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ABSTRACT
Aberrant activity of tyrosine kinases has been proved to be associated with 

multiple diseases including fibrotic diseases. Tyrosine kinases inhibitors (TKIs) might 
be a novel approach to transform the anti-fibrotic treatment. However, both beneficial 
and adverse effects are observed by researchers when using these TKIs in either 
preclinical animal models or patients with hepatic fibrosis. Since hepatotoxicity of 
TKIs is the leading cause for drug withdrawals thus limits its application in anti-
fibrosis, not only efficacy but also safety of TKIs should be paid great concerns. It has 
been observed in a few studies that TKIs could induce relatively high rate of hepatic 
biochemical markers elevations and even result in liver failure. Fortunately, several 
strategies have been adopt to handle with the hepatotoxicity. Accumulating evidences 
suggest that hepatic stellate cells (HSC) play a pivotal role in hepatic fibrogenesis, so 
it might be a good option to develop selective TKIs specifically targeting HSCs. The 
present review will briefly summarize the anti-fibrotic mechanism of TKIs, adverse 
effects of TKIs as well as the novel developed selective delivery of TKIs.

INTRODUCTION

Tyrosine kinases (TKs) is a family of tyrosine 
protein kinases with important functions in regulation of 
a variety of physiological cell processes. Abnormal TKs 
activities were found to be associated with non-malignant 
diseases, including hepatic fibrosis and other fibrotic 
diseases. Recently, increasing evidence suggested that 
tyrosine kinases inhibitors (TKIs) seemed to be novel 
potential drugs for hepatic fibrosis [1]. In preclinical 
phase, several Food and Drug Administration (FDA)-
approved TKIs, such as sorafenib, erlotinib, Imatinib, 
vatalanib, nilotinib, erotinib and brivanib, exhibited 
potential anti-fibrosis effects both in vitro and in vivo 
(Figure 1). Beneficial effects have been observed by 
clinicians using above TKIs in some patients with tumors 

as well as hepatic cirrhosis. However, TKI applications 
in management of hepatic fibrosis are limited by their 
hepatotoxicity which has been reported by many 
clinicians. How to balance the beneficial anti-fibrotic 
effects and hepatotoxicity of TKIs is a key question and 
needed to be fully discussed. Although these mentioned 
controversies have yet remained unanswered, the best 
advice is to thoroughly understand the mechanisms of 
anti-fibrosis and hepatotoxicity of TKIs. Hopefully, 
more details are becoming clear day by day, which have 
made researchers renew their understandings of TKIs in 
management of hepatic fibrosis. This review will mainly 
summarize recent findings and unresolved problems of 
TKIs in anti-hepatic fibrosis. 

                  Review
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ANTI-FIBROTIC ACTIVITY OF 
TYROSINE KINASE INHIBITORS: 
A POTENTIAL NEW THERAPY FOR 
HEPATIC FIBROSIS

Hepatic fibrosis is defined as the normal liver 
architecture is replaced by fibrous tissue, scar and 
regenerative nodules, which leads to liver function loss [2]. 
Hepatic fibrosis could develop to cirrhosis, hepatocellular 
carcinoma, or even death. Nowadays, diverse anti-hepatic 
fibrotic therapies are not seemingly effective from bench 
to bedside [3]. Accumulating evidence suggested that TKs 
blocking seems to be a prospective approach to treating 

hepatic fibrosis, and many animal based preclinical 
experiments showed that TKIs did bring great benefits 
to hepatic fibrosis [4, 5]. This should be attributed to 
its capacity of inhibiting both matrix restructuring and 
vascular remodeling [6]. In the following section, we will 
summarize preclinical and clinical evidence for TKIs in 
management of hepatic fibrosis.

