared 
to MCF7 TamR cells expressing vector control shRNA, 
cells expressing any of three independent EPRS-targeting 
shRNA vectors were found to be arrested in G1 (vector 
control: 58.65% G1; shEPRS-73: 83.33% G1, p = 0.013; 
shEPRS-74: 79.40% G1, p = 2.2E-3; shEPRS-83: 
89.12% G1, p = 1.9E-3) with a concomitant decrease of 

cells in S phase (vector control: 26.77%; shEPRS-73: 
8.76%, p = 5.1E-3; shEPRS-74: 3.40%, p = 2.4E-4; 
shEPRS-84: 3.77%, p = 1.2E-3) (Figure 3B). Consistent 
with these data, we observed downregulation of proteins 
involved in the G1-to-S and S-to-G2 transition, such 
as CDK2, CCNB1, and phospho-Rb (Figure 3C, 
Supplementary Figure S2). We did not observe a consistent 
increase in the subG1 fraction (Figure 3B) or cleavage 
of PARP (not shown). Furthermore, EPRS depletion 
induced growth arrest in the presence of the apoptosis 
inhibitor Z-VAD (Figure 3C). Taken together, these data 
suggest that apoptosis is not a major mechanism for 
EPRS downregulation-mediated growth inhibition. EPRS 
downregulation similarly affected parental MCF7 cells 
(Figure 3D). EPRS downregulation did not significantly 
affect the growth of the ER− cell line MDA-MB-453 

Figure 1: EPRS is upregulated in ER+ breast cancers, and is associated with worse outcomes in ER+ tumors. EPRS 
is upregulated in all breast cancer subtypes compared to adjacent normal breast in TCGA (A) and METABRIC (B) cohorts. Violin plot 
color represents significance of student’s t-test comparing each subtype with adjacent normal breast. Fraction of TCGA ER+ breast cancer 
samples in COSMIC (C) and fraction of METABRIC (D) ER+ samples with EPRS copy number gains. High EPRS expression is associated 
with worse prognosis in patients with ER+ (E) but not ER− (F) breast cancer in TCGA and METABRIC cohorts. “High” and “Low” refer to 
stratification of patients by median EPRS expression: upper 50% were called “high,” lower 50% were called “low.” Numbers in parenthesis 
(e.g. 39/309) are [number of patients who died]/[number of patients at risk].
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(Figure 3E and 3F). These data support a critical and 
specific role for EPRS in regulating proliferation of ER+ 
breast cancer cells.

EPRS-regulated transcriptome

To begin to determine the mechanisms by which 
EPRS regulates G1-S transition and proliferation of ER+ 
breast cancers, we identified the transcriptional programs 
regulated by EPRS in ER+ tumors. We performed paired-
end 100-nucleotide Illumina sequencing on MCF7 
TamR expressing either vector control or one of three 
unique EPRS shRNA sequences. Using an FDR cutoff 
of 0.05 and a fold change cutoff of 1.3, we observed 
7,129 differentially-expressed genes with shEPRS-73, 
10,995 with shEPRS-74, and 5,114 with shEPRS-84 
(Supplementary Figure S3). We used genes down- or 
upregulated by at least two of three shRNA vectors for 
downstream analysis yielding 3146 downregulated and 
3715 upregulated genes (Supplementary Figure S3). We 
performed functional annotation analysis on this EPRS 
signature using the MSigDB Hallmark gene sets [16]. 
In agreement with the cell cycle arrest we observed, 
EPRS knockdown downregulated genes involved in cell 
proliferation: E2F targets (corrected FET p = 4.60e-40, FE 
= 2.96); G2M checkpoint (corrected FET p = 2.50e-24, 
FE = 2.51); Myc targets v1 (corrected FET p = 9.80e-21, 
FE = 3.72); Myc targets v2 (corrected FET p = 1.80e-
14, FE = 2.15). Consistent with EPRS’s known role in 
inhibiting translation of interferon gamma-induced genes 
[17] upregulated genes were enriched for interferon 
gamma response (corrected FET p = 0.024, FE = 1.59), 
as well as bile acid metabolism (corrected FET p = 1e-04, 
FE = 2.13) and genes downregulated by KRAS-signaling 
(corrected FET p = 3e-03, FE = 1.68) (Figure 4A). We 
did not observe induction of DDIT3 or downregulation 
of COL1A1, COL1A2, or S100A4, as has previously been 
reported in EPRS-inhibition-induced stress response 

[5, 18, 19]. Similarly, enrichment of upregulated genes for 
“unfolded protein response” was not significant (corrected 
FET p = 0.17, FE = 1.55) (Figure 4A). We did not observe 
significant upregulation of genes associated with apoptosis 
(Figure 4A). Interestingly, EPRS shRNA expression also 
strongly downregulated early and late estrogen response 
genes (corrected FET p = 5.90e-10, FE = 1.95) suggestive 
of a role for EPRS in direct regulation of ER signaling 
(Figure 4A). 

