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ABSTRACT
The PI3K-Akt-mTOR signaling pathway has been identified as a key driver of 

carcinogenesis in several cancer types. As such, a major area of focus in cancer 
biology is the development of genomic biomarkers that can measure the activity level 
of the PI3K-Akt-mTOR pathway. In this study, we systematically estimate PI3K-Akt-
mTOR pathway activity in breast primary tumor samples using transcriptomic profiles 
derived from drug treatment in MCF7 cell lines. We demonstrate that gene expression 
profiles derived from chemically-induced protein inhibition allows us to measure PI3K-
Akt-mTOR pathway activity in patient tumor samples. With this approach, we predict 
prognosis and response to chemotherapy in cancer patients, and screen for potential 
pharmacological modulators of PI3K-Akt-mTOR pathway inhibitors. 

INTRODUCTION

In cancer, genomic lesions lead to constitutive 
activation of signaling pathways that induce uncontrolled 
cellular proliferation and confer a survival advantage upon 
transformed cells. Thus, being able to accurately identify 
the key molecular drivers underlying each patient’s 
tumor would significantly accelerate the development 
of precision medicine. Fortunately, studies have already 
identified several signaling pathways that are recurrently 
dysregulated, one of which is the PI3K-Akt-mTOR 
pathway. The PI3K-Akt-mTOR pathway is composed of a 
number of proteins including Ras, PTEN, PIP, PI3K, AKT 
and mTOR. The pathway functions as part of a signaling 
cascade initiated by the binding of growth factors to 
receptor tyrosine kinases located on the cell membrane 
[1, 2]. Importantly, the PI3K-Akt-mTOR pathway plays 
a central role in cancer cell growth, proliferation, and 
survival, and is overexpressed in numerous cancers 
including breast, ovarian, and pancreatic [3–5]. 
Consequently, there have been significant efforts in 
developing PI3K inhibitors that can abrogate tumor 
growth and act synergistically with other targeted therapy 
and chemotherapy [1, 6, 7]. 

Due to the importance of this pathway, several 
genomics-based approaches have been introduced to 
assess the activity of the PI3K-Akt-mTOR pathway in cell 
lines and in primary patient tumors. A common method 
is to determine whether a gain-of-function mutation in 
PIK3CA, which encodes the PI3K catalytic subunit, p110α 
is present in patient tumors. However, conflicting results 
have risen from these studies, with some suggesting that 
PIK3CA mutations are associated with poor prognosis, and 
others suggesting the opposite [8–11]. Reasons for this 
inconsistency include varying effects of PIK3CA mutation 
in different cancer types and the fact that PIK3CA 
mutations can co-occur with molecular events that 
modulate PIK3CA mutational effects. Other approaches 
to assessing PI3K-Akt-mTOR pathway activity include 
using signature-based approaches that capture the gene 
expression change caused by PIK3CA mutations [12]. 
For instance, Loi et al. used gene expression profiles from 
primary breast tumors containing PIK3CA mutations to 
design a signature of PI3K activation to predict PI3K-
Akt-mTOR pathway activity in an independent dataset 
[12]. In general, they found that patients with breast 
tumors displaying a PIK3CA mutation-like expression 
pattern exhibited poor survival. However, results were 
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inconsistent in ER+/HER2- breast tumors where they 
found that a PIK3CA mutant gene signature was associated 
with improved survival [12]. 

Despite the utility of such approaches, using 
mutation-based analyses is subject to confounding by 
co-occurring genomic lesions. Since mutations may not 
always occur independently from each other, using a 
signature that is associated with a single mutation (i.e. 
PIK3CA) may also capture the effects of co-occurring 
lesions that may yield unreliable results when the goal is 
to specifically measure PI3K activity [13]. Therefore, in 
this proof of concept study, we utilized the drug treatment 
profiles of three PI3K-Akt-mTOR pathway inhibitors—
LY294002 (reversible PI3K inhibitor), wortmannin 
(non-reversible PI3K inhibitor), and sirolimus (mTOR 
inhibitor)—to develop expression-based markers of PI3K-
Akt-mTOR pathway activity. Since these three drugs 
target the PI3K-Akt-mTOR pathway, we can directly 
analyze the downstream effects of protein inhibition that 
occur solely due to ablation of PI3K catalytic activity 
while maintaining its non-catalytic biological functions 
[14]. To our knowledge, there has been no other study 
that has used pharmacological protein inhibition to probe 
cancer driver pathways in primary tumors. Overall, our 
analysis framework presents a novel method of utilizing 
protein inhibition gene expression profiles achieved by 
treating cell lines with targeted chemical inhibitors. 

RESULTS

Overview of systematic analysis framework

First, in our systematic analysis, we generated drug 
treatment profiles corresponding to three PI3K inhibitors: 
LY294002 (reversible PI3K inhibitor), wortmannin (non-
reversible PI3K inhibitor), and sirolimus (mTOR inhibitor) 
using data from the Connectivity Map (CMap) (Figure 1). 
Each drug treatment profile was generated by comparing 
the gene expression profile of MCF7 cells treated with 
one of these inhibitors to the gene expression profile of 
untreated MCF7 cells. As such, we derived a total of three 
drug treatment profiles that encode the change in gene 
expression induced by each of the three inhibitors. 