Anti-fibrotic mechanisms of TKIs in preclinical 
studies

Grateful thanks to the decades of relevant studies, 
a numerous biological processes involved in the hepatic 

Figure 1: Anti-fibrotic mechanism of several TKIs. A. Sorafenib exerts several anti-fibrotic effects via inhibiting TKs, TKLs, 
STEs, CMGCs and CAMKs; B. Imatinib exerts various anti-fibrosis effects via inhibiting of TKs; C. Sunitinib exerts anti-fibrosis effects 
via inhibiting TKs and CAMKs; D.Vatalanib exert anti-hepatic fibrosis effects via inhibiting TKs; E. Brivanib exert anti-hepatic fibrosis 
effects via inhibiting TKs; F. TKIs exert anti-fibrotic effects by affecting different targets.
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fibrogenesis were unveiled. The activation of hepatic 
stellate cells (HSCs) was considered as a key processes 
during hepatic fibrogenesis [7-9]. Prior studies have 
delineated that TKs play an important role in regulating 
HSC activation [10]. Therefore, targeting TK using 
inhibitors (TKIs) is considered to be potential approach to 
inhibit HSC activation and consequently to treat hepatic 
fibrosis [1]. The mostly investigated TKI which exhibited 
a high capacity in inhibiting HSC activation is sorafenib. 
It was found that sorafenib could inhibit proliferation 
of HSCs by downregulating expression of cyclins and 
cyclin dependent kinases (CDKs) and prevent ERK, 
Akt and 70-kDa ribosomal S6 kinase (p70S6K) from 
phosphorylation [11, 12], [13]. In addition, several other 
TKIs, such as imatinib [14] , vatalanib [15-17], nilotinib 
[18-22], erlotinib [23, 24] and brivanib [25, 26], were also 
found to prevent HSC activation, resulting in less collagen 
deposition.

Portal hypertension is a complication defined as a 
portal venous pressure gradient exceeding 5 mm which 
could leads to liver failure even death [27], thus how to 
deal with portal hypertension never fail to attract attention. 
Intrahepatic angiogenesis recently is considered to be 
involved in sinusoidal resistance and portal hypertension, 
and finally promotes hepatic fibrosis progression. Vascular 
endothelial growth factor receptor (VEGFR), which 
belongs to receptor tyrosine kinase, is a key regulator 
of physiological angiogenesis. It has been clearly 
investigated that TKIs targeting VEGFRs significantly 
affected angiogenesis either in tumor or non-malignant. 
Thabut D et al. reported that sorafenib is associated with 
suppressing intrahepatic angiogenesis and attenuating 
hepatic fibrosis [6]. It has been shown that portal pressure 
and angiogenesis are reduced and no systemic blood 
pressure fluctuation appeared in sorafenib treated bile duct 
ligation (BDL) rats [28-30]. Rho kinase activity is crucial 
for the effect of sorafenib on intrahepatic angiogenesis 
and portal hypertension [31]. Besides, other TKIs, such as 
sunitinib, was also showed the ability to reduce portal vein 
pressure in cirrhotic rats [29]. 

Anti-fibrotic activity of TKIs observed in clinical 
studies

Reduction of portal pressure has been observed 
in sorafenib treated patients clinically, with a 36% 
portal venous flow decreasing at least [32]. Similarly, 
Pinter M et al. also reported that a two-week sorafenib 
treatment exert positive effect on portal hypertension in 
HCC patients with hepatic fibrosis [33]. Additionally, 
hepatopulmonary shunt reduction has also been observed 
in sorafenib treated patients with hepatic cirrhosis, which 
might greatly improve the prognosis of these patients [34]. 
Recently, a placebo-controlled randomized clinical trial 
has been conducted to evaluate the effects of sorafenib 

on portal pressure in patients with hepatic cirrhosis 
(NCT01714609).