EPRS regulates expression of ESR1 and ESR1 
target transcripts

As EPRS knockdown downregulated estrogen 
response genes, we hypothesized that EPRS may regulate 
cell proliferation through regulation of ER signaling. 
Using the Broad Institute’s Connectivity Map (CMap) 
[20], we observed striking concordance between gene 
expression changes induced by EPRS shRNA expression 
and those induced in MCF7 cells by treatment with 
clinically used anti-endocrine therapies, such as fulvestrant 
(CMap score = 0.842, p = 8.76e-128), clomifene (CMap 
score = 0.69, p = 1.39e-86), raloxifene (CMap score = 
0.559, p = 6.77e-52), and tamoxifen (CMap score = 0.552, 
p = 3.56e-50) (Figure 4B). We similarly observed a strong 
inverse association between gene expression changes 
induced by EPRS knockdown and those induced by 
estradiol treatment of MCF7 cells (CMap score = −0.691, 
p = 6.87e-87) (Figure 4B). 

To further validate the link between EPRS and 
ER signaling, we confirmed, by qRT-PCR, that EPRS 
shRNA expression downregulated ERα and the ESR1 
targets CCND1, FOXM1, MYC, and PGR (Figure 4C). 
Furthermore, downregulation of ESR1 in MCF7 TamR 
cells, induced growth arrest and prevented phosphorylation 
of Rb and upregulation of the S/G2 proteins CDK2, and 
CCNB1 (Supplementary Figure S4A), phenocopying EPRS 
perturbation. This is consistent with persistent dependence of 

Figure 2: EPRS is associated with tamoxifen resistance. (A) Elevated EPRS expression is associated with reduced recurrence-free 
survival in patients treated with tamoxifen alone for five years (Symmans). (B) EPRS-correlated genes are enriched for gene signatures of 
nonresponse to tamoxifen in breast cancer patients. Numbers represent Fold Enrichment.
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endocrine-resistant breast cancer cells on ESR1 expression 
and activity. Based on these results, we hypothesized 
that reconstitution of ESR1 expression may rescue the 
cell cycle arrest we observed with EPRS knockdown. 
Expression of exogenous ESR1 with EPRS siRNA rescued 
ESR1 expression and partially rescued siEPRS-induced 
downregulation of CCNB1 and phospho-RB (Supplementary 
Figure S4B and S4C), however, it was not able to rescue 
G1/S arrest by flow cytometry (data not shown). 

Based on these results, we hypothesized that 
EPRS may regulate ESR1 coactivators and corepressors, 
as well as other regulators of estrogen signaling. To 
identify these potential ER regulators in an unbiased 
manner, we constructed a Bayesian gene regulatory 
network, as previously described [21], using ER+ breast 
cancer samples from the TCGA (n = 623), METABRIC 
(n = 1505), Miller (n = 213) and Wang (n = 209) datasets 
and transcription factor-target interactions from the 
ENCODE project [22] and MCF7 ChIP-chip data [23]. 

Bayesian network inference uses directed acyclic graphs 
(DAGs) to model the joint probability distribution of the 
states of multiple variables (e.g., genes), characterizing the 
dependent and independent relationships among genes, 
which is extremely useful for unraveling gene expression 
regulatory structures. Bayesian networks constructed from 
individual datasets were combined by the union of directed 
edges into a super Bayesian network comprised of 20,810 
nodes connected by 73,283 edges. The gold standard 
for network validation compares a node’s network 
neighborhoods with experimentally-derived perturbation 
signatures of that node. The EPRS-regulated subnetwork 
is highly enriched for genes downregulated by shEPRS 
(Figure 5), validating the ability of the Bayesian network 
to predict gene regulatory relationships. For example, the 
5- and 6-layer downstream neighborhoods of EPRS are 
significantly enriched for the EPRS knockdown signature 
with FET p values = 3.48e-11 (1.29 fold) and 2.92e-26 
(1.23 fold), respectively.

