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ABSTRACT
Deficits in episodic memory (EM) are a hallmark clinical symptom of patients 

with amnestic mild cognitive impairment (aMCI). Impairments in executive function 
(EF) are widely considered to exacerbate memory deficits and to increase the risk of 
conversion from aMCI to Alzheimer’s disease (AD). However, the specific mechanisms 
underlying the interaction between executive dysfunction and memory deficits in 
aMCI patients remain unclear. Thus, the present study utilized resting-state functional 
magnetic resonance imaging (fMRI) scans of the EF network and the EM network to 
investigate this relationship in 79 aMCI patients and 119 healthy controls (HC). The 
seeds were obtained from the results of a regional homogeneity (ReHo) analysis. 
Functional connectivity (FC) within the EM network was determined using a seed in 
the right retrosplenial cortex (RSC), and FC within EF network was assessed using 
seeds in the right dorsolateral prefrontal cortex (DLPFC). There was a significant 
negative correlation between EM scores and EF scores in both the aMCI and HC 
groups. Compared to the HC group, aMCI patients had reduced right RSC connectivity 
but enhanced right DLPFC connectivity. The overlapping brain regions between the 
EM and EF networks were associated with FC in the right inferior parietal lobule (IPL) 
in the right RSC network, and in the bilateral middle cingulate cortex (MCC) and left 
IPL in the right DLPFC network. A mediation analysis revealed that the EF network 
had an indirect positive effect on EM performance in the aMCI patients. The present 
findings provide new insights into the neural mechanisms underlying the interaction 
between impaired EF and memory deficits in aMCI patients and suggest that the EF 
network may mediate EM performance in this population.

INTRODUCTION

It has been proposed that amnesic mild cognitive 
impairment (aMCI) is a condition of intermediate 
symptomatology that represents the cognitive changes 
between normal aging and very early dementia in 
populations at high risk of Alzheimer’s disease (AD) [1]. 
It is well known that deficits in episodic memory (EM) 
are a hallmark clinical symptom of aMCI [2, 3], and it 
has been consistently demonstrated that the simultaneous 
existence of impaired executive function (EF) may also 
be present in these patients [4-7]. In particular, impaired 

EF exacerbates memory deficits and may increase the risk 
of conversion from aMCI to AD [8, 9]. However, little is 
currently known about the relationship between EF and 
EM in aMCI patients.

Converging lines of evidence strongly indicate 
that the deposition of β-amyloid (Aβ) proteins occurs 
within the default mode network (DMN) [10-12] and 
that this process is associated with impaired resting-
state connectivity [13-15]. It is well established that the 
DMN is involved with EM [16-18]. Additionally, memory 
function is not only facilitated by the medial temporal lobe 
(MTL) system but is supported by a distributed network, 
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particularly in the DMN [19]. Structural and functional 
imaging studies have consistently established that the 
retrosplenial cortex (RSC) and the posterior cingulate 
cortex (PCC) are the main hubs connecting with the MTL 
and that the prefrontal cortex (PFC) plays a central role in 
processing EM [20-22]. 

Numerous studies have observed changes in resting-
state functional connectivity (RSFC) within the DMN of 
patients with aMCI [23-30]. Additionally, in clinical terms, 
several functional magnetic resonance imaging (fMRI) 
studies have reported that the altered integrity of the DMN 
is related to memory impairments and that the PCC and 
RSC are among the brain regions that most consistently 
exhibit decreased functional connectivity (FC) in aMCI 
patients [22, 31]. Furthermore, some studies have 
demonstrated that impaired function and compensation 
coexist within the DMN in aMCI patients [32, 33] and 
that the altered connectivity of the DMN is linked to 
the conversion from aMCI to AD [34, 35]. However, 
the abovementioned studies have primarily focused 
on a single aspect of the DMN and used independent 
component analyses or cross-correlation approaches. This 
is important because information processing within the 
EM system is thought to involve dynamic interactions 
among several large-scale neural networks [36]. 