Second, we utilized the BASE algorithm to compare 
each drug treatment profile to every patient cancer gene 
expression profile in The Cancer Genome Atlas (TCGA), 
METABRIC, van de Vijver, Loi, and Hatzis breast cancer 
datasets [15–19]. The algorithm outputs a drug regulatory 
score (DRS) which is a quantitative measure of similarity 
between each drug treatment profile and each patient gene 
expression profile. BASE uses entire gene expression 
profiles to calculate the DRS from continuous values, 
which obviates the need to set arbitrary cutoffs to define 
binary gene sets. As such, a DRS > 0 indicates that a 
tumor’s gene expression pattern resembles the pattern that 

is induced by the drug. Conversely, a DRS < 0 indicates 
that a tumor exhibits a gene expression pattern opposite 
of what is induced by the drug. This is equivalent to 
the concept that a high tumor DRS will be assigned if 
genes upregulated by inhibitor treatment are also highly 
expressed in the tumor and genes downregulated by 
treatment are lowly expressed in the same tumor.

Moreover, we used these DRSs as estimators of 
PI3K-Akt-mTOR pathway activity in TCGA patient 
tumors and validated its accuracy using corresponding 
patient Reverse Phase Protein Array (RPPA) data. After 
validation, we performed survival analysis using patient 
clinical information to determine if DRS could predict 
patient prognosis and response to chemotherapy in 
histological and molecular subtypes of breast cancer.

Finally, we repeated the analysis in cell lines 
available from the Genomics of Drug Sensitivity (GDSC) 
database given that they contained corresponding gene 
expression profiles. By generating a DRS for each GDSC 
cell line, were able to correlate DRS with drug sensitivity 
to screen for potential therapeutic modulators of these 
PI3K inhibitors. 

PI3K-Akt-mTOR pathway inhibitor profiles 
reveal PI3K-Akt-mTOR pathway activity in 
breast cancer subtypes

The PI3K signaling pathway is strongly associated 
with the development and/or progression of several 
cancers. Thus, constitutive activation or ablation of 
proteins in the PI3K-Akt-mTOR pathway can result in 
uncontrolled cellular proliferation and tumor growth 
(Figure 2A). As such, we generated DRS profiles 
corresponding to each drug across patient tumors 
in the TCGA breast cancer dataset to determine if 
clinicopathological subgroups of patients differ in terms 
of their DRS. Since tumor subtyping is standard clinical 
protocol used to inform patients about prognosis and 
potential treatment options, we hypothesized that DRS 
could elucidate differences in PI3K-pathway activity in 
histological and molecular subtypes of breast cancer.

In particular, we stratified breast cancer patient 
tumors from TCGA on estrogen receptor (ER) status and 
compared them based on DRSLY-294002, DRSwortmannin, and 
DRSsirolimus. We found that ER+ tumors exhibited much 
higher DRSLY-294002 (P = 2.4E-27, Wilcoxon rank-sum 
test), DRSwortmannin (P = 2.1E-49, Wilcoxon rank-sum test) 
and DRSsirolimus (P = 2.9E-36, Wilcoxon rank-sum test) 
compared to ER- tumors (Figure 2B), indicating that ER+ 
tumors exhibit lower PI3K-pathway activity since it is 
more similar to a PI3K/mTOR-inhibited profile. This is 
consistent with previous studies demonstrating that PI3K-
Akt-mTOR pathway activity is inversely correlated with 
ER expression, can function as a compensatory pathway 
that drives anti-estrogen resistance, and is required for 
hormone independence [20–22]. To validate the DRS 
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results, we compared Akt, pAktS473, and pAktT308 protein 
expression levels between ER+ and ER- breast tumor 
samples using TCGA RPPA data. (Figure 2C) [18]. 
Unexpectedly, we observed increased expression of Akt in 
ER+ tumors suggesting enhanced PI3K-pathway activity. 
However, after closer analysis, we found that pAktS473 
and pAktT308 expression was significantly decreased in 
ER+ tumors indicating that activated pAkt levels are 
lowered in ER+ tumors suggesting decreased PI3K-
Akt-mTOR pathway activity (P = 0.008 and P = 0.009, 
respectively, Wilcoxon rank-sum test). However, higher 
pAkt levels only indicate that there is a higher amount 
of phosphorylated Akt in a tumor, and does not directly 
inform us of the overall proportion of activated pAkt 
compared to un-activated Akt. For instance, if a tumor 

typically has high basal expression of Akt, then it could 
also harbor higher quantities of pAkt. Thus, we calculated 
a ratio of phosphorylated pAkt to unphosphorylated Akt 
and compared the ratios between ER+ and ER- tumors. 
Tumors with a higher ratio would have a higher percentage 
of the activated (phosphorylated) Akt, thus indicating 
increased pathway activity. Confirmatively, we observed 
that ER+ tumors contain less activated pAkt relative to 
the pool of un-activated Akt for both pAktS473 (P = 8.1E-5,  
Wilcoxon rank-sum test) and pAktT308 (P = 2.3E-5, 
Wilcoxon rank-sum test) (Figure 2D), indicating that Akt 
RPPA data are consistent with DRS. We extended this 
analysis to other proteins downstream of Akt including 
GSK3, S6K1, and 4E-BP1 and observed consistent trends 
in protein expression (Supplementary Figure S1).