Figure 3: EPRS is necessary for proliferation ER+, but not ER− breast cancer cells. (A) EPRS knockdown inhibits growth of 
MCF7 TamR cells in 3D Matrigel™ culture. (B) Flow cytometric analysis of PI-stained DNA. Numbers are mean percentages from three 
independent experiments. Color ring represents -log10 (student’s t-test p values). C&D) Representative immunoblot of G1/S/G2 proteins in 
MCF7 TamR (C) and parental (D) cells treated with EPRS or control siRNA in the absence and presence of 20 μM Z-VAD-FMK. (E) EPRS 
knockdown does not inhibit growth of ER- MDA-MB-453 cells in 3D Matrigel™ culture. Representative immunoblot of EPRS knockdown 
in MDA-MB-453 cells. (F) Flow cytometric cell cycle analysis of PI-stained MDA-MB-453 cells. Numbers are mean percentages from 
three independent experiments. siLuc: luciferase-targeting siRNA (control). siEPRS: pool of four unique siEPRS-targeting siRNAs.
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To map the direct and indirect regulation of ESR1 by 
EPRS, we calculated the shortest network paths between 
EPRS and 452 known ESR1 targets and pathway genes, as 
described in methods. The genes comprising these paths 
were then used to derive an EPRS-ESR1 subnetwork 
(EES). The EES consists of the 452 known ESR1 
transcriptional target genes and 1079 intermediate nodes 
connected by 2902 directed edges (Figure 6A).

We performed Key Driver Analysis (KDA) [24, 25] on 
the EES to identify its master regulators downstream of EPRS. 
This yielded 80 genes (Figure 6) (Supplementary Table S1) 
predicted to be the drivers of the EES. Many predicted drivers, 
such as ESR1 itself, GATA3, BRD4, PGR, and PTGES3 are 
known regulators of ESR1 signaling or are ESR1 effector 
genes. To confirm that these predicted network drivers 
are contributing to EPRS-mediated regulation of estrogen 
signaling, we utilized the LINCS dataset to compare the 
network drivers’ perturbation signatures to those of EPRS and 
ESR1. For the 41 EES network drivers that had differentially 
expressed genes in the corresponding perturbation 
experiments in LINCS their perturbation signatures all 
significantly overlap with the EPRS (corrected FET  
p ≤ 5.04e-04) and ESR1 (corrected FET p ≤ 1.28e-24)  
signatures (Figure 6B). The overlap between the EPRS and 
ESR1 LINCS signatures is highly significant (corrected FET 
p = 3.6e-143, OR = 8.86) (Figure 6B). When compared 
to LINCS shRNA signatures of genes not in the EES, 
LINCS shRNA signatures of EES keydrivers and of EES 
genes show significantly greater overlaps with the EPRS 
signature (Kolmogorov-Smirnov p = 9.98e-03 and 1.61e-03, 
respectively) (Figure 6C).

Twenty of the 80 EES drivers are downregulated 
by shEPRS, and 11 are upregulated (Figure 6D). Nine are 
previously reported protein-protein interactors of EPRS 
(HSPA8, ESR1, HSPD1, GATA3, PGR, PTGES3, KIF5B, 
PTPN11, FOS) [26], and 14, including EPRS, were 
previously-reported protein-protein interactors of ESR1 
(EPRS, SCYL2, UPF1, GLYR1, MED16, ACTR3, CCT2, 
HSPA8, PGR, PTGES3, RP20, BCLAF1, POLR2E, FOS) 
[27] (Figure 6D). HSPA8, PGR, PTGES3, and FOS are 
interactors common to both EPRS and ESR1 (Figure 6D). 
Of the 80 EES drivers, 45 are upregulated in breast tumors 
compared to adjacent normal breast in both TCGA and 
METABRIC cohorts, and 61 are upregulated in at least 
one cohort (Figure 6D). Thirteen are downregulated in 
both TCGA and METABRIC, and 25 are downregulated 
in at least one dataset (Figure 6D). Sixteen of the EES 
drivers are significantly (FDR < 0.10) associated with 
overall survival in both Cox and KM models, and 43 in 
at least one model. Furthermore, 34 predicted EES drivers 
are known ER signaling regulators or downstream targets 
(Supplementary Table S2), while the remaining 46 have 
not, to our knowledge, been described in the context of 
estrogen signaling.