It is also well established that the prefrontal and 
parietal regions are crucial aspects of the EF system 
[37-41]. Using probabilistic independent component 
analyses or seed-based correlation analyses, several 
fMRI studies have demonstrated that the fronto-parietal 
EF network includes the dorsolateral PFC (DLPFC), 
anterior cingulate cortex (ACC), supplementary motor 
area (SMA), and orbitofrontal cortex (OFC) [42, 43]. The 
DLPFC is considered a core region involved in a variety 
of cognitive tasks, including EF and EM [41], and several 
studies have verified that EF networks are altered in 
patients with aMCI and mild AD [44-47]. Several studies 
identified increased FC between the DLPFC and other 
regions in aMCI patients [46, 48],whereas others observed 
disconnections among the regions of the fronto-parietal EF 
network [43, 49]. These discrepant findings may be related 
to the different stages of aMCI [50]. Additionally, dynamic 
functional interactions are thought to play a critical role 
in the maintenance of daily behavioral function, and the 
destruction of certain aspects of this connectivity network 
would likely lead to cognitive decline or disease [51-
54]. Therefore, there is a great need to investigate the 
mechanisms underlying the interaction between the EF 
and EM networks in aMCI patients. 

Regional Homogeneity (ReHo) is a method which 
can rapidly map the level of regional activity across the 
whole brain of an individual [55]. Findings from our 
research group and other studies suggest that brain regions 
with altered ReHo in patients with aMCI are located in 
structures associated with the EM [3, 19, 41, 56] and 
EF [4, 6, 37, 57] networks and include regions such as 

the hippocampus, PCC/precuneus (PCu), right inferior 
parietal lobule (IPL), DLPFC, and ventromedial prefrontal 
cortex (VMPFC) [58-61]. Therefore, the present study 
computed ReHo values to identify regions with abnormal 
local connectivity in a group of aMCI patients relative 
to healthy controls (HC). Next, the crucial overlapping 
regions (the right RSC and right DLPFC) of the ReHo 
areas were employed as the seed regions of interest (ROIs) 
to construct intrinsic EM and EF networks, respectively. 

The primary goal of the present study was to 
investigate differences in resting-state FC patterns in the 
DLPFC and RSC networks between aMCI patients and 
HC. It was hypothesized that altered FC might be observed 
within both of these networks and that impaired function 
and compensation might coexist in the DLPFC network 
in patients with aMCI. The secondary goal of the present 
study was to investigate the mechanisms underlying the 
interaction between the EF and EM networks in aMCI 
patients; therefore an alternative hypothesis was that 
the EF network mediates the processing of EM in this 
population. 

MATERIALS AND METHODS

Subjects

The present study included 198 elderly Han Chinese 
subjects (79 aMCI patients and 119 HC) who were right-
handed, between 54 and 80 years of age, had an education 
level above junior middle school, were in general good 
health, and had adequate visual and auditory acuity 
that would allow for successful cognitive testing. The 
subjects were recruited through media advertisements and 
community health screening events. The study protocol 
was approved by the Research Ethics Committee of 
Affiliated ZhongDa Hospital at Southeast University, and 
written informed consent was obtained from all subjects 
prior to participation in the study. 

Inclusion and exclusion criteria

All aMCI patients (including those with single 
and multiple domains) were diagnosed based on the 
recommendations of Petersen et al. [62] and others 
[63] using the following criteria: 1) subjective memory 
impairment corroborated by the subject and/or an 
informant; 2) objective memory performance based 
on a score within ≤1 standard deviation (SD) of age-
adjusted and education-adjusted norms on the Auditory 
Verbal Learning Test (AVLT) 20-minute delayed recall 
(DR; AVLT-20-DR); 3) normal general cognitive 
functioning based on a score ≥24 on the Mini Mental 
State Examination (MMSE) and a score >120 on the 
Mattis Dementia Rating Scale 2 (MDRS-2); 4) no or 



Oncotarget64713www.impactjournals.com/oncotarget

minimal impairment in activities of daily living; and 5) 
absence of dementia or a level not sufficient to meet the 
criteria of the Diagnostic and Statistical Manual of Mental 
Disorders, 4th edition, text revision (DSM-IV-TR) for 
AD. All HC were required to have a normal neurological 
examination and no complaints of cognitive impairment 
based on MMSE scores ≥26, MDRS-2 scores >120, and 
scores on a neuropsychological battery within the normal 
range. The exclusion criteria were as follows: 1) current 
existence or a history of cerebrovascular or psychiatric 
diseases (Hachinski score >4, Hamilton Rating Scale 
for Depression [HAMD] score >7); 2) gross structural 
abnormalities revealed by MRI scans; and/or (3) ferrous 
or electronic implants.

