
Oncotarget67302www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 41

Quantitative image variables reflect the intratumoral pathologic 
heterogeneity of lung adenocarcinoma

E-Ryung Choi1, Ho Yun Lee1, Ji Yun Jeong2, Yoon-La Choi3, Jhingook Kim4, Jungmin 
Bae1, Kyung Soo Lee1, Young Mog Shim4

1Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of 
Medicine, Seoul, Korea

2Department of Pathology, Kyungpook National University Hospital, Kyungpook National University School of Medicine, 
Daegu, Korea

3Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
4Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 
Seoul, Korea

Correspondence to: Ho Yun Lee, email: hoyunlee96@gmail.com
Keywords: lung adenocarcinoma, heterogeneity, radiomics, quantitative image variables, dual energy CT
Received: May 12, 2016    Accepted: July 19, 2016    Published: August 30, 2016

ABSTRACT

We aimed to compare quantitative radiomic parameters from dual-energy 
computed tomography (DECT) of lung adenocarcinoma and pathologic complexity.

A total 89 tumors with clinical stage I/II lung adenocarcinoma were prospectively 
included. Fifty one radiomic features were assessed both from iodine images and non-
contrast images of DECT datasets. Comprehensive histologic subtyping was evaluated 
with all surgically resected tumors. The degree of pathologic heterogeneity was 
assessed using pathologic index and the number of mixture histologic subtypes in  
a tumor. Radiomic parameters were correlated with pathologic index. Tumors were 
classified as three groups according to the number of mixture histologic subtypes and 
radiomic parameters were compared between the three groups.

Tumor density and 50th through 97.5th percentile Hounsfield units (HU) of 
histogram on non-contrast images showed strong correlation with the pathologic 
heterogeneity. Radiomic parameters including 75th and 97.5th percentile HU of 
histogram, entropy, and inertia on 1-, 2- and 3 voxel distance on non-contrast 
images showed incremental changes while homogeneity showed detrimental change 
according to the number of mixture histologic subtypes (all Ps < 0.05).

Radiomic variables from DECT of lung adenocarcinoma reflect pathologic 
intratumoral heterogeneity, which may help in the prediction of intratumoral 
heterogeneity of the whole tumor.

INTRODUCTION

Lung cancer is the most commonly diagnosed cancer 
worldwide and the leading cause of cancer-related death 
[1], and adenocarcinoma is the most common histologic 
subtype of lung cancer in most countries [2]. In an attempt 
to reflect the widely divergent pathologic spectrum of 
lung adenocarcinoma, lung adenocarcinoma classification 
criteria were proposed by the International Association 
for the Study of Lung Cancer/American Thoracic 
Society/European Respiratory Society (IASLC/ATS/
ERS) [3]. This classification was devised to understand 

the histological subtypes and their histo-molecular 
correlations. Since the release of this classification, many 
studies have investigated the possible correlations among 
the most predominant subtypes, driver mutations and 
patient prognosis [4, 5]. However, prognostic stratification 
considering only the most predominant subtypes has 
shown substantial limitation due to the fact that more than 
80% of invasive lung adenocarcinomas show mixed type 
including two or more of histologic subtypes [6–9].

Recently, scientists have performed quantitative 
imaging of lung cancer using primarily a radiomic 
approach, demonstrating that radiomic values quantifying 
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spatial variation in architecture have shown prognostic 
significance [10–12]. Based on these results, they 
suggested that imaging features depicting spatial 
heterogeneity in tumors might reflect genomic and 
phenotypic intratumoral heterogeneity, which has 
significant implications for treatment, resistance, and, 
ultimately, prognosis [13–15]. Surprisingly, there have 
not been any studies directly evaluating the relationship 
between radiologic heterogeneity values and pathologic 
complexity within lung adenocarcinoma. Thus, we aimed 
to correlate various quantitative radiomic parameters 
from dual-energy computed tomography (DECT) of 
lung adenocarcinomas with pathologic complexity to 
ultimately identify the role of quantitative image variables 
in predicting pathologic heterogeneity.

RESULTS

Clinical characteristics of patients and tumors

All 92 consecutive patients were enrolled and 
underwent DECT for work-up (Figure 1). We excluded 
three patients who were shown to have benign disease 
after percutaneous lesion biopsy and five patients who 
were found to have unresectable stage III or IV lung cancer 
through further studies. Eight-four patients underwent 
complete resection for ninety-three lesions. Of those, we 
excluded four who had one benign disease, one who had 
mucinous adenocarcinoma, and two who had insufficient 

pathologic slides for detailed pathologic review. In total, 
80 patients with 89 lung adenocarcinomas were included 
in our study.