DISCUSSION

EPRS has been previously implicated in breast 
tumorigenesis, but the underlying mechanisms remained 
unclear. We have demonstrated that EPRS is the most 
significantly upregulated ARS gene in ER+ breast cancers, 
partly attributable to EPRS copy number gains, and that 

Figure 4: EPRS-regulated transcriptome. (A) Enrichment of shEPRS differentially-expressed genes for MSigDB Hallmark 
genesets. Numbers represent Fold Enrichment. (B) shEPRS differential expression signature overlaps with estrogen receptor modulators. 
(C) QPCR validation of estrogen receptor target downregulation. Error bars represent SEM. Color bars represent -log10 (student’s t-test 
p values). EPRS shRNA-74 shown.
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elevated EPRS expression is associated with reduced 
overall survival in patients with ER+ breast cancers. 
Higher EPRS transcript levels are also associated with 
reduced distant relapse-free survival in patients treated 
with adjuvant tamoxifen monotherapy. We further 
show that EPRS-correlated genes are highly enriched 
for signatures predictive of nonresponse to tamoxifen 
therapy. Depletion of EPRS resulted in mitotic arrest of 
tamoxifen resistant and parental ER+ breast cancer cells, 
but not of ER- cells. Transcriptomic profiling confirmed 
downregulation of cell cycle genes, and showed strong 
enrichment for downregulation of estrogen response 
genes. Applying a Bayesian network approach to 2550 
ER+ breast cancer samples, we subsequently constructed 
an EPRS-centered directed estrogen signaling network, 
identified its driver genes, and validated them using 
publicly-available MCF7 shRNA perturbation signatures. 
This unbiased approach enabled us to identify 34 known 
regulators of estrogen signaling, such as ESR1 itself, 
GATA3, BRD4, PGR, and PTGES3, and 46 genes which, 
to our knowledge, have not been previously associated 
with endocrine signaling. We have shown these drivers to 
share strikingly similar perturbation signatures, but further 
work must be done to assess their functional roles in ER+ 
breast cancer cells. In addition to gene knockdown and 
knockout experiments, it will be interesting to see if drugs 
that reverse the EPRS gene signature are able to inhibit the 
growth of ER+ breast cancer cells in vitro and in vivo. We 
are thus the first, to our knowledge, to identify a regulatory 
link between EPRS and estrogen signaling and the first to 
provide mechanistic insight into this relationship.

The EPRS depletion phenotype we observed is 
distinct from that recently reported in the literature. 
Beltran et al. reported that EPRS inhibition by shRNA or 

the ProRS inhibitor halofuginone (HF) induced a stress 
response and cell death in basal breast cancer cells [5]. 
Their work is consistent with another paper in which 
primary mouse CD4+ CD25− cells were treated with 
HF, resulting in downregulation of COL1A1, COL1A2, 
and S100A4, and upregulation of DDIT3 mRNA [18]. 
Microarray profiling of HF-treated mouse mammary 
epithelial cells similarly revealed induction of Ddit3, 
Trib3, Nrdg1, Gadd45α, Slc1a4, and other genes 
implicated in cellular response to stress [19]. In contrast, 
we did not observe differential expression of these genes 
following EPRS knockdown (not shown), suggesting 
depletion of total EPRS protein affects distinct processes 
compared to specific inhibition of the EPRS ProRS 
domain. An alternate explanation is that ER+ breast 
cancer cells are more dependent on EPRS to maintain ER-
mediated growth-promoting signaling. In support of this, 
EPRS depletion in the ER−/HER2+ breast cancer cell line 
MDA-MB-453 did not inhibit growth. However, we do 
not discount the possibility of ER signaling-independent 
mechanisms through which EPRS may affect cell growth.

EPRS has previously been shown to regulate 
transcript-specific translation in macrophages and 
hepatocellular carcinoma cells through the gamma 
interferon-activated inhibitor of translation (GAIT) system 
[6, 7, 17, 28–33]. Although GAIT activity has not been 
demonstrated in other cell types, including breast cancer 
cells, several genes predicted to be regulated by GAIT, 
such as RORA, NRIP1, and DZIP3 have been shown to 
mediate ERα-dependent proliferation of breast cancer cells 
[34–39].