Clinical evaluation

All subjects underwent a clinical interview 
performed by trained neuropsychologists (Drs. Shu and 
Wang) that included a demographic inventory, medical 
history, and neurological and mental status examinations. 
General cognitive functioning was evaluated using the 
MMSE and MDRS-2. Additionally, a neuropsychological 
battery consisting of the AVLT-20-DR, Rey-Osterrieth 
Complex Figure Test 20-minute DR (CFT-20-DR), 
Logical Memory Test 20-minute DR (LMT-20-DR), 
Stroop Color and Word Tests A, B, and C, and Trail 
Making Test-A and -B (TMT-A and TMT-B) to evaluate 
EM and EF functioning was conducted with each subject.

MRI data acquisition

All MRI scans were obtained at the Affiliated 
ZhongDa Hospital at Southeast University using a 
whole-body Siemens Verio 3.0-T scanner (Siemens, 
Erlangen; Germany) with a standard transmit-receive 
head coil. All subjects were instructed to relax and close 
their eyes during the acquisition of the resting-state MRI 
scans. The resting-state functional images included 240 
volumes and were obtained with a gradient-recalled echo-
planar imaging (GRE-EPI) sequence using the following 
parameters: repetition time (TR) = 2000 ms, echo time 
(TE) = 25 ms, flip angle (FA) = 90°, number of slices = 
36, thickness = 4.0 mm, gap = 0 mm, acquisition matrix 
= 64 × 64, and field of view (FOV) = 240 × 240 mm. 
High-resolution T1-weighted anatomical images covering 
the whole brain were acquired by a 3D-magnetization 
prepared rapid gradient echo sequence with the following 
parameters: TR = 1900 ms, TE = 2.48 ms, FA = 9°, 
number of slices = 176, thickness = 1.0 mm, gap = 0 mm, 
acquisition matrix = 256 × 256, and FOV = 250 × 250 
mm.

Image preprocessing

The raw fMRI data were preprocessed using 
DPARSF V2.0 Basic Edition (www.restfmri.net/forum/
DPARSF) [64] based on the SPM8 toolkit (http://www.
fil.ion.ucl.ac.uk/spm) and MATLAB (The MathWorks, 
Inc.; Natick, MA, USA) programs. The first 10 volumes 
of data from each subject were discarded to allow for T1 
equilibration, and corrections for within-scan acquisition 
time differences between slices and head motions were 
made; no participant performed a head motion >2.0 mm of 
displacement or >2.0° of rotation throughout the course of 
the scan [65, 66]. Next, the T1 images were coregistered to 
the mean functional image using a linear transformation, 
the coregistered T1 images were segmented into gray 
matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF), and the head motion-corrected functional 
images were normalized to a standard template using the 
transformation matrix estimated from the T1 segmentation 
[67]. Next, the images were resliced to 3-mm isotropic 
resolution and subjected to linear detrending and temporal 
band-pass filtering (0.01-0.08 Hz), and the nuisance 
signals, including the six head motion profiles and global 
mean [68, 69], CSF, and WM signals, were regressed out. 
No significant differences in head motion were observed 
between the two groups (p > 0.05) [65]. 

Quality assurance

GM loss effects: Numerous studies have observed 
a significant level of GM atrophy in patients with aMCI 
[70, 71], and in the present study, the observed differences 
in FC may have been driven by anatomical differences 
between the groups. To clarify this issue, a general linear 
model (GLM) analysis examining the between-group 
differences in FC was performed using GM volume 
as an additional covariate [72, 73]. First, the individual 
GM volume maps were obtained and normalized to the 
Montreal Neurological Institute (MNI) space using the 
toolbox of voxel-based morphometry 8 (VBM8; http://
dbm.neuro.uni-jena.de/vbm/). Second, the normalized 
GM volume maps were resampled to the same voxel 
size as the functional data and further subjected to a 
logit transformation [logit(a) = 0.5ln(a/1−a)] to improve 
normality. Third, the voxel-wise values were smoothed 
with an 8 mm full-width at half-maximum (FWHM) kernel 
for final statistical analyses. and finally, the resulting GM 
values were regressed out in a voxel-wise manner as the 
nuisance regressor from the FC values to control for the 
influence of GM volume on FC strength. A voxel-wise 
GM volume correction was performed for each subject, 
and two-sample t-tests controlled for age, gender, and 
years of education were conducted to determine whether 
there was GM atrophy in the aMCI patients.
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Head motion effects