TKIs could prevent as well as reverse hepatic 
fibrosis

To figure out whether TKIs could prevent or reverse 
hepatic fibrosis, J.T. Stefano et al. conducted a study to 
evaluate the effects of sorafenib on hepatic fibrosis in an 
experimental non-alcoholic steatohepatitis (NASH) model 
rats. Their study demonstrated that sorafenib could prevent 
the early stages of fibrosis in NASH model rats [35]. 
Recently, a study by Ikuo Nakamura et al. also proved 
that hepatic fibrosis in mice were attenuated when brivanib 
was used at the same time [36]. Above results implied 
that TKIs might be a promising therapeutic strategy in 
prevention of hepatic fibrosis. Additionally, TKIs had also 
been found to make effects on reversing hepatic fibrosis. 
In a more previous study, Neef M et al. reported that early 
imatinib treatment induced decrease HSCs activity, thus 
markedly reverse fibrosis in the first three week after BDL 
[37]. However, their study showed that imatinib make 
no difference in advanced fibrosis models. In all, above 
findings suggested that TKIs could prevent as well as 
reverse hepatic fibrosis, implying TKIs may represent a 
novel therapeutic approach to treatment of not only HCC 
but also hepatic fibrosis.

HEPATOTOXICITY OF TKIS: AN 
INEVITABLE ISSUE LIMITING THEIR 
CLINICAL APPLICATION

The leading cause for drug withdrawals is drug 
toxicity, especially the hepatotoxicity. During the period 
1953 to December 2013, 81 medicinal products (18%) 
that were withdrawn from the market mainly due to 
hepatotoxicity [38]. An analysis revealed that from 1990 
to 2006, 14 of 38 drugs (34.2%) were withdrawn due to 
hepatotoxicity [39]. As most of TKIs are metabolized 
by hepatic cytochrome P450 enzyme system [40-42], 
clinicians should be aware of potential hepatotoxicity 
with TKIs in patients with liver dysfunction. TKI related 
hepatotoxicity, including elevation of liver enzymes, liver 
failure and liver failure induced death, have already been 
reported in the medical literature [43]. A recent meta-
analysis based on 3691 patients received TKIs treatment 
concluded that hepatotoxicity occurred in 23-40% patients 
who received TKIs treatment [44]. Additionally, a phase 
III trial made by Jordi Bruix et al. addressed that the rate 
of discontinuation of sorafenib for HCC patients after 
resection or ablation was 50% at a year, far higher than 
anticipated, which mainly result from adverse effects. 
Above result indicated that TKIs seemed not tolerable in 
potentially cured patients [45]. Thus, hepatotoxicity of 
TKIs is an inevitable issue limiting their application in 
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patients with only hepatic fibrosis. In the following aspect, 
we summarized that rare but serious and potentially fatal 
hepatotoxicity of TKIs in clinical trials.

TKI related hepatotoxicity reported in literature

Sorafenib is the only TKI which was approved to be 
used in patients with advanced hepatocellular carcinoma. 
Whereas in some clinical cases, hepatotoxicity was also 
reported during administration of sorafenib. Schramm C et 
al. [46] reported that sorafenib could induce liver failure, 
and Llanos L et al. [47] also reported a case of sorafenib-
induced severe hepatotoxicity in a 73-year-old man. 
Hepatotoxicity of sofafenib often manifests as elevations 
of hepatic biochemical markers, including alanine 
aminotransferase (ALT), aspartate aminotransferase 
(AST), alkaline phosphatase (ALP) and bilirubin [43]. 
Cheng AL et al. even reported that the incidence of AST 
elevation could be above 40%. To explore the incidence of 
hepatotoxicity in patients received sorafenib treatment, we 
therefore conducted a meta-analysis based on 19 clinical 
trials, including acute myeloid leukemia (AML) (n = 1); 
biliary tract cancer (n = 1), breast cancer (n = 2), colorectal 

cancer (n = 1), hepatocellular carcinoma (HCC) (n = 5), 
melanoma (n = 3), non-small cell lung cancer (NSCLC) (n 
= 2), ovarian cancer (n = 1), renal cell carcinoma (RCC) (n 
= 2), thyroid cancer (n = 1) [48-66]. Our results revealed 
that incidences of all-grade elevations of these markers are 
relatively high in patients treated with sorafenib, especially 
in HCC patients, who always had a background of chronic 
liver disease (Figure 2). Moreover, liver failure has also 
been reported in some cases. P. Ghatalia et al reported that 
the overall rate of sorafenib-induced liver failure is 1.5%, 
suggesting TKI-related hepatotoxicity should be paid close 
attention.