There were total 6 patients who have more than 
one primary lesion arising in the lung at the same time. 
Three patients had 2 tumors in the lung and three patients 
had 3 tumors in the lung. Among these patients, four 
had nodules in the same lobe. However, multiple tumors 
in the same lobe showed complete different solidity on 
CT scan suggesting intendent relationships more likely 
than the metastasis. Pathological result revealed these 
tumors were synchronous tumors. The most predominant 
histologic subtype was the acinar subtype (59.6%) 
followed by lepidic subtype (20.2%) (Table 1). The most 
frequent combinations in mixed type were lepidic and 
acinar subtypes (14.6%). Final pathologic staging revealed 
84 stage I tumors, one stage II tumor, and four stage III 
tumors. The clinicopathologic characteristics of the 89 lung 
adenocarcinomas included in this study are summarized in 
Table 1. Also, the relationship between size and volume of 
tumors are included in Supplementary Figure S1.

Correlation between radiomic features and 
pathology heterogeneity index

There was strong relationship between the 
prediction model made with selected radiomic variables 
and pathologic heterogeneity index (R = 0.936, p = 0.001).

The relationships between 51 radiomic parameters 
and the pathologic heterogeneity index are described 

Figure 1: Flow diagram of the patient cohort.
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in Table 2. Among the radiomic parameters of physical 
features, density on non-contrast images showed a 
strong correlation with pathologic heterogeneity (R = 
0.654, P < 0.001). Also, pathologic heterogeneity was 
robustly associated with 50th percentile, 75th percentile 
and 97.5th percentile of HU among histogram CT 
parameters on non-contrast images (R = 0.648, R = 
0.663, R = 0.626, respectively; all Ps < 0.001). The 
size of the tumor on iodine-contrast images shows 
moderate positive correlation (R = 0.527, P < 0.001). 
The skewness of histogram features showed a moderate 
negative correlation with histologic complexity on both 
non-contrast and iodine-contrast images (R = -0.532, 
R = -0.531, respectively; all Ps < 0.001). There was no 
strong association between regional features. Among 
local features, variance and inertia on non-contrast image 
were moderately associated with pathologic complexity 
(variance on 1 voxel distance, R = -0.522; variance on 2 
voxel distance, R = -0.517; variance on 3 voxel distance, 
R = -0.521; inertia on 1 voxel distance, R = 0.549; inertia 
on 2 voxel distance, R = 0.550; inertia on 3 voxel distance, 
R = 0.574; all Ps < 0.001).

Comparison of three different groups based 
on pathologic heterogeneity and radiomic 
parameters

Among histogram features on non-contrast CT 
images, the 75th percentile and 97.5th percentile HU of the 
histogram showed significantly increased mean CT values 
according to the number of histologic subtypes (P = 0.003, 
P = 0.002, respectively) (Table 3).

Of all regional features, entropy showed an 
escalation of the mean CT values with an increased 
number of histologic subtypes on non-contrast images 
with statistical significance (P = 0.003). Although those 
were not statistically significant, intensity variability 
and size-zone variability on the non-contrast images and 
entropy on the iodine images presented increased mean 
CT values according to the number of histologic subtypes.

Among local features on non-contrast images, 
the mean CT values of inertia increased while those of 
homogeneity demonstrate a declined as the number of 
histologic subtypes increased with statistical significance 
(Inertia on 1 voxel distance, P = 0.027; Inertia on 2 voxel 
distance, P = 0.024; Inertia on 3 voxel distance, P = 0.018; 
homogeneity on 1 voxel distance, P = 025; homogeneity 
on 2 voxel distance, P = 023; homogeneity on 3 voxel 
distance, P = 0.008). On iodine-enhanced images, the 
mean CT values of energy and maximum probability 
value increased while those of contrast, sum mean, 
cluster shade, and homogeneity showed a decline when 
the number of histologic subtypes increased. However, 
the tendencies of these values were failed to show the 
statistical significance.

All radiomic parameters of the three different 
groups based on pathologic heterogeneity are described 
in Table 3.