Recent resting-state fMRI studies have reported 
a significant influence of head motion on resting-state 
FC analyses [65, 66, 74]. To minimize the effects of 
head motion on the present results, two methods were 
employed in the quality assurance (QA) measures. First, 
the head motion effects, which were calculated as the root 
mean squared (RMS) head displacement and rotation 
values derived from the motion-correction procedure (in 
mm and degrees, respectively) were regressed out [68]. 
Second, a scrubbing procedure was performed on the 
preprocessed images, then the resting-state FC analyses 
were performed, and two-independent samples t-tests 
were conducted to compare between-group differences 
in head motion parameters between the two groups [13, 
65, 66]. Briefly, the framewise RMS deviation (dRMS) 
values [75] between the neighboring functional volumes 
within each subject were calculated, and the volumes with 
a dRMS values >0.5 mm and their adjacent volumes (one 
back and two forward) were scrubbed for each subject. 
This procedure partly reduced the bias in the resting-state 
fMRI signal induced by head motion artifacts [65].

ReHo calculation

One popular method currently used to analyze 
RSFC data is a seed correlation analysis in which the seed 
ROIs are typically selected based on prior anatomical 
information or previously performed activation maps. 
However, these types of investigator-dependent selections 
may not be optimal for evaluating RSFC data because 
the biases that result from external influences may cause 
connectivity patterns to exhibit completely different 
features. In the present study, a novel method was 
proposed in which the desired seed ROIs were defined in 
accordance with the nature of the resting-state fMRI data 
[76].

 The approach used in the present study was based 
on the measurement of ReHo values in the targeted brain 
areas because the ReHo may more accurately represent the 
characteristics of brain regions involved in various kinds 
of activity, as previously described by Zang et al. [77]. 
Individual ReHo maps were calculated using Kendall’s 
coefficient of concordance (KCC) based on the nearest 
27 neighboring voxels across the whole brain because 
the ReHo could reflect the temporal homogeneity of 
spontaneous regional activity. First, the ReHo maps were 
determined within the entire resting brain, and then each 
ReHo map was divided by the mean ReHo of the whole 
brain to reduce the effects of individual variability. Then, 
a smoothing procedure was conducted on the ReHo maps 
with an 8mm FWHM Gaussian filter to decrease spatial 
noise.

One-sample t-tests were performed on the individual 
ReHo maps for each group to establish the intra-group 

voxel-wise ReHo maps. Then, two-sample t-tests were 
performed on the individual ReHo maps of the two 
groups to identify the between-group ReHo differences 
using voxel-wise GM volumes, age, gender and education 
as covariates. All data processing was performed with 
the REST software (Resting-state fMRI Data Analysis 
Toolkit; http://resting-fmri.sourceforge.net) [78].

Based on these ReHo findings, four regions with 
abnormal local connectivity were identified in the aMCI 
group: the right DLPFC, RSC, superior parietal lobule 
(SPL), and left parahippocampal gyrus (Figure S1 and 
Table S1). The right DLPFC and right RSC were selected 
as seeds for next seed-based RSFC analysis because these 
two brain regions were the core aspects of the EF and EM 
networks, respectively[20, 41].

Seed-based FC analysis

After the calculation of the ReHo values, they were 
spatially smoothed using an 8-mm FWHM Gaussian 
kernel on the preprocessed fMRI data. The individual time 
courses were extracted based on the seed region of the 
DLPFC, which had been defined as a mask file. For each 
subject, a mean time series for the ROI was computed as 
a reference time course, and voxel-wise cross-correlation 
values between the seed regions and the whole brain were 
calculated. Then, Fisher’s z-transformation was applied to 
improve the normality of the cross-correlation values [79-
81]. The RSC network construction was also completed 
using the above processes.

Statistical analysis 

Demographic and neuropsychological data

All statistical analyses were conducted with SPSS 
17.0 software (SPSS, Inc.; Chicago, IL, USA). Two-
sample t-tests and Chi-square (χ2) tests (only utilized 
for enumeration data) were conducted to compare the 
demographic data and neuropsychological performances 
between the two groups. A p-value <0.05 was considered 
to indicate statistical significance.