Figure 1: Overview of the analysis approach. (A) Drug treatment profiles were generated from MCF7 cell lines that were treated 
with three different PI3K-Akt-mTOR pathway inhibitors (LY294002, wortmannin, sirolimus). Drug treatment profiles were used to 
calculate a DRS for patient tumors in several breast cancer datasets and for GDSC cell lines. DRS was validated in the TCGA dataset using 
RPPA data. After validation of DRS as estimator of PI3K-Akt-mTOR pathway activity, DRS was used to predict patient prognosis in breast 
cancer datasets. DRS was also calculated for GDSC cell lines and correlated with drug IC50 of 139 compounds. 
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In addition to ER status, we investigated differences 
in DRSs between intrinsic subtypes of breast cancer. In 
particular, we observed that luminal A breast cancers 
had the highest DRSs while basal breast cancers had 
the lowest DRSs (P = 5.7E-85, ANOVA) (Figure 2E), 
indicating that luminal A and basal breast carcinomas 
exhibit the lowest and highest PI3K-Akt-mTOR pathway 
activity, respectively. Indeed, several studies have reported 
basal breast carcinomas to be an aggressive subtype that 
responds poorly to targeted therapy [23]. 

DRS reveals confounding effect of PTEN 
expression on PIK3CA mutation and PIK3CA 
expression analysis

Since we used PI3K inhibitor profiles to delineate 
PI3K-Akt-mTOR pathway activity, we reasoned that our 
DRSs should be consistent with genetic and expression 

markers of PI3K-Akt-mTOR pathway activity. Several 
studies have reported PIK3CA mutation status to be 
associated with improved response to PI3K inhibitors 
[24, 25]. PIK3CA encodes p110α, a catalytic subunit of 
PI3K, and gain-of-function mutations in this gene have 
been reported to elevate signaling of cellular proliferation, 
growth, and metastasis [26–29]. To investigate the 
consistency of DRS with these observations, we first 
stratified TCGA breast cancer patient samples on 
PIK3CA mutation status and compared their DRSLY-294002. 
Surprisingly, we found no significant difference in 
DRSLY-294002 between PIK3CA mutant and wild-type (WT) 
tumor samples (Figure 3A). Since PI3K-Akt-mTOR 
pathway activity is not solely determined by PI3K alone, 
we postulated that genetic alteration of PIK3CA may be 
correlated with another alteration to an inhibitory protein 
of PI3K. Therefore, we investigated the most likely 
candidate, PTEN, and its expression in PIK3CA mutant 

Figure 2: Comparison of DRS between molecular and histological breast tumor subtypes. (A) Graphical overview of the 
PI3K-Akt-mTOR pathway. (B) Comparison of DRSs between ER+ and ER- breast tumors. Each point represents a single primary tumor 
sample. The black line within the boxes represent the median. The ER+ group had 598 samples and the ER- group had 178 samples. 
(C) Akt, pAktS473, and pAktT308 protein expression differences between ER+ and ER– breast tumors. Protein expression levels were derived 
from RPPA data. The ER+ group had 608 samples and the ER– group had 186 samples. (D) Differences in pAktS473/Akt and pAktT308/
Akt expression ratios between ER+ and ER– breast tumors. The ER+ group had 608 samples and the ER– group had 186 samples. 
(E) Comparison of DRSs between Luminal A, Luminal B, Normal-like HER2, and Basal breast tumor subtypes. There were 231, 127, 97, 
58, and 8 samples available for Luminal A, Luminal B, Basal-like, HER2-enriched, and Normal-like tumors, respectively. (The boxplot 
boundaries represent the 25th (lower black line), 50th (center black line), and 75th (upper black line) percentiles respectively. The whiskers 
are the upper and lower adjacent values.)
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and WT samples We observed that PTEN expression 
was significantly upregulated in PIK3CA mutant samples 
(P = 7E-3, Wilcoxon rank-sum test) (Figure 3B). This 
lead us to suspect that PIK3CA mutations are intertwined 
with PTEN transcriptional activity, which may indicate 
that 1) upregulation of PTEN expression was a cellular 
response to earlier cancer-driving events prior to PIK3CA 
mutation, and positive selection for PIK3CA mutations 
enabled tumors to ameliorate the suppressive effects of 
PTEN upregulation, or 2) PIK3CA mutations initially 
resulted in an early survival advantage but was eventually 
suppressed by upregulated PTEN expression as part of 
a protective cellular response. Moreover, either of these 
events are possible depending on the individual tumor’s 
evolutionary history.