DISCUSSION

Recent lung cancer research has demonstrated that 
cancerous cells not only undergo clonal evolution from 
a single progenitor, but also exhibit branched evolution, 
whereby each tumor develops and preserves multiple 
distinct subclonal compositions [16–19]. This intratumoral 
genetic heterogeneity consequently leads to phenotypic 
differences in histopathological divergence, containing 
regions demarcated by various degrees of differentiation, 
proliferation, vascularity, and invasiveness [20]. Given 
the existence of such heterogeneity in tumors in advanced 
metastatic disease, the efficacy of therapies targeting 
somatic driver aberrations may be limited [13]. Recent 
oncology research has mostly focused on the intratumoral 
variation in gene mutation and expression, whereas few 
studies have explored the spatial relationship among 
imaging, genomics, and histopathology.

While imaging is a main tool in tumor staging, 
progression assessment and recurrence detection, 
most radiologic approaches deal only with tumor size 
or average parameter values [12] in routine oncologic 
practice and research. Considerable effort has explored 
sophisticated and robust analyses to quantify tumor 
spatial complexity with tumor imaging data [10, 21–25]. 
This approach usually uses a texture analysis method to 
quantify the spatial variation as the remaining spatial 
arrangement of voxel values in imaging data [12], which 
could serve as a potential prognostic biomarker [11, 26]. 
Most studies of radiomic analyses have evaluated the 
role of radiomics in the prognostic stratification [12], 
but there have not yet been any studies correlating 
intratumoral heterogeneity on CT images with pathology 
heterogeneity. Radiomic analysis is emerging as a 
method to quantify spatial variation within tumors. 
Establishment of a histologic correlation would 
obviously be an important step in the validation of this 
approach. Our study is the first study to determine a 
direct relationship between the histological complexity 
of lung adenocarcinoma and intratumoral heterogeneity 
expressed as CT radiomic values.

We adopted histogram, local and regional features 
to measuring degree of intratumoral heterogeneity. 
Histogram features were derived from the density 
distribution of the tumor reflecting heterogeneity of 
intratumoral density. The spatial arrangement of voxel 
values is obtained from local features. We included tumor 
size as a routine practical measurement variable and 
compared with other all radiomic variables in the analysis. 
Radiomic variables were more strongly correlated with 
pathologic heterogeneity rather than tumor size. In 
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Table 1: Clinicopathologic characteristics of lung adenocarcinoma (89 tumors from 80 patients)

Characteristics Total N (%)

Sex (%)
 Male 39 (48.8)
 Female 41 (51.2)
Age, range (median) 37-78 (59)
Tumor size (mm), 
range (median) 4-64 (21)

Staging
 I 84 (94.4)
 II 1 (1.1)
 III 4 (4.5)
T category
 1 73 (82.1)
 2 14 (15.7)
 3 2 (2.2)
N category
 0 82 (92.1)
 1 5 (5.6)
 2 2 (2.2)
Extent of resection (%)
 Segmentectomy 50 (56.2)
 Lobectomy 39 (43.8)
Most predominant 
histologic subtype
 Lepidic 18 (20.2)
 Acinar 53 (59.6)
 Papillary 11 (12.4)
 Solid 1 (1.1)
 Micropapillary 6 (6.7)
No. of histologic subtypes within a tumor
1 19 (21.3) Lepidic 5 (26.3)

Acinar 11 (57.9)
Papillary 3 (15.8)

2 54 (60.7) Lepidic + Acinar 31 (57.4)
Acinar + Papillary 13 (24.1)
Acinar + Micropapillary 1 (1.9)
Acinar + Solid 9 (16.7)

3 14 (15.7) Lepidic + Acinar + Papillary 6 (42.9)
Lepidic + Acinar + Solid 2 (14.3)
Acinar + Papillary + Micropapillary 4 (28.6)
Acinar + Micropapillary + Solid 2 (14.3)

4 2 (2.2) Lepidic + Acinar + Papillary + Micropapillary 2 (100)
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Table 2: Correlation of radiomic features with pathologic heterogeneity index