In addition, other TKIs were also observed to exhibit 
hepatotoxicity. For instance, Arora, A. K. et al. reported 
that erlotinib could induce abnormalities of liver function, 
they also reported a case of erlotinib-induced acute 
hepatitis [67]. A recent clinical study implied that use of 
lapatinib in combination with dexamethasone increased 
the incidence of hepatotoxicity in metastatic breast 
cancer patients [68]. And another more recent pre-clinical 
study reported severe and fatal cases of liver injury with 
lapatinib use [69]. A meta-analysis revealed that pazopanib 
significantly increased overall risk of hepatotoxicity but 
not increased risk of fatal hepatotoxicity [70]. Moreover, 

Figure 2: Hepatotoxcity induced by sorafenib. AML, acute myeloid leukemia; HCC, hepatocellular carcinoma; NSCLC, non-small 
cell lung cancer; RCC, renal cell carcinoma. ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; 
BIL, bilirubin.



Oncotarget67654www.impactjournals.com/oncotarget

acute liver failure caused by imatinib and sunitinib 
have also been observed in some cases [43, 71, 72]. 
However, there is a lack of evidence about TKI-induced 
hepatotoxicity in patients with hepatic fibrosis.

It should be pointed out that patients in pre-approval 
clinical trials are often well-selected, whereas TKIs 
therapy may increase the likelihood of toxicity and bring 
down the probability of benefits in less selected patients 
[73]. Thus, TKI related hepatotoxicity in clinical use need 
further in-depth discussion.

Mechanism of TKI related hepatotoxicity

Several hypotheses have been proposed on the 
mechanism of TKI related hepatotoxicity. It is supposed 
to be originated from two aspects: one is involved in 
direct toxicity via formation of reactive metabolites (RM) 
including unstable conjugates, reactive oxygen species 
(ROS) and other free radicals, another is associated with 
indirect toxicity via secondary immune reactions [74]. It 
has been demonstrated that various TKIs could generate 
RM leading to the rise of potential hepatotoxicity risk. The 
main metabolites of erlotinib, for example, is epoxide and 
quinone-imine, which result in injury of liver, intestine and 
lung. Additionally, CYP3A4 enzyme is found to be related 
to catalysis of liver and intestine RM in several TKIs such 
as erlotinib and gefitinib [75].

Accumulating evidences suggest that metabolites 
of TKIs have higher likelihood of causing multi-organs 
injury. As the liver is the predominant site for bioactivation 
and detoxification for TKIs, any potential toxicities 
generating during the process would bring a localized 
damage. It has been demonstrated in several studies that 
hepatic metabolisms of TKIs are likely to cause elevation 
of liver enzymes, liver failure and fatal DILI (drug-
induced liver injury) [76]. It has been revealed that the 
overall risk of developing hepatotoxicity was more than 
two fold higher in patients with TKIs therapy than control. 

The onset of TKIs related hepatotoxicity is highly 
variable, whereas it has been found that hepatotoxicity 
usually occurred with the median of seven weeks after 
TKIs treatment [43]. The majority of patients would 
present with asymptomatic ALT abnormalities, while 
seldom would develop to fatal DILI. Despite the fact that 
fatality from TK inhibitor-induced hepatotoxicity is much 
rarer compared to hepatotoxic drugs in other classes, 
it is also very important to point out that some clinical 
cases develop into unfavorable events including hepatic 
cirrhosis and even liver failure.