To evaluate this postulation, we performed a 
stratified analysis by categorizing patient tumors into high 
and low PTEN expression groups using median PTEN 
expression as the cutoff. We then compared DRSLY-294002 
between PIK3CA mutant and wild-type samples in both 
the high and low PTEN groups. We observed that in the 
high PTEN expression group, there were no significant 
differences in DRSLY-294002. However, we found that in the 
low PTEN expressing group, PIK3CA mutant samples 
had significantly lower DRSLY-294002 compared to wild-type 
samples indicating that they had higher PI3K-Akt-mTOR 
pathway activity (P = 5E-3, Wilcoxon rank-sum test) 
(Figure 3C). These results suggest that PIK3CA mutants 
do confer increased pathway activity but only in the 
background of low PTEN expression. This demonstrates 
that DRS, in general, is an indicator of overall pathway 
activity, and not just PI3K activity. Furthermore, these 
results imply that PIK3CA mutation status may not be 
the most accurate indicator of PI3K-Akt-mTOR pathway 
activity due to confounding effects by PTEN. 

Furthermore, we evaluated concordance of DRSsirolimus 
with PIK3CA gene expression by stratifying TCGA patient 
samples into high and low PIK3CA gene expression groups 
using median expression as the cutoff. Similar to the mutation 
analysis, we found that DRSsirolimus was significantly higher in 
tumors with high PIK3CA expression, which initially seemed 
to suggest that high PIK3CA expression is correlated with 
high DRS and decreased PI3K-Akt-mTOR pathway activity 
(P = 6E-3, Wilcoxon rank-sum test) (Figure 3D). However, 
we found that PTEN expression was also significantly 
correlated with DRSsirolimus (PCC = 0.33, P = 1.4E-28) 
(Figure 3E). Therefore, we stratified patient samples into high 
and low PTEN expression groups and correlated PIK3CA 
expression with DRS in both strata. Our analysis shows that 
in low PTEN expression tumors, PIK3CA expression is anti-
correlated with DRSsirolimus, indicating that increased PIK3CA 
mRNA is associated with decreased DRSsirolimus and thus 
higher PI3K-Akt-mTOR pathway activity (PCC = –0.15, 
P = 8.3E-4) (Figure 3F). Moreover, we observed PIK3CA 
expression to be correlated with DRSsirolimus in high PTEN 
expression tumors (PCC = 0.09, P = 0.04). 

Together, these results suggest that PIK3CA 
mutation and expression is associated with PTEN 
expression, which again may be a reflection of the 
competition that occurs between pro-cancer molecular 
programs and anti-cancer cellular responses. Since DRS 
captures the entire expression output that results from the 
inhibition of a key PI3K-Akt-mTOR pathway regulator, 
it is more representative of overall pathway activity than 
PIK3CA mutation or PIK3CA expression alone, which 
may be confounded by the activity of other proteins in 
the pathway. 

PI3K-Akt-mTOR pathway inhibitor profiles 
predict prognosis for breast cancer patients

Since over-activation of the PI3K-Akt-mTOR 
pathway has been reported to be associated with cellular 
proliferation and patient prognosis, we investigated 
the clinical implications of high and low DRS in breast 
cancer patients. First, we investigated if DRSs were 
associated with proliferation—a key indicator of patient 
survival—and found that DRSwortmannin was significantly 
anti-correlated with Ki67 mRNA expression in the 
METABRIC dataset (PCC = –0.62, P = 1.4E-53). Ki67 
is a well-established cellular marker of proliferation and 
its correlation with DRSwortmannin shows that DRS captures 
information about the proliferative state of the patient 
tumor [30, 31]. Furthermore, this suggests that DRS is able 
to capture the downstream proliferative signals associated 
with varying levels of PI3K-Akt-mTOR pathway activity. 

Second, we aimed to confirm the prognostic 
significance of DRS by analyzing its association with 
patient survival. After calculating a DRSwortmannin for each 
sample, we stratified tumors into a high DRSwortmannin 
(> 0) and a low DRSwortmannin (< 0) group and compared 
their survival rates. In the METABRIC dataset, we 
found that patients with DRSwortmannin > 0 exhibited 
significantly improved survival compared to patients with 
DRSwortmannin < 0 (P = 1.7E-18, Log-rank test) (Figure 4B). 
This indicates that patient tumors with basal expression 
similar to the gene expression profile that is induced by 
wortmannin have better prognosis. Second, we aimed to 
investigate if the observed differences in survival between 
high and low DRSwortmannin patients vary according to ER 
status. Interestingly, our analysis shows that DRSwortmannin 
predicts prognosis in ER+ samples (P = 7.1E-13, Log-rank 
test) but not in ER- samples (P = 0.49, Log-rank test), 
which may suggest that there are interactions between ERα 
and PI3K activity that affect patient survival (Figure 4C, 
4D). To test reproducibility, we analyzed additional breast 
cancer datasets published by van de Vijver et al. and Loi 
et al. [12, 19]. In the van de Vijver dataset, we found 
that patients with high DRSwortmannin presented improved 
survival compared to low DRSwortmannin patients (P = 3E 6, 
Log-rank test) [19]. Furthermore, we observed similar 
results in the Loi dataset with high DRSwortmannin patients 
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exhibiting favorable prognosis (P = 4E-3, Log-rank test) 
[17]. Together, our results demonstrate that calculation 
of DRSwortmannin in patient tumors allows us to distinguish 
those patients with a more favorable prognosis. 