CT parameters
Non-contrast images Iodine-contrast images

R P R P

Physical features

 Volume (cm3) 0.233 0.028* 0.177 0.096

 Density (HU) 0.653** < 0.001* 0.139 0.195

 Mass (g) 0.352 0.001* 0.183 0.086

 Size (mm) 0.252 0.017 0.527** < 0.001*

Histogram features

 Skewness -0.532** < 0.001* -0.531** < 0.001*

 Kurtosis -0.059 0.584 -0.313 0.003*

 2.5th percentile (HU) 0.424 < 0.001* -0.423 < 0.001*

 25th percentile (HU) 0.584** < 0.001* 0.099 0.356

 50th percentile (HU) 0.648** < 0.001* 0.254 0.016*

 75th percentile (HU) 0.663** < 0.001* 0.246 0.020*

 97.5th percentile (HU) 0.626** < 0.001* -0.180 0.091

Regional features

 Uniformity -0.195 0.067 -0.140 0.190

 Entropy 0.297 0.005* 0.131 0.223

 Intensity variability 0.276 0.009* 0.368 < 0.001*

 Size-zone variability 0.245 0.021* 0.171 0.108

Local features

 Energy on 1 voxel distance 0.311 0.003* -0.073 0.496

 Energy on 2 voxel distance 0.249 0.020* -0.060 0.579

 Energy on 3 voxel distance 0.184 0.087 -0.134 0.211

 Entropy on 1 voxel distance -0.192 0.073 0.132 0.219

 Entropy on 2 voxel distance -0.112 0.298 0.117 0.276

 Entropy on 3 voxel distance -0.065 0.550 0.193 0.070

 Correlation on 1 voxel distance -0.127 0.239 -0.100 0.350

 Correlation on 2 voxel distance 0.009 0.934 0.029 0.791

 Correlation on 3 voxel distance 0.112 0.299 0.063 0.559

 Contrast on 1 voxel distance -0.032 0.770 0.061 0.568

 Contrast on 2 voxel distance 0.012 0.914 -0.028 0.793

 Contrast on 3 voxel distance 0.073 0.500 -0.039 0.716

 Variance on 1 voxel distance -0.522** < 0.001* -0.385 < 0.001*

 Variance on 2 voxel distance -0.517** < 0.001* -0.382 < 0.001*

 Variance on 3 voxel distance -0.521** < 0.001* -0.409 < 0.001*

 Sum mean on 1 voxel distance 0.238 0.025* 0.027 0.804

 Sum mean on 2 voxel distance 0.222 0.038* -0.014 0.9

(Continued )
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addition, these radiomic features may offer minimal inter- 
and intra-reader variability with high reproducibility of 
imaging features.

Our results clearly demonstrate histopathologic 
complexity correlated with radiomic parameters such as 
texture features within CT images of lung adenocarcinoma. 
Quantifying the spatial complexity of tumor images can 
explain the spatial complexity in pathology, or in other 
words, the phenotypic intratumoral heterogeneity.

Radiomic features derived from non-contrast images 
reflect tumor cellularity and density, whereas iodine-
enhanced image even allows additional information about 
tumor vascularity. Therefore, we originally expected that 
radiomic features of iodine-contrast images might have 
associated more strongly to the tumor complexity related 
with heterogeneity of tumor density and tumor vascularity. 
However, in our analysis, the most of radiomic features 
which correlated to pathologic heterogeneity index were 
features derived from non-contrast image, not from 
iodine-enhanced image. This result can be explained in 
part by the concept of tumor microenvironment where 
whole tumor volume consists of real tumor component as 

well as nontumorous stromal component. Thus, radiomic 
variables extracted from non-contrast CT covering 
completely density or cellularity of ROI of the tumor may 
reflect more actually spatial heterogeneity in the entire 
tumor ROI, compared to radiomic variables from iodine 
image limitedly enhancing heterogeneity of only tumorous 
component. The problem is that results from small biopsy 
tissues in non-resectable lung adenocarcinomas do not 
represent the pathologic heterogeneity of the whole tumor. 
On the other hand, quantifying imaging data using a 
radiomic approach indirectly enables assessment of whole 
tumor heterogeneity. Quantifying spatial heterogeneity on 
a tumor image may help with determining the prognosis 
and stratifying patients with non-resectable lung 
adenocarcinoma for which whole tumor pathology is not 
available. Furthermore, intratumoral heterogeneity may 
have important consequences for personalized medicine 
approaches that typically rely on a single tumor-biopsy 
to portray the tumor mutational landscape. Quantitative 
radiomic variables could allow physicians to deliver more 
optimized, patient-specific treatment by allowing them to 
identify patients who need aggressive treatment.