Composite scores were used in the present study 
to increase statistical power via reductions in random 
variability and removing the floor and ceiling effects. 
First, the raw scores from each test for each subject were 
transformed into z-scores with reference to the overall 
means and SD of all subjects. Second, the composite 
scores were calculated by averaging the z-scores of the 
individual tests as follows: the EM score included the 
AVLT-20- DR, CFT-20-DR, and LMT-20-DR scores, and 
the EF score included the TMT-A, TMT-B, and the Stroop 
Color and Word C (SCWT-C) tests (p < 0.05, Bonferroni-
corrected). 
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Group-level intrinsic FC analysis

The individual DLPFC and RSC maps for each 
group were submitted to a random-effect analysis using 
one-sample t-tests with a stringent threshold of p < 0.01 
and a family-wise error (FWE) correction to reveal the 
regions that were the most robustly correlated with each 
seed. Only clusters within the GM mask were retained. 
Additionally, to avoid ambiguous biological interpretations 
related to apparently negative connectivity resulting from 
corrections for global signal changes [69], only positive 
FC was assessed in the present study.

To evaluate the between-group differences within 
the DLPFC and RSC networks, a GLM analysis with 
FC as the dependent variable, group as the independent 
variable, and age, gender, years of education, and GM 
volume as covariates was conducted. A statistical threshold 
of p < 0.005 (uncorrected) and a cluster size >1,998 mm3 
were used to achieve a corrected statistical significance of 
p < 0.01, as determined by a Monte-Carlo simulation (see 
program AlphaSim by D. Ward). 

Correlation of behavioral performance scores 
with the intrinsic FC networks 

To investigate the neural bases underlying the EF 
and EM functions of the DLPFC and RSC networks, 
respectively, a multiple linear regression model analysis 
was performed. The relationships between the EF and 
EM scores and the two networks were examined in aMCI 
patients to determine the behavioral significance of the 
collaboration of the neural networks (p < 0.05, corrected 
with AlphaSim, cluster size >10,503 mm3). Furthermore, 
to assess whether there is a linear relation between the 
independent (the EF and EM) and the dependent variable 
(the DLPFC and RSC networks), we extracted the 
averaged FC strengths of these regions showing positive 
and negative correlations between the neuropsychological 
scores and FC of the DLPFC and RSC network regulates 
and performed a supplementary correlation analysis 
(partial correlation) to examine the relationships between 
the extracted FC strengths and the neuropsychological 
performance. Then, a conjunction analysis was performed 
to identify any overlapping regions that were commonly 
connected with the DLPFC and RSC networks.

Mediation analysis

Because the present study observed a significant 
effect of EF on EM performance and the EM deficits in 
aMCI patients were associated with the right DLPFC 
functional network (Figure 4), a mediation analysis was 
conducted to examine whether FC in the right DLPFC 

network mediated the EF effect on EM performance in 
aMCI patients. A classic approach was chosen to establish 
the mediation analysis; a three-step regression model was 
constructed as follows: 

(1) Y = cX + e1
(2) M = aX + e2
(3) Y = c’X + bM + e3,
where X is the dependent variable (EF scores), Y is 

the independent variable (EM scores), M is the mediator 
(FC in the DLPFC), a is the regression coefficient for the 
relationship between EF scores and FC strength, b is the 
regression coefficient for the relationship between FC 
strength and EM scores, c is the regression coefficient for 
the relationship between EF scores and EM scores, and 
c’ represents the effect of EF scores on EM scores while 
controlling for the indirect effect.

In this analysis, the four conditions used to establish 
mediation were as follows: 1) c must be significant; 2) a 
and b were significant; and 3) c’ < c (in absolute value, 
partial mediation) or c’ was insignificant (full mediation). 
Additionally, an indirect ratio was used to present the 
strength of mediation: ([a*b]/c).

RESULTS

Subject characterization

The demographic characteristics of the study 
subjects are provided in Table 1. No significant differences 
were observed between the aMCI and HC groups in terms 
of gender, age, or education level (p > 0.05). However, 
the aMCI group had significantly lower MMSE, EM, and 
EF scores than the HC group (p < 0.01). Additionally, the 
EM scores were significantly negatively correlated with 
EF scores in both the aMCI (R2 = 0.15, p = 0.0004) and 
HC (R2 = 0.13, p < 0.0001) groups (Figure 1).