Further work is required to validate and fully 
develop the molecular interactome linking EPRS to 
estrogen signaling and cell proliferation in ER+ breast 

Figure 5: Validation of EPRS Bayesian network. (A) An network neighborhood around EPRS. Genes differentially-expressed 
following EPRS knockdown are highlighted in blue (downregulated) or red (upregulated). (B) Enrichment of EPRS downstream network 
for the EPRS-downregulated RNA-seq signature. Horizontal dashed line represents –log10 (0.05).
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Figure 6: EPRS-regulated ESR1 network. (A) EPRS neighborhood encompassing ESR1 target and pathway genes. (B) Overlap of 
keydriver shRNA signatures with those of EPRS and ESR1 for genes with perturbations available in the LINCS shRNA dataset. (C) As a 
group, EES driver and EES perturbation signatures show more significant overlaps with the shEPRS signatures than do non-EES genes. (D) 
EPRS estrogen network keydriver association with survival using Cox and KM models, differential expression in TCGA and METABRIC 
ER+ tumors compared to adjacent normal breast, protein interactions with ESR1 and EPRS, and differential expression following EPRS 
knockdown.
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cancer cells. The necessity of EPRS in non-malignant 
cells, as well as the therapeutic window of EPRS inhibition 
must also be determined, although this is beyond the scope 
of this paper. EPRS and the EES it regulates may be a 
promising target for development of novel therapies, or 
the repurposing of existing therapies, to treat patients 
with ER+ breast cancers whose tumors do not respond to 
currently-used endocrine modulators.

MATERIALS AND METHODS

Breast tumor expression data

TCGA

The level 3 IlluminaHiSeq-RNASeqV2 (RSEM-
normalized) expression data from the TCGA data portal 
was first log-transformed and quantile-normalized. The 
quantile-normalized data was then split into the tumor 
and adjacent normal groups. The tumor and adjacent 
normal data were then corrected by linear regression 
for confounding factors including batch, tissue source 
site, center and plate, race and age. Male samples were 
excluded. 
METABRIC

Normalized Illumina HT12v3 mRNA microarray 
data was downloaded from the European Bioinformatics 
Institute and corrected for age. 
Miller and wang

Miller et al. 2005 [40] and Wang et al. 2005 [41] 
Affymetrix Human Genome U133A array expression 
datasets were obtained from Bioconductor [42] through 
the packages “breastCancerUPP” (Miller et al. 2005) and 
“breastCancerVDX” (Wang et al. 2005) and corrected for 
covariates as described above.
Symmans

Affymetrix Human Genome U133A array expression 
data was downloaded from the Gene Expression Omnibus 
(GEO) (GSE17705) and corrected for age and batch.

CNA analysis

Copy number alterations in the TCGA breast cancer 
cohort were obtained from the Catalogue of Somatic 
Mutations in Cancer (COSMIC) [43] and ER+ samples 
were extracted. METABRIC copy number alterations were 
called by Curtis et al. 2012 [44]. From the somatic copy 
number aberration (SCNA) segments called from Curtis 
et al. we first subset segments for ER+ patients (1505 out 
of 2000 samples combining discovery and validation data 
sets), and counted the number of segments called with 
copy number gain (denoted as GAIN) or amplification 

(denoted as AMP) within 2Mbps of transcription starting 
site of EPRS from hg18 (NCBI build 36).

Survival analysis

EPRS expression from the previously described 
TCGA, METABRIC, and Symmans breast cancer 
cohorts, was split into ER+ and ER- groups. Within each 
ER status-specific EPRS profile, we defined “EPRS-
high” and “EPRS-low” subgroups of patients by median 
EPRS expression value. We performed the Kaplan-Meier 
analysis for EPRS-high and EPRS-low in both ER+ and 
ER- cohorts as well as Cox regression analysis to evaluate 
the prognostic significance of the subgroups. Correction 
for multiple hypothesis testing was done using the 
Benjamini-Hochberg (BH) method [45].

Tamoxifen response signature

A tamoxifen response/nonresponse signature 
was identified by combining published gene signatures 
predictive of response [13–15]. Our final signature 
consisted of 364 genes comprised of 124 predictive of 
tamoxifen response and 240 predictive of tamoxifen 
nonresponse (Supplementary Table S1).