CT parameters
Non-contrast images Iodine-contrast images

R P R P

 Sum mean on 3 voxel distance 0.235 0.027* -0.017 0.875

 Inertia on 1 voxel distance 0.549** < 0.001* 0.391 < 0.001*

 Inertia on 2 voxel distance 0.550** < 0.001* 0.384 < 0.001*

 Inertia on 3 voxel distance 0.574** < 0.001* 0.401 < 0.001*

 Cluster shade on 1 voxel distance -0.032 0.770 0.061 0.568

 Cluster shade on 2 voxel distance 0.012 0.914 -0.028 0.793

 Cluster shade on 3 voxel distance 0.073 0.500 -0.039 0.716

 Cluster tendency on 1 voxel distance -0.454 < 0.001* -0.434 < 0.001*

 Cluster tendency on 2 voxel distance -0.438 < 0.001* -0.420 < 0.001*

 Cluster tendency on 3 voxel distance -0.448 < 0.001* -0.470 < 0.001*

 Homogeneity on 1 voxel distance 0.406 < 0.001* -0.207 0.052

 Homogeneity on 2 voxel distance 0.398 < 0.001* -0.129 0.230

 Homogeneity on 3 voxel distance 0.411 < 0.001* -0.109 0.308

 Maximum probability on 1 voxel distance 0.447 < 0.001* -0.041 0.700

 Maximum probability on 2 voxel distance 0.403 < 0.001* -0.042 0.698

 Maximum probability on 3 voxel distance 0.323 0.002* -0.090 0.400

 Inverse variance on 1 voxel distance -0.336 0.001* -0.102 0.343

 Inverse variance on 2 voxel distance -0.124 0.250 -0.005 0.963

 Inverse variance on 3 voxel distance -0.048 0.659 -0.023 0.833

R indicates the Spearman correlation coefficient. *P < 0.05, ** R > 0.5
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Table 3: Radiomic features according to the number of histologic subtypes within a tumor

Non-contrast images

p

Iodine-contrast images

pOne subtype Two subtypes
Three or four 

subtypes One subtype Two subtypes
Three or four 

subtypes

Physical features

 Volume (cm3) 6.97±2.14 8.29±2.81 7.93±5.900 0.966 7.08±12.62 4.67±5.85 6.50±5.10 0.432

 Density (HU) 0.57±0.23 0.566±0.22 0.75±0.155 0.008* 1.17±0.016 1.16±0.019 1.17±0.01 0.618

 Mass (g) 5.30±10.35 4.572±9.00 6.00±4.484 0.832 8.25±14.71 5.44±6.78 7.61±5.95 0.426

 Size (mm) 23.11±16.86 21.02±9.26 24.41±10.89 0.488 12.44±18.26 9.83±12.02 17.18±8.85 0.130

Histogram features

 Skewness -0.21±0.66 0.012±0.721 -0.489±0.616 0.037* 0.461±0.822 0.782±1.04 0.056±0.598 0.024*

 Kurtosis 2.75±0.96 2.76±1.01 2.47±1.108 0.598 4.39±2.32 5.60±4.33 4.51±3.29 0.377

 2.5th percentile (HU) -797.76±71.95 -814.99±70.14 -769.28 ±74.37 0.080 -21.07±14.38 -23.42±16.68 -31.39 ±14.34 0.131

 25th percentile (HU) -576.08±193.86 -604.91±181.72 -484.64 ±181.10 0.078 25.31±13.29 21.15±16.143 26.20±15.66 0.397

 50th percentile (HU) -431.21±232.06 -450.78±234.06 -251.37 ±171.56 0.009* 52.50±16.20 47.94±19.68 56.62±5.35 0.220

 75th percentile (HU) -316.05±241.84 -305.18±232.75 -91.90±127.34 0.003* 79.94±17.36 76.38±22.41 83.68±16.05 0.429

 97.5th percentile (HU) -181.87±241.84 -128.25±189.22 32.48±39.52 0.002* 152.31±39.92 156.08±35.30 143.65±27.89 0.464

Regional features

 Uniformity 0.003±0.002 0.002±0.001 0.002±0.001 0.042* 0.009±0.002 0.009±0.002 0.008±0.002 0.365

 Entropy 8.76±0.73 9.08±0.50 9.41±0.37 0.003* 7.17±0.37 7.24±0.32 7.36± 0.31 0.258