Group-level intrinsic FC

The resting-state intrinsic functional network 
patterns in the DLPFC in both the HC and aMCI 
groups primarily included the bilateral prefrontal lobe, 
ACC, MCC, anterior and posterior central gyri, caudate 
nucleus, and middle temporal gyrus (MTG), and the RSC 
network patterns included the bilateral hippocampus, 
parahippocampal gyrus, PCC, posterior central gyrus 
(PCG), and occipital lobe (Figure 2). Compared to the HC 
group, the aMCI group exhibited altered connectivity in 
the DLPFC and RSC networks (Figure 3). In the DLPFC 
network, the aMCI group showed increased FC in the left 
anterior central gyrus (ACG), left SMA, bilateral MCC, 
and caudate nucleus compared to the HC group. In the 
RSC network, the aMCI group showed decreased FC in 
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Figure 1: Negative correlation between EM scores and time taken to complete the EF test in the aMCI (R2 = 0.15, p = 
0.004) and HC (R2 = 0.13, p < 0.0001) groups. The linear shift to the left indicates decreased EM and EF performance in the aMCI 
group. Abbreviations: EM, episodic memory; EF, executive function; aMCI, amnestic mild cognitive impairment; HC, healthy controls.

Figure 2: Patterns of intrinsic functional connectivity in the DLPFC and RSC networks in the aMCI and HC groups. 
A. DLPFC connectivity network, B: RSC connectivity network (one sample t-test, corrected with AlphaSim, p < 0.01, cluster size > 
1,998 mm3); color bar presented with z scores. Abbreviations: aMCI, amnestic mild cognitive impairment; HC, healthy controls; DLPFC, 
dorsolateral prefrontal cortex; RSC, retrosplenial cortex. 
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Figure 3: Differential intrinsic functional connectivities in the DLPFC and RSC networks in the aMCI group compared 
to the HC group (two-sample t-test, p < 0.05, corrected with AlphaSim). A. Increased DLPFC network including the left ACG/
SMA, bilateral MCC, and caudate nucleus; decreased RSC network including the bilateral PCC and PCu. A bright color [see note above] 
indicates increased connectivity and a blue color indicates decreased connectivity; color bar presented with z-scores. B. Imbalance in FC 
strength between the two networks in the aMCI group compared to the HC group (m-value is the Fisher’s Z-transformed CC coefficient, 
as below). Abbreviations: ACG, anterior central gyrus; SMA, supplementary motor area; MCC, middle cingulate cortex; PCC, posterior 
cingulate cortex; PCu, precuneus; aMCI, amnestic mild cognitive impairment; HC, healthy controls. 

Note: Data are presented as mean±SD unless otherwise indicated. Abbreviations: aMCI, amnesic mild cognitive impairment; 
HC, health control, MMSE, Mini-Mental State Examination; AVLT-20-min DR, Auditory Verbal Learning Test-20-min 
delayed recall; CFT-20-min DR, Rey–Osterrieth Complex Figure Test with its 20-min delayed recall; LMT-20-min DR, 
Logical Memory Test-20-min delayed recall; SCWT-C, Stroop Color and Word C; HAMD, Hamilton Depression Scale; 
HIS, Hachinski Ischemic Score. 
a the p value was obtained by two-sample two-tailed t test
b the p value was obtained by two-tailed χ2 test

Table 1: Demographic and neuropsychological data
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the bilateral PCC and PCu compared to the HC group. 
Details regarding the size, location, and peak density of 
each cluster are provided in Table 2.

Behavioral significance of group-level intrinsic 
connectivity

A multivariate linear regression analysis was 
performed to examine the correlations between 
DLPFC connectivity and the EF and EM cognitive 
domains. Positive and negative correlations between 
the neuropsychological scores and FC of the DLPFC 
and RSC networks were observed in a number of brain 
regions (Figure 4A and 4C), and overlapping brain regions 
were identified in the bilateral MCC and left IPL (Figure 
4B and Table 3). In the DLPFC network, the MCC was 

positively correlated with EF, but negatively correlated 
with EM (Figure 4D), whereas the left IPL was negatively 
correlated with EF, but positively correlated with EM 
(Figure 4E). In the RSC network, an overlapping region 
was identified in the right IPL (Figure 4B and Table 3), 
which was positively correlated with EF, but negatively 
correlated with EM (Figure 4F).