EPRS-correlated genes

Spearman correlations between EPRS and all other 
genes in TCGA and METABRIC datasets were computed 
and p-values were corrected using the BH method [45]. 
Significant correlations were defined by BH corrected 
p-value < 0.05 and absolute value of Spearman’s rho > 0.2.

Quantitative real-time PCR

Total RNA was isolated from cells using the Qiagen 
RNeasy kit. RNA concentration was determined using a 
NanoDrop 8000 spectrophotometer. Fifty nanograms of 
total RNA were used per triplicate qRT-PCR reaction and 
detected using SYBR Green fluorescence. GAPDH was 
used as an internal control. QRT-PCR data was analyzed 
using the delta-Ct method.

Cell culture

MCF7 parental cells were cultured in RPMI media 
with 10% FBS (Life Technologies). MCF7 TamR cells, 
obtained from the Rachel Schiff Lab (Houston, TX) 
[46, 47], were cultured in phenol red-free RPMI media (Life 
Technologies) with 10% charcoal-stripped fetal bovine 
serum (FBS) (Sigma), one percent penicillin/streptomycin 
(Life Technologies), and 100 nM 4-hydroxytamoxifen 
(4-OHT). 4-OHT was withdrawn for functional assays. 
MDA-MB-453 cells were cultured in DMEM media (Life 
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Technologies) with 10% FBS (Life Technologies) and one 
percent penicillin/streptomycin (Life Technologies).

3D Matrigel™ cultures

Eight-well chamber slides (BD Biosciences) were 
coated with MatrigelTM. Cells were plated at a density of 
3–5 × 103 cells per well in the middle four wells, and cells 
were allowed to grow for two to three weeks.

RNAi

For siRNA, cells were reverse-transfected with 
20 nM siRNA using Lipofectamine RNAiMAX (Life 
Technologies) according to the manufacturer’s protocol. 
Media was changed after overnight incubation. EPRS 
shRNAs in the pLKO.1 vector were obtained from 
Sigma. For shRNA lentivirus production, 293T cells 
were transfected with viral plasmids using Lipofectamine 
2000 according to standard protocols. Virus-containing 
supernatant was collected at 48, 72, 96, and 120 hours 
after transfection, pooled, and frozen at −80°C to eliminate 
carry-over 293T cells. For shRNA lentivirus infection of 
target cells, lentivirus was thawed on ice and concentrated 
using centrifugal filters (Amicon). ShRNA lentivirus 
and target cells were simultaneously added to six-well 
plates, centrifuged at 2250 rpm for 30 minutes at room 
temperature, then incubated at 37°C overnight. Media 
was changed the next morning and cells were allowed 
to recover for six to eight hours, after which 2 μg/mL 
puromycin was added to select shRNA-expressing cells. 
Puromycin was reduced to a maintenance dose of 1 μg/mL  
after 24–48 h. For Z-VAD-FMK (BD Biosciences; San 
Jose, CA) treatment, cells were treated with 20 μM 
Z-VAD-FMK or DMSO.

Cell cycle analysis

Cells were infected with shRNA or transfected 
with siRNA as described above. Twenty-four hours after 
siRNA transfection or 48 hours after shRNA transfection 
and puromycin selection, cells were serum-starved in 
serum-free growth media for 24 hours, after which serum 
was reintroduced and cells are incubated for an additional 
48 hours. Five days after RNAi introduction, cells were 
trypsinized, split, and lysed for total protein for Western 
blot analysis or fixed in 80% ethanol and stored at 4°C 
for flow cytometric analysis. Cells were then stained with 
propidium iodide/RNAase (BD Pharmigen) for 30 minutes 
at 37°C and analyzed on a BD FACSCanto flow cytometer. 
Cell cycle analysis was performed with FlowJo (TreeStar 
Inc) using both Watson-Pragmatic [48] and Dean/Jett/Fox 
[49] algorithms.