Third, we investigated whether the cell line from 
which our drug treatment profiles were derived could 

impact the results of our survival analyses. Since CMap 
contains gene expression profiles for PC3 (prostate 
cancer) and HL60 (promyelocytic leukemia) cell lines, 
we postulated that DRS derived from these drug treatment 
profiles would be less prognostically significant when 
applied to breast cancer [32]. As expected, we found 

Figure 3: Stratified analysis using drug regulatory scores. (A) Comparison of DRSLY-294002 between PIK3CA mutant and wild-
type breast tumors. Each point represents a single tumor sample. Plot shows 507 wild-type samples and 258 PIK3CA mutant samples. 
(B) Differences in PTEN mRNA expression compared between PIK3CA mutant and wild-type breast tumors. Plot shows 507 wild-type 
samples and 258 PIK3CA mutant samples (C) Comparison of DRSLY-294002 between PIK3CA mutant and wildtype samples in high and low 
PTEN mRNA expression backgrounds (top 50% pTEN expression; left) and low PTEN mRNA expression (bottom 50% PTEN expression; 
right). There were 179, 340, 79 and 440 samples in the Hi PTEN/PIK3CA Mutant, Hi PTEN/WT, Low PTEN/PIK3CA Mutant, and Low 
PTEN/WT groups, respectively. (D) Differences in DRSsirolimus between breast tumors with higher vs. lower PIK3CA mRNA expression. 
Each point represents a single tumor sample. The high PIK3CA mRNA group had 518 samples and the low PIK3CA mRNA group had 
519 samples. (E) Correlation between breast tumor PTEN mRNA expression and DRSsirolimus across 1037 samples. (F) Correlation between 
breast tumor PIK3CA mRNA expression and DRSsirolimus; segmented between high and low (top 50% and bottom 50%) PTEN mRNA 
expression level. High PTEN group had 514 samples, and the Low PTEN group had 517 samples. (The boxplot boundaries represent the 
25th (lower black line), 50th (center black line), and 75th (upper black line) percentiles respectively. The whiskers are the upper and lower 
adjacent values. Red line indicates difference in mean between the two groups).
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that DRS calculated from MCF7-derived drug treatment 
profiles were the most prognostic in the METABRIC 
dataset (Supplementary Table S1). Since MCF7 is a 
breast-derived cell line, our results support our claim 
that using drug treatment profiles from matched cell lines 
yields optimal results when evaluating patient survival. 

PI3K-Akt-mTOR pathway inhibitor profiles 
predict response to taxane therapy in breast 
cancer

Although we confirmed that DRS was highly 
prognostic in primary patient tumors, we acknowledge 
that these gene expression profiles were collected from 
patients who have not yet received chemotherapy. Thus, 
drug treatment may substantially alter the basal expression 
of pre-treated tumors leading to a change in prognosis. To 
determine if DRS could also serve as a predictor of response 
to taxane-anthracycline chemotherapy, we utilized a dataset 
published by Hatzis et al. which contains gene expression 
profiles from pre-treated primary tumors and survival 
information of the patients as they receive neoadjuvant 
taxane-anthracycline chemotherapy [16]. Additionally, this 
dataset contains information about whether treated patients 
had high or low residual cancer burden. 

First, we found that DRSLY-294002 was predictive of 
patient distant relapse free survival, indicating that DRS 
can serve as a predictive marker of patient response to 
chemotherapy (P = 9.0E-7, Log-rank test) (Figure 5A). 
Furthermore, we evaluated whether DRSLY-294002 could 
predict residual cancer burden, another key indicator of 
chemotherapy responsiveness in the Hatzis dataset [16]. 
In particular, we stratified patients into two groups, the 
first corresponding to low residual cancer burden and the 
second corresponding to high residual cancer burden. 
We then trained a random forest classifier on patient 
DRSLY-294002 and found that the model was able to predict 
residual cancer burden with an AUC of 0.665 (Figure 5B). 
Furthermore, we repeated the analysis in ER+ and ER- 
patient samples and found that classification accuracy was 
higher in ER+ (AUC = 0.698) than in ER- (AUC = 0.535) 
cancers. Since MCF7 is an ER+ cell line, these results 
suggest that using matched cell lines yields improved 
results. Together these results indicate that PI3K-Akt-
mTOR pathway activity is a key predictor of response to 
neoadjuvant chemotherapy and can be interrogated using 
drug treatment profiles. Indeed, previous studies have 
demonstrated that increased PI3K-Akt-mTOR pathway 
activity is associated with chemoresistance in patients and 
in breast cancer cell lines [29, 33].