Mediation analysis

The mediation analyses revealed that the 
connectivity between the right DLPFC and bilateral MCC 
mediated the association between EF and EM in patients 
with aMCI. These findings indicate that the effects of EF 
on EM performance in aMCI patients may be explained 
by two mechanisms: the direct effect of EF on EM or 

Note: Abbreviation: MNI, montreal neurological institute; x, y, z, coordinates of peak locations in the MNI space; BA, 
Brodmann’s area; R, right. L, left. IPL, inferior parietal lobule; MCC, middle cingulate cortex;

Note: Abbreviation: MNI, montreal neurological institute; x, y, z, coordinates of peak locations in the MNI space; BA, 
brodmann’s area; R, right; L, left; CN,; ACG, anterior central gyrus; SMA, supplementary motor area; MCC, middle cingulate 
cortex; PCC, posterior cingulate cortex; PCu, precuneus.

Table 2: Clusters with altered intrinsic functional connectivities in the DLPFC and RSC networks in the aMCI group 
compared to the HC group.

Table 3: Neural bases of the interaction between episodic memory function and executive function in the DLPFC and 
RSC functional connectivity networks.
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an indirect pathway mediated via the effects of EF on 
the DLPFC network. More specifically, FC between the 
DLPFC and bilateral MCC accounted for 42.9% of the 
indirect positive effect on the association between EF and 
EM performance in patients with aMCI (Figure 5).

DISCUSSION

The present study investigated activity in the EF and 
EM networks to more fully characterize the mechanisms 
underlying the interaction between memory deficits and 
executive dysfunction in patients with aMCI. Three main 
results of the present study should be emphasized. First, 
the EM scores were significantly negatively correlated 
with the EF scores in both the HC and aMCI groups. 
Second, there were increases in the intrinsic EF network 

and decreases in the EM network, suggesting that the 
neural activity between the EF and EM networks was 
imbalanced in the aMCI patients. Third, the connectivity 
between the right DLPFC and bilateral MCC mediated 
the association between EF and EM performance in aMCI 
patients. These findings provide direct evidence supporting 
the suggestion that EF mediated EM performance at the 
network level in a non-demented elderly population.

The present study identified disruptions in ReHo in 
the right DLPFC and RSC, which have consistently been 
identified as core regions of the EF and EM networks, 
respectively [20, 39]. Converging evidence from our 
research group and others indicates that ReHo is altered 
in the RSC in the EM network [3, 19, 41, 56] and in the 
DLPFC in the EF network [4, 6, 37, 57] in aMCI patients. 
Therefore, it was reasonable for the present study to utilize 

Figure 4: Behavioral significance of altered functional connectivity in the DLPFC and RSC networks in aMCI 
patients. A. Neural correlates of the effects of EM and EF in the right DLPFC network. B. Overlapping brain regions between impaired 
EF and memory deficits in the DLPFC and RSC networks, respectively. The interactive regions included the bilateral MCC and IPL. C. 
Neural correlates of the effects of EM and EF in the right RSC network. D. and F. FC strength in the bilateral MCC and right IPL regions 
in aMCI patients was negatively correlated with EM and EF capacity (the reverse of time consumed in the EF tests). E. FC strength in 
the left IPL region in aMCI patients was positively correlated with EM and EF capacity (which was the reverse of time consumed in the 
EF tests). Abbreviations: FC, functional connectivity; IPL, inferior parietal lobule; MCC, middle cingulate cortex; DLPFC, dorsolateral 
prefrontal cortex; RSC, retrosplenial cortex; EF, executive function; EM, episodic memory; aMCI, amnestic mild cognitive impairment; 
BC, Behavioral characteristic. 
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a new approach to analyze FC that employed the ReHo 
results as the seed ROIs. Furthermore, this new method 
of FC analysis likely has advantages over other popular 
protocols that are currently used and may have provided 
more reasonable and persuasive results. 

The neuropsychological results in the present study 
showed that EF and EM were impaired in aMCI patients 
and that there was a significant relationship between these 
two crucial cognitive domains such that EF performance 
was significantly and positively related to EM. However, 
EF is more commonly impaired in AD patients than 
aMCI, several studies did not find a significant difference 
between aMCI patients and normal controls in terms of 
these cognitive domains [82, 83]. This may be partially 
due to complex neurophysiologic mechanisms of the 
disease and dynamic changes in EF during different stages 
of aMCI. We confirm that the emergence of EF deficits 
significantly accelerates the conversion rate from aMCI 
to AD [9].