Prediction of TKI related hepatotoxicity

TKI related hepatotoxicity is often with a variable 
latency and lacks a significant correlation between drug 
dose and frequency to severity of hepatotoxicity, which 

may result from aberrant drug metabolism [77]. It has been 
pointed out that several factors may affect susceptibility 
to hepatotoxicity from TKIs, for instance, patients with 
chronic infection such as hepatitis B or underlying 
inflammatory liver conditions were indicated to be more 
vulnerable to liver injury [78]. Additionally, it has been 
demonstrated that genetic polymorphisms of the major 
histocompatibility molecules HLA plays an important 
role in DILI [79]. Some evidence suggested that the 
HFE rs707889 TT genotype might account for elevation 
of ALT treating with pazopanib and UGT1A1*28 was 
found to be associated with elevation of bilirubin [80, 81]. 
Thus, genetic biomarkers might be a viable approach to 
assessing risks of DILI.

Moreover, advanced age and female gender 
contribute to higher risks for DILI, this may due to CYP 
(cytochrome P450) activity diminishes with ages and CYP 
plays an important role in metabolism of exogenous agents 
[82, 83]. It has been shown in a retrospective study that 
CYP2D6 genotype alone made no difference in higher risk 
of hepatotoxicity, however, patients harboring the allele *5 
and *10 of CYP2D6 gene were classified as intermediate 
or poor metabolizers and were more vulnerable to 
recurrent and severe hepatotoxicity with gefitinib 
treatment [84]. Besides, gefitinib-related hepatotoxicity is 
more common in Asians than non-Asians, which may also 
result from CYP polymorphisms among different ethnic 
groups [85, 86].

TKIs combination regimen: better treatment than 
single agent?

Increasing evidence suggested that hepatic fibrosis 
is a systematic disease with aberrant microenvironments, 
including abnormal expression HSCs, ECs (liver 
sinusoidal endothelial cells) and KCs (Kupffer cells) and 
interaction among them. TKIs combination treatment 
could simultaneously direct against several targets and 
therefore achieved superior effects to single agents. It 
has been demonstrated by Cheng Liu et al. that sorafenib 
plus GdCl3 significantly inhibited angiogenesis, 
proinflammatory cytokines, and the interactions among 
HSCs, SECs and KCs as well as ameliorated the increases 
in ALT, AST and TBIL in dimethylnitrosamine (DMN)-
induced hepatic fibrosis rats compared to either single 
agent, suggesting TKIs combination regimen is a more 
potent therapy in hepatic fibrosis [87]. Naoki Yamamoto 
et al. proved that DFX (deferasirox) in combination with 
sorafenib could prevent hepatic fibrosis and attenuate 
adverse effects better than single agent treatment in 
HCC rats [88]. However, few studies indicated that TKIs 
combination regimen is better than single agent when 
treating hepatic fibrosis patients, which warrant further 
research.
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SELECTIVE DELIVERY OF TKIS: A 
POTENTIAL STRATEGY FOR REDUCING 
TKI RELATED HEPATOTOXICITY

Overwhelming evidences suggest that hepatic 
stellate cells (HSC) play a pivotal role in hepatic 
fibrogenesis [10, 89]. Activation of HSC results in wound 
healing reaction and formation of myofibroblasts. HSC 
is a major source of the production of various profibrotic 
cytokines as well as extracellular matrix proteins. Since 
tyrosine kinase-regulated pathways are associated with 
almost every cell type of the body, TKIs in non-diseased 
organs may exert serious adverse effects. Thus, it seems 
that selective TKIs specifically targeting HSCs may be a 
good option to improve anti-fibrotic efficacy via increasing 
local drug levels in HSC and decreasing drug levels 
elsewhere. To optimize the therapy of hepatic fibrosis, 
targeting to HSC has been explored for years. And here 
are several approaches to HSC targeted therapy have been 
developed [90, 91]. 