Figure 4: Survival analysis in breast cancer using DRS. (A) Correlation between breast tumor DRSwortmannin and Ki67 expression. 
Each dot point represents a single tumor sample. (B) Kaplan-Meier survival curves of breast cancer patients with DRSwortmannin greater than 
or less than 0. Each vertical line represents a censored patient. (C–D) Kaplan-Meier survival curves of ER+ and ER- breast cancer patients 
with DRSwortmannin greater and less than 0. (E–F) Kaplan-Meier survival curves of breast cancer patients using two additional datasets from 
van de Vijver et al. and Loi et al. (32,34).
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Systematic screening of therapeutics associated 
with PI3K-Akt-mTOR pathway activity

Because DRS is calculated using the gene expression 
profile of a chemical inhibitor, we can also use DRS to 
investigate if other potential compounds can modulate 
that inhibitor’s activity. Thus, we carried out a systematic 
screen of potential chemical modulators using GDSC data. 
This dataset contains gene expression profiles and IC50 
information corresponding to 139 drugs for 707 different 
cell lines. As a proof of concept, we first calculated a 
DRSwortmannin (MCF7) for each of the 39 breast-derived cell 
lines available in the dataset, and correlated DRSwortmannin 
with Akt Inhibitor VIII IC50 across these cell lines. We 
found that DRSwortmannin was significantly anti-correlated 
with the IC50 of Akt inhibitor VIII (PCC = –0.47, P = 2E-3)  
(Figure 6A). This indicates that increased DRSwortmannin 
(lower PI3K-Akt-mTOR pathway activity) is associated 
with increased sensitivity to Akt inhibitor VIII. From 
this result we speculate that dual inhibition of PI3K and 
Akt may be more effective in decreasing the rate of cell 
proliferation. Potentially, Akt can also be phosphorylated 
in a PI3K-independent fashion suggesting that Akt activity 
may not be completely shut off by inhibiting PI3K [34]. 
Thus, inhibiting both proteins may result in the blockade 
of multiple downstream pathways that also play a role in 
cell proliferation, evasion of apoptosis, and metastasis.

To extend this analysis to all drugs available in the 
GDSC dataset, we systematically calculated a DRS for all 
cell lines and correlated the DRSwortmannin with the IC50 of 
all 139 GDSC drugs [35]. In total, we found 16 drugs to 
be significantly correlated with DRSwortmannin at P < 0.05, 

such that as DRSwortmannin of the cell lines increased, the IC50 
of the drug also increased (Figure 6B). We also found 37 
drugs to be significantly anti-correlated with DRSwortmannin 
at P < 0.05, suggesting that high DRSwortmannin cell lines 
were more sensitive to these drugs (Figure 6B). To note, 
we observed that the IC50 profiles of lapatinib, a dual 
EGFR/HER2 inhibitor, and erlotinib, an EGFR inhibitor, 
were among the most anti-correlated with DRSwortmannin 
[36, 37]. Furthermore, these drugs are FDA approved for 
use in the treatment of various cancers. This suggests that 
targeting receptor tyrosine kinases upstream of PI3K-
signaling pathways may synergize with PI3K inhibition. 
Indeed, studies have shown that PI3K inactivation results 
in HER2 overexpression, or vice versa, and dual inhibition 
of HER2 and PI3K yields more optimal anticancer activity 
in breast cancer cell lines [38–40].

Furthermore, we postulated that groups of drugs 
with shared pharmacological characteristics would be 
correlated with DRSwortmannin in a similar manner. Indeed, 
we found that chemotherapy drugs tend to be positively 
correlated with DRS (Figure 6B). This indicates that 
pharmacologically similar drugs could be grouped 
together based on their association with DRS. As such, 
this introduces new avenues for drug repositioning 
whereby, new potential drug candidates can be identified 
via correlation of their IC50 with DRS. 

DISCUSSION

In this study, we describe an analysis framework that 
utilizes protein inhibition gene expression profiles to probe 
the activity of the PI3K-Akt-mTOR pathway in primary 

Figure 5: DRS predicts response to taxane-anthracycline chemotherapy. (A) Kaplan-Meier survival curves of taxane-
anthracycline chemotherapy-treated breast cancer patients with DRSLY-294002 greater and less than 0. Each vertical line represents a 
censored patient. (B) Receiver Operating Characteristic (ROC) curve for random forest classification predicting residual cancer 
burden using DRSLY-294002. Random forest classification was conducted using (1) all breast tumors, (2) ER+ breast tumors only, and  
(3) ER– breast tumors only.
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breast tumors. Several studies have utilized perturbation 
gene expression profiles derived from primary tissue or 
cell lines that contain mutations in a gene of interest to 
probe activity of a pathway involving that gene in patient 
tumors [12, 41]. Furthermore, perturbation profiles derived 
from RNAi experiments have also been applied to study 
pathway misregulation in cancer [42–44]. However, there 
has been no systematic analysis that has utilized protein 
inhibition profiles created through treatment with small 
molecule inhibitors as an approach to measure cancer-
associated pathway activity in primary tumors. 