 Intensity variability 7.56±3.71 8.49±3.8 9.57±3.53 0.294 7.27±3.18 6.1563.29 8.03±3.27 0.099

 Size-zone variability 13.14±12.21 15.33±11.86 18.59±7.81 0.367 14.42±14.94 14.22±9.44 17.99±8.60 0.454

Local features

 Energy on 1 voxel distance 0.040±0.050 0.034±0.033 0.051±0.067 0.410 0.037±0.017 0.046±0.030 0.049±0.036 0.394

  Energy on 2 voxel distance 0.036±0.046 0.027±0.028 0.042± 0.064 0.356 0.033±0.014 0.040±0.025 0.043± 0.033 0.493

  Energy on 3 voxel distance 0.031±0.025 0.024±0.026 0.039± 0.061 0.337 0.036±0.014 0.040±0.025 0.042± 0.033 0.784

  Entropy on 1 voxel distance 1.74±0.23 1.79±0.19 1.76± 0.24 0.580 1.65±0.15 1.62±0.18 1.59±0.22 0.697

  Entropy on 2 voxel distance 1.82±0.24 1.91±0.20 1.89±0.26 0.306 1.66±0.13 1.66±0.17 1.63± 0.22 0.869

  Entropy on 3 voxel distance 1.81±0.22 1.93±0.22 1.92± 0.28 0.128 1.62±0.15 1.65±0.16 1.63±0.22 0.798

 Correlation on 1 voxel distance 0.089±0.037 0.091±0.046 0.079± 0.036 0.658 0.109±0.062 0.121±0.059 0.154±0.14 0.231

 Correlation on 2 voxel distance 0.047±0.030 0.053±0.024 0.056±0.027 0.555 0.034±0.027 0.036±0.023 0.052±0.057 0.190

 Correlation on 3 voxel distance 0.025±0.038 0.030±0.019 0.040± 0.020 0.231 0.021±0.019 0.017±0.015 0.027±0.030 0.203

 Contrast on 1 voxel distance 5.30±2.23 4.76±2.04 4.47±1.90 0.478 5.51±2.83 4.98±3.13 4.32±2.06 0.492

 Contrast on 2 voxel distance 11.16±4.60 10.45±4.24 10.62±5.01 0.834 8.13±4.25 7.29±3.87 6.09± 2.88 0.290

 Contrast on 3 voxel distance 14.71±6.75 14.29±5.67 15.48± 8.17 0.807 8.62±4.36 7.94±4.19 6.38± 2.86 0.248

 Variance on 1 voxel distance 0.17±0.11 0.163±0.054 0.129± 0.029 0.114 0.176±0.053 0.185±0.052 0.175±0.054 0.704

 Variance on 2 voxel distance 0.17±0.10 0.161±0.054 0.129± 0.032 0.121 0.177±0.052 0.186±0.051 0.177± 0.056 0.718

 Variance on 3 voxel distance 0.16±0.06 0.162±0.054 0.131± 0.038 0.111 0.179±0.050 0.188±0.051 0.179± 0.058 0.765

 Sum mean on 1 voxel distance 8.83±3.47 9.60±3.41 11.544±3.509 0.061 4.37±4.05 4.05±1.92 3.48±1.43 0.351

 Sum mean on 2 voxel distance 8.90±3.51 9.68±3.48 11.354± 3.407 0.111 4.37±1.92 4.02±1.87 3.40±1.46 0.285

(Continued )
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In addition, radiomic parameters might be useful for 
noninvasive in vivo monitoring of longitudinal changes 
in tumor heterogeneity. Lung cancer cells within tumors 
show homogeneous cell populations until relatively late in 
tumor progression, when hyperproliferation and increased 
genetic instability result in distinct clonal subpopulations 
[18, 19]. Several studies have shown that mechanisms of 
acquired drug resistance to EGFR inhibitors are related to 
several genotypic and phenotypic changes [27, 28]. Using 
a radiogenomic approach to quantify tumor heterogeneity 
on images may allow longitudinal studies of clonal 
evolution during treatment as well.

Our study had several limitations. First, the 
proportion of the tumor with three or four mixtures of 
histologic subtypes was relatively small. The relationship 
of the quantitative radiomic variables and pathologic 
heterogeneity and the values of the quantitative radiomic 
variables may be influenced by the sample size. Second, 
all cases were collected from a single institute. Larger 
prospective studies from multiple centers are needed. 
Third, we excluded patients with variant subtypes 

including mucinous pattern. However, we decided to 
exclude this subtype because reports regarding the survival 
of mucinous lung adenocarcinomas are limited [29, 30].