RNA-seq analysis

Cells expressing EPRS shRNA vectors were 
generated. Seventy-two hours after infection, cells were 
lysed and total RNA was purified using a Qiagen RNeasy 
kit according to the manufacturer’s protocol. RNA was 
stored at −80°C until submission to the Mount Sinai 
Genomics Core Facility for ribosomal RNA depletion, 
cDNA library preparation, and sequencing using paired-
end, 100 nt reads on an Illumina HiSeq 2000. The pair-
ended sequencing reads were aligned to human genome 
hg38 using star aligner (version 2.5.0 b) [50]. Following 
read alignment, featureCounts [51] was used to quantify 
gene expression at the gene level based on GENCODE 
gene model release 22. Gene expression was normalized 
as counts per million (TPM) using trimmed mean of 
M-values normalization (TMM) method [52] to adjust 
for sequencing library size difference. Differential 
gene expression was predicted using the Bioconductor 
package limma [53]. The false discovery rate (FDR) 
of the differential expression test was estimated using 
the Benjamini–Hochberg method. We used a cutoff 
of corrected p < 0.05 and fold change > 1.3 in at least 
two of three EPRS-targeting shRNAs. Overlap between 
independent EPRS-targeted shRNAs was tested 
for statistical significance and visualized using the 
SuperExactTest [54]. Total RNA used for RNA-seq was 
subsequently used for validation by qRT-PCR.

Connectivity map query

The differentially expressed genes (DEGs) between 
the shEPRS and control samples were compared with the 
drug treatment gene expression data from the Connectivity 
MAP (CMap) database, a reference collection of gene 
expression data from 5 cultured human cell lines treated 
with 1309 drug compounds [55]. In the original CMap 
study, the Kolmogorov-Smirnov (KS) statistic was 
employed to compute the similarity between an input 
DEG signature and a drug’s gene signature. A significant 
KS statistic suggests some functional connection between 
drug treatment and the biology represented by a given 
input DEGs [55]. In this study, we utilized a weighted 
KS test which was previously proposed for gene set 
enrichment analysis [56] to calculate the drug connectivity 
score. We described the analytic approach below.

Let R be the N genes which are rank sorted in 
descending order of the expression fold change in a CMap 
drug instance. Next the ranks are converted to weighted 
gene-drug correlations using a formula r Rank mean Rank

mean Rank
=

− ( )
( )

, 

through which the genes ranked in the top or bottom 
(i.e. the most induced or suppressed) had absolute drug 
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correlation scores close to 1, while genes ranked in the 
middle (possibly the least targeted by the drug) had gene-
drug correlation measures close to 0. Let G be a set of n 
input DEGs, which is comprised of two subsets, G1 and G2, 
representing the significantly up- and down-regulated 
genes, respectively. For each subset Gx (x = 1 or 2), we 
then compute a drug connectivity scores Sx as the 
maximum derivation from zero, i.e., f i f i1 2( ) − ( ) ,  where 
i (= 1, …, N) indices a position in the rank of R, and 

f i
r
M

M rg G
j

p

g G j

p

j i
j x j x1 ( ) = =∈ ∈
≤

∑ ∑, ,where

f i
N ng G

j i
xj x

2
1( ) =
−∉

≤

∑

Here, j is an index with a value between 1 and i, and 
gj denotes the jth gene in the rank sorted list R. Finally, the 
drug connectivity score S = 0 if S1 × S2 ≥ 0, and S = S1 – S2 
otherwise. When p = 0, this method reduces to standard 
KS test. We set p = 1 for the analyses in this paper.

The statistical significance of S can be estimated 
from permutation. The sign of S reflects the direction of the 
drug treatment with respect to the input gene signatures. A 
positive S implies that the drug has a gene signature that is 
concordant to the input signature and that drug could induce 
the same transcriptional regulation pattern of the input 
genes, while a negative S implies that the drug has a gene 
expression signature that is opposite to the input signature 
and the drug could potentially reverse the disease trait.

Bayesian network construction

We employed a Monte Carlo Markov Chain 
(MCMC) simulation process based approach [57] to infer 
probabilistic regulatory relationship between genes. A 
uniform prior was used for the regulatory relation between 
pair of genes. As a uniform prior is unable to break Markov 
equivalence, we need additional data to assist with the 
identification of directionality in the Bayesian network 
construction. For this purpose, known transcription factor 
(TF)-target pairs were downloaded from the ENCODE 
project [22] and a dataset of nuclear receptor binding sites 
in breast cancer cells [58]. We allowed TF nodes to be 
parent nodes of their targets, but targets were not allowed 
to be the parent nodes of their TF in the network. As in 
[57], we followed a network averaging strategy in which 
1,000 networks were generated by this MCMC process 
starting with different random structure, and links that 
appeared in more than 30% of the networks were used to 
define a final consensus network. If loops were present 
in the consensus network, the weakly supported link 
involved in a loop was removed to ensure the final network 
structure was a directed acyclic graph. Bayesian networks 
constructed from independent datasets were then combined 
by the union of directed edges, and loops were removed.