We argue that the use of protein inhibition gene 
expression profiles is more informative compared 
to mutation-based gene expression profiles in that 
perturbation of the protein of interest is independent 
of other molecular events. In our analysis, we showed 
that PTEN expression can confound the use of PIK3CA 
mutation as a marker for PI3K-Akt-mTOR pathway 
activity. This suggests that there may be additional 
mutations or molecular events that accompany, or may 
even cause, the mutation of interest. Indeed, we did 
not find any significant difference in pAkt-Akt ratio 
between PIK3CA mutant and wild type samples in both 
ER+ and ER- tumors, as we did when stratifying on 
DRS (Supplementary Figure S2). Furthermore, protein 
inhibition perturbation profiles encode information 
different from that encoded in RNAi-based perturbation 
profiles. The use of RNAi completely ablates protein 
production resulting in gene expression profiles that 
also capture information about the disruption of protein-
protein interactions and other non-catalytic functions, 
which may affect the overall transcriptomic signature 
and complicate downstream analyses. Therefore, small 
molecular inhibitors may inhibit the catalytic activity of 
a protein without interfering with its potential regulatory 
functions, whereas this is not possible with RNAi [14]. 
Hence, we claim that protein inhibition profiles captures 
only the downstream effects of protein catalytic activity 
disruption, and not the effects caused by interfering with 

protein-protein interactions. However, this postulation 
remains to be directly tested in follow-up studies that 
utilize RNAi treatment gene expression profiles.

Indeed, there exist several issues associated with 
the use of small molecule inhibitors. First, there is the 
possibility of off-target effects, which add noise to the 
final drug treatment profile. Second, treatment with 
varying concentrations of the chemical inhibitor can 
result in differences in final gene expression output. 
Third, the three inhibitors all have different mechanisms 
by which they inhibit the PI3K-Akt-mTOR pathway. 
Wortmannin is a non-reversible inhibitor of PI3K, LY-
294002 is a reversible inhibitor of PI3K, and sirolimus 
targets mTOR further downstream of PI3K. Thus, the 
gene expression output induced by pathway inhibition will 
differ due to variation in mechanisms of drug action. As 
such, we applied all three drug treatment profiles in our 
analysis to achieve greater sensitivity. We reasoned that 
using multiple drug treatment profiles to generate three 
DRSs for each patient will enable greater sensitivity in 
detecting significant differences in PI3K pathway activity 
between different tumor subgroups. Thus, we use the most 
significant DRS profile to estimate PI3K activity in tumor 
samples. 

In spite of these limitations, using drug treatment 
profiles to probe activity of cancer-associated pathways 
provides an opportunity to study the transcriptomic 
effects of protein inhibition in the context of cancer. 
Our analysis framework can be extended to study other 
pathways in different cancers given that the appropriate 
drug treatment profiles exist. On this note, we also used 
drug treatment profiles from PC3 cell lines (available 
in CMap data) to calculate patient DRS in a prostate 
cancer dataset published by Taylor et al. [45]. We found 
that patient DRSwortmannin and DRSsirolimus was significantly 
anti-correlated with their Gleason scores indicating that 
increased PI3K activity was associated with disease 
severity (Supplementary Figure S3). Furthermore, we 
utilized drug treatment profiles from HL60 cell lines to 

Figure 6: Pharmacological correlates of PI3K-Akt-mTOR pathway activity. (A) Correlation of DRS with AKT Inhibitor 
VIII IC50. Each point represents a single cell line. (B) Correlation between DRS and the IC50 of 53 drugs. Blue colored drug names are 
chemotherapeutics and red colored drug names are targeted inhibitors.



Oncotarget84151www.impactjournals.com/oncotarget

calculate patient DRS and predict prognosis in several 
acute myeloid leukemia datasets. However, the survival 
results were not consistent across datasets perhaps due 
to the fact that the most differentially expressed genes 
in the HL60 drug treatment profile were not enriched 
for genes involved in the PI3K-Akt-mTOR pathway. A 
possible reason may be that off-target effects were more 
pronounced in HL60 cell lines leading to low quality drug 
treatment profiles. 

In summary, we performed a systematic proof-of-
concept study showing that drug treatment profiles are 
valuable tools that can provide insight into breast cancer 
pathway dysregulation. Our approach is novel in that we 
utilize protein inhibition profiles that provide different 
information that may not be present in RNAi- or mutation-
based activity profiles. We validate the predictiveness of 
the DRS metric using RPPA data and show that DRS can 
predict patient prognosis, response to chemotherapy, and 
provide insight into the action of other potential anti-
cancer drugs.