Selective protein carriers

It has been demonstrated that receptors such as 
PDGF-β receptor are highly upregulated on activated 
HSC, thus using albumin-based carriers that bind to these 
receptors could be a novel approach. In experimental 
animal models of hepatic fibrosis, it has been revealed that 
these carriers open the opportunity to delivery majority 
of anti-fibrotic compounds to HSC. In the past few years, 
drugs like kinase inhibitors affecting PDGF-β signaling 
pathway were successfully delivered to these cells in 
experimental animals [91]. Homing device of mannose 
6-phosphate (M6P) is also a significant method to deliver 
drugs to HSC. Researchers have combined M6P with a 
RGD homing device, and it has been proved that M6P-
RGD construction is more effective in inhibiting hepatic 
fibrosis than M6P or RGD alone, suggesting that M6P-
RGD is also a good approach to target HSC selectively 
[92]. PDGFR-β is one of the most important pro-fibrotic 
TKs in hepatic fibrosis signals. This pathway can be inhibit 
by imatinib, however, this kind of drugs would bring 
severe side effect. PAP19 is an imatinib-like drug that 
inhibits the PDGFR-β. Gonzalo T et al. have demonstrated 
that PAP19 reduce fibrotic markers in HSC and target 
HSC specifically in a rat model of hepatic fibrosis via the 
M6PHSA carrier [93].

Other nanoparticle-based drug vehicles

Nanoparticles are frequently defined as particles 
sized from one up to 500 nm. It is widely known that 
metal-based nanotherapeutics have brought about a 
series of achievements such as computerized tomography 

[94]. Size and functionalization of nanoparticles decide 
its distribution in different organs. Therefore, organic 
nanoparticles such as lipid could be considered as a novel 
nanocarriers. Chai et al. also applied RGD peptide-labeled 
liposomes to deliver oxymatrine (OM) specifically into 
HSCs. OM is an herbal medicinal product that could 
bring benefits to hepatic fibrosis in rats. And in this 
study, researchers formed an OM-liposomes compound 
and coupled the RGD peptides and the OM-liposomes 
afterwards. This compound showed excellent ability of 
reducing collagen deposition and hepatic fibrosis related 
genes expression, suggesting liposomes could be a 
wonderful candidate for delivery of antifibrotic drugs [95]. 

PERSPECTIVES

It cannot be denied that TKIs make a great 
contribution to transforming many cancers from a death 
sentence to a chronic illness. Accumulating evidences 
have demonstrated that multitargeted TKIs are capable 
of bringing benefit not only to malignant tumor but also 
fibrotic disease. During fibrogenesis, many intracellular 
signaling pathways are inappropriately activated, in which 
TKs plays a significant role. Thus, TKIs seems to be a 
novel potential treatment for fibrotic disease. And it has 
been identified in multiple preclinical studies that TKIs 
could either prevent or reverse hepatic fibrosis. As a result, 
based on the advantages of TKIs, targeted therapy might 
become major approaches for treating hepatic fibrosis in 
future. 

However, it should never fail to point out that 
toxicity of TKIs is a serious problem and hence hinter the 
TKIs application. In spite of the common adverse effects 
of TKIs including rash, gastrointestinal symptoms, fatigue, 
edema, and neurological symptoms are mild and tolerable 
for patients, some severe effects like liver function 
impairment and even acute liver failure have been reported 
clinically. Generally, most existing TKIs have no specific 
selectivity between the normal cells and the tumor or 
fibrotic cells, implying potential systematic adverse effect. 
Increasing evidence from preclinical studies implied that 
discontinuation of TKIs was resulted from intolerable side 
effects thus limited its application in patients with only 
hepatic fibrosis. Therefore, the adverse effects of TKIs 
especially hepatotoxicity is the problem demanding most 
concern.

Developing TKIs that target only specific cells 
should be paid close attention. As we all know that TKIs 
withdrawals resulting from hepatotoxicity are quite 
common, TKIs with cell selectivity may decrease the 
risk of toxicity. Moreover, TKIs might exert excessive 
economic pressure on patients, which also would put sand 
on their applications for hepatic fibrosis. Given together, 
TKIs, as discussed in this review, are novel potential drugs 
for hepatic fibrosis, but still existing lots of problems to 
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be handled with. In the near future, clinical application of 
TKIs on hepatic fibrosis should turn out to be not only an 
efficient but also safety treatment. 
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