EPRS subnetwork

Estrogen signaling pathway gene sets were obtained 
from the Pathway Interaction Database (ERalpha pathway) 
[59], MSigDB Hallmark gene sets (Estrogen response early; 
Estrogen response late) [16], KEGG (Estrogen Signaling) 
[60], Gene Ontology (Intracellular estrogen receptor 
signaling pathway) [60], and recent literature findings 
[61–65] for a total of 452 unique estrogen signaling genes 
(ESG). The shortest paths between EPRS and all genes in 
ESG in the super Bayesian network were computed. EPRS, 
ESGs, and all intermediate connecting nodes were called the 
EPRS-ESR1 subnetwork (EES). Keydriver Analysis (KDA) 
was performed on the EES as previously described [24]. 

LINCS differential expression signature calling

Normalized level 3 expression data was downloaded 
from the Library of Integrated Network-based Cellular 
Signatures (LINCS) cloud website (http://www.lincscloud.
org/l1000/). LINCS data includes the directly measured 
expression levels of 978 landmark genes and the inferred 
expression levels of more than 21 K other genes. Gene 
expression profiles of both directly measured landmark 
transcripts and inferred genes were normalized using an 
80-gene invariant set scaling followed by the quantile- 
normalization. Differentially-expressed gene signatures for 
each shRNA were called using the limma R package based 
on the criteria of significance p < 0.05 and fold-change > 1.2.

Reagents

Antibodies

EPRS (Abcam ab31531); ESR1 (Cell Signaling 8644); 
phospho-RB (Cell Signaling 9301); total RB (Cell Signaling 
9309); CDK2 (Cell Signaling 2546); CCNB1 (Cell Signaling 
12231); GAPDH (Cell Signaling 2118), β-tubulin (Cell 
Signaling 2128), HSP70 (Cell Signaling 4872).
QPCR primers

EPRS (sense: 5′ –GCCTTCAGGGACAGTAAGCA 
– 3′, antisense: 5′ – ATGAAGTTGCTGCACAAGGG – 
3′); ESR1 (sense: 5′ – AGAGGGTGCCAGGCTTTGT 
– 3′, antisense: 5′ – CAGACGAGACCAATCATCAGG 
– 3′); CCND1 (QuantiTect Primer Assay # QT00495285,  
Qiagen); MYC (sense: 5′ – CACCGAGTCGTAGTCG 
AGGT – 3′, antisense: 5′ – TTTCGGGTAGTGGAAAA 
CCA – 3′); PGR (sense: 5′ – AGCCAGAGCCCACAAT 
ACAG – 3′, antisense: 5′ – GACCTTACAGCTCCC 
ACAGG – 3′); FOXM1 (sense: 5′ –TGCAGCTAGGGATGT 
GAATCTTC – 3′, antisense: 5′ - GGAGCCCAGTCCAT 
CAGAACT – 3′).
RNAi

EPRS and ESR1 siGENOME SMARTpool™pools  
of four siRNA sequences (Dharmacon GE Healthcare).  
shRNA: pLKO-empty vector, shEPRS-73  
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(TRCN0000293873, 5′ – CCGGGCCAAGTACTACACCT 
TATTTCTCGAGAAATAAGGTGTAGTACTTGGCTT 
TTTG – 3′), shEPRS-74 (TRCN0000293874, 5′ – CCG 
GATGAACCTGTTAGCCCATATACTCGAGTATATGG 
GCTAACAGGTTCATTTTTTG – 3′), and shEPRS-84  
(TRCN0000286384, 5′ - CCGGGCCTGGCAAGAACAG 
TTGAAACTCGAGTTTCAACTGTTCTTGCCAGGCTT 
TTG - 3′).
Cell lines

Parental and TamR MCF7 cells were obtained 
from the Rachel Schiff Lab (Baylor College of Medicine, 
Houston, TX) [46, 47]; MDA-MB-453 cells were 
purchased from ATCC (Manassas, VA).
Exogenous ESR1-expressing MCF7 TamR cell line

ESR1 cDNA was obtained from Addgene (#11351) 
and was cloned into pBABE-puro. MCF7 TamR cells were 
stably infected with empty vector (EV)- or ESR1-pBABE-
puro retrovirus and selected as described above.
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