MATERIALS AND METHODS

Data acquisition

Raw CMap drug treatment profiles (.CEL files) for 
MCF7, HL60, and PC3 cell lines were downloaded from 
the CMap data portal (https//www.broadinstitute.org/
cmap) [32]. Only drug treatment profiles that corresponded 
to the highest treatment concentration were used, with 
the reasoning that any changes in gene expression will 
saturate at higher concentrations. Release 5.0 of the 
GDSC gene expression and IC50 data was downloaded 
from http://www.cancerrxgene.org/downloads/ [35]. 
The normalized METABRIC gene expression dataset 
(n = 2136) was downloaded from the European Genome-
Phenome Archive (http://www.ebi.ac.uk/ega) under 
the accession number EGAS00000000083 [15]. Level 
3 TCGA breast cancer gene expression (RNA-seq, 
n = 1037)) and RPPA data (n = 408) were downloaded 
from the TCGA data portal (https://tcga-data.nci.nih.
gov/tcga/) [18]. Normalized gene expression data by van 
de Vijver et al. was downloaded from the Netherlands 
Cancer Institute’s data portal (n = 260) (http://ccb.nki.nl/
data) [19]. Normalized gene expression data from primary 
breast tumors published by Loi et al. was downloaded 
from GEO under accession number GSE6532 (n = 255) 
[17]. Gene expression data and information about residual 
cancer burden used to evaluate DRS as a predictive 
marker was published by Hatzis et al. and downloaded 
from GEO under the accession numbers GSE25065 and 
GSE25066 (n = 508) [16]. Prostate cancer data by Taylor 
et al. was downloaded from GEO under accession number 
GSE21032 (n = 179) [45]. All gene expression datasets 
contained time-to-event survival and clinicopathological 
information on cancer patients. 

Pre-processing and generation of drug treatment 
profiles

Drug treatment gene expression profiles (.CEL) 
corresponding to wortmannin, LY-294002, and sirolimus 
from CMap were background corrected using Robust 
Microarray Analysis (RMA) and quantile normalized. 
Each probe set was fitted with a multichip linear model 
and collapsed based on mean probe set intensity. All pre-
processing steps were implemented in the R programming 
environment using the Bioconductor package “affy” 
[46]. After normalization, drug treatment profiles were 
generated by: (1) Taking the log2 ratio of treatment 
vs. control for all genes (2) Labelling values > 0 as the 
“up-regulated” group and values < 0 as the “down-
regulated” group (3) z-transforming ratios into z-scores 
to derive p-values for each gene (4) Implementing –log10 
transformation to p-values, and (5) Trimming transformed 
p-values to so that they fall within [–20, 20] to generate a 
final gene expression profile. All replicate drug treatment 
profiles were averaged and drug treatment profiles 
corresponding to the highest treatment concentration 
were used in subsequent analyses. RPPA data was log10-
transformed before analysis.

Calculation of tumor sample DRS

A DRS is calculated for each drug treatment profile-
tumor sample pair based on the IDEA framework [47]. 
Given the sorted tumor gene expression profile of a single 
patient sample g = [g1, g2, g3…gi…gn] and a drug treatment 
profile d = [d1, d2, d3…di…dn] (sorted according to g), we 
generate a foreground function f(i) and a background 
function b(i) for the up- and for the down-regulated group:
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The pre-DRS (pDRS) is then calculated using the 
following equations:
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We then normalize the pDRSs (of both the up- and 
down-regulated profiles) first by permuting the genes in 
the tumor expression profile 1000 times to yield a null 
pDRS distribution. The pDRSs were then divided by the 
null pDRSs to yield a DRSup and a DRSdn profile. The 
difference between DRSup and DRSdn was computed to 
yield the final DRS. Each patient sample was assigned 
three DRSs, each corresponding to one of the three PI3K-
Akt-mTOR pathway inhibitors. 

Association of DRS with survival and clinical 
phenotypes

Survival analysis was implemented by fitting 
Kaplan-Meier estimators to patient survival information. 
Patients were stratified at DRS = 0 and significant 
differences in survival were evaluated using the log-rank 
test. For the tissue-specific survival analysis, univariate 
Cox proportional hazards models were fitted to patient 
DRS to predict patient survival and significance was 
calculated using the Wald test. P-values were adjusted for 
multiple hypothesis testing using the Benjamini-Hochberg 
procedure. Survival analysis was conducted using the 
“survival” R package. Survival data in GSE21032 was 
limited so DRS was correlated with the Gleason score of 
the prostate tumors instead, using spearman correlation 
across 150 patient samples [45]. 

Machine learning analysis

Machine learning analysis was performed in the 
Hatzis dataset using MCF7/LY-294002 DRS as features to 
classify patients into those with high residual cancer burden 
(RCB-II/III) and low residual cancer burden (RCB-0/I)  
[16]. The random forest learning method was used to 
classify patients into the two cancer burden groups.  
10-fold cross validation was used to calculate the AUC. 
The random forest algorithm was implemented using the 
R package “randomForest”.

Correlation analysis and clustering of GDSC 
drugs

 The GDSC dataset contained gene expression 
data and drug IC50 information for 648 cell lines and 
139 drugs, respectively [35]. The wortmannin drug 
treatment profiles from CMap were used to calculate a 
DRS for each cell line [32]. Correlation of DRS with Akt 
Inhibitor VIII was calculated using Pearson correlation 
across 39 breast-derived cell lines. Correlation of 
DRS with IC50 of all GDSC drugs in the drug screen 
was calculated using Spearman correlation across all 
648 cell lines regardless of tissue type. Potential PI3K 
inhibitor modulators were selected using an adjusted 
P < 0.05 cutoff (Benjamini-Hochberg corrected) from 
the correlation analysis. 
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