In the present study, a decreased RSC FC network 
and an increased DLPFC FC network were observed in 
aMCI patients. These findings suggest an imbalance 
between intrinsic EF connectivity and intrinsic EM 
connectivity in this population. Several studies using 
positron emission tomography (PET) have demonstrated 
that the RSC is one of brain regions that undergoes 

metabolic decline in patients with AD and aMCI [21, 
84, 85]. Similarly, several fMRI studies have found that 
the PCC and RSC regions have significantly disrupted 
connectivities in patients with aMCI [86, 87]. Taken 
together, the abovementioned studies and the present 
findings suggest that the RSC network is altered and 
exhibits decreased FC in aMCI patients. However, 
the nature of activity in the DLPFC network remains 
elusive based on the findings of previous studies. Some 
fMRI studies have observed increased FC between the 
right DLPFC [48, 88] and other regions, whereas other 
studies have found decreased FC in the fronto-parietal 
network in aMCI patients [43, 79]. Longitudinal follow-
up studies have verified that activity within the fronto-
parietal network appears to decrease with the progression 
of the disease [89]. The present findings may imply 
that a compensatory mechanism exists to account for 
a disconnection of the EM network in aMCI patients. 
Although this population showed increased intrinsic FC 
in the DLPFC network in the present study, this was 
likely a pathogenic mechanism that is reflective of an 
unsuccessful attempt to recruit preserved neuronal areas 
as a compensation for pathology [90, 91]. 

The present study further elucidated the neural 
bases of the collaboration between EM and EF in aMCI 
patients by revealing that the main overlapping regions 

Figure 5: Results of the mediation analysis. FC between the DLPFC and the bilateral MCC had an indirect positive effect, 
representing 42.9% of the total effect on the association between EF and EM performance in aMCI patients. Abbreviations: FC, functional 
connectivity; MCC, middle cingulate cortex; DLPFC, dorsolateral prefrontal cortex; EF, executive function; EM, episodic memory; aMCI, 
amnestic mild cognitive impairment.
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underlying EF and EM in the right DLPFC and RSC 
networks, respectively, were the bilateral MCC and the 
IPL. It is well documented that the IPL is a heterogeneous 
area involved in multimodal functions such as sensory 
motor processing [92], executive control [93], salience 
detection [42], and EM function [19]. The present findings 
may be explained by the fact that the parietal cortex and 
the cingulate cortex play crucial roles in the processing of 
EF and EM functions [3, 43]. 

Interestingly, the present study also observed that EF 
had a significant effect on EM and that the EM deficits 
in aMCI patients were associated with the right DLPFC 
functional network. Our study verified that FC in the 
right DLPFC network mediated the effects of EF on EM 
performance in aMCI patients. The connectivity between 
the DLPFC network and the bilateral MCC had an indirect 
and significant positive effect on the association between 
EF and EM performance in aMCI patients. Evidence 
from neuroimaging studies indicates that the MCC is 
reciprocally connected with fronto-parietal regions, 
particularly the DLPFC [94]. Taken together, the present 
findings are the first to verify that the MCC is a core region 
of the EF network that might mediate the processing of 
EM.

It should be noted that there are several limitations 
to the present study. First, the recruitment of the aMCI 
patients was based on clinical criteria, and patients with 
partial symptomologies, such as prodromal AD according 
to the new AD diagnostic criteria [95], may therefore 
have been included in the study. In future studies, a 
lumbar puncture should be performed to distinguish 
patients with prodromal AD or MCI from those with AD 
[2, 96]. Second, the present study was a cross-sectional 
investigation. The observed changes in the patterns of 
network connectivity may have reflected a dynamic 
phenomenon, and these changes may have appeared to be 
greater than they actually were; thus, the described deficits 
in FC may have reflected the state of the disease rather 
than to particular subtypes. Thus, additional longitudinal 
studies will be very helpful in determining whether the 
changes in the patterns of network FC in aMCI patients 
are specifically associated with a more rapid course of AD. 
Third, the RSC was selected as the seed in the FC analyses 
because it is a key node in the retrieval of EM [20], but 
this area is not a classic brain region associated with EM 
encoding, consolidation, or retrieval processing [3, 19]. 
Further studies are required to apply the approaches used 
in the present study to investigate the memory network at 
the whole-brain level

In summary, the present findings revealed a 
simultaneous disconnection of the intrinsic RSC network 
and compensation for this within the DLPFC network 
in aMCI patients. Furthermore, these abnormal network 
activities were associated with impairments of EF and EM. 
The present findings provide new insights into the neural 
mechanisms underlying the interaction between impaired 

EF and memory deficits in patients with aMCI, and 
suggest that the EF network may mediate EM performance 
in this population.
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