In conclusion, various radiomic variables from 
DECT of lung adenocarcinoma reflect pathologic 
intratumoral heterogeneity, which may be a helpful 
predictor of intratumoral heterogeneity of the whole 
tumor, considering that current genomic analyses are 
limited by the fact that they rely on a single tumor biopsy.

MATERIALS AND METHODS

Patients

This study was performed as part of an ongoing 
prospective clinical trial aimed at determining the value 
of imaging biomarkers for the prediction of tumor 
aggressiveness and prognosis in patient with operable 
lung adenocarcinoma (NCT01482585). This study was 
approved by the institutional review board (SMC 2011-
09-083) and written informed consent was obtained.

Non-contrast images

p

Iodine-contrast images

pOne subtype Two subtypes
Three or four 

subtypes One subtype Two subtypes
Three or four 

subtypes

 Sum mean on 3 voxel distance 8.46±3.06 9.79±3.57 11.369± 3.468 0.051 4.27±1.75 4.02±1.77 3.36± 1.44 0.267

 Inertia on 1 voxel distance 8.37±2.23 8.43±2.28 10.057± 1.532 0.027* 6.87±1.71 6.50±1.64 6.85±1.71 0.617

 Inertia on 2 voxel distance 8.45±2.26 8.54±2.31 10.20±1.54 0.024* 6.82±1.66 6.47±1.60 6.82± 1.70 0.621

 Inertia on 3 voxel distance 8.39±2.26 8.54±2.31 10.247± 1.554 0.018* 6.70±1.56 6.44±1.56 6.78± 1.69 0.672

 Cluster shade on 1 voxel distance 5.30±2.23 4.76±2.04 4.479±1.903 0.478 5.51±2.83 4.98±3.13 4.33±2.07 0.492

 Cluster shade on 2 voxel distance 11.16±4.60 10.43±4.24 10.629±5.011 0.834 8.14±4.26 7.30±5.68 6.10±2.88 0.290

 Cluster shade on 3 voxel distance 14.71±6.75 14.29±5.67 15.480± 8.177 0.807 8.62±4.37 7.941±3.87 6.38± 2.86 0.248

 Cluster tendency on 1 voxel distance -43.74±16.58 -42.39±50.95 -108.582±29.33 0.244 14.25±29.92 14.76±27.81 3.07±20.57 0.309

 Cluster tendency on 2 voxel distance -37.71±86.04 -36.77±116.02 -82.633± 04.72 0.318 7.57±18.33 8.30±16.88 1.58±15.04 0.374

 Cluster tendency on 3 voxel distance -33.78±64.46 -32.49±95.11 -70.196±88.10 0.314 7.34±15.93 6.95±13.80 1.56± 14.53 0.388

 Homogeneity on 1 voxel distance 4532.07±1777.15 3387.64±2166.78 2629.69±181.00 0.025* 629.72±389.37 565.77±348.42 386.11± 232.51 0.094

 Homogeneity on 2 voxel distance 3480.25± 1460.08 2523.03±1782.39 1899.41±1225.18 0.023* 375.41±229.52 341.68±234.28 243.52± 173.64 0.197

 Homogeneity on 3 voxel distance 2895.88±1303.93 2039.34±1521.84 1380.43±1060.43 0.008* 314.92±192.11 289.38±191.10 215.53± 177.30 0.273

 Maximum probability on 1 voxel distance 0.109±0.110 0.092±0.079 0.137± 0.125 0.248 0.085±0.041 0.110±0.064 0.116± 0.067 0.230

 Maximum probability on 2 voxel distance 0.095±0.102 0.072±0.071 0.117± 0.123 0.189 0.076±0.033 0.095±0.055 0.101± 0.062 0.308

 Maximum probability on 3 voxel distance 0.081±0.0619 0.064±0.065 0.107± 0.120 0.154 0.078±0.029 0.092±0.051 0.096± 0.061 0.491

 Inverse variance on 1 voxel distance 0.381±0.063 0.402±0.045 0.381± 0.051 0.153 0.413±0.050 0.417±0.045 0.416±0.031 0.952

 Inverse variance on 2 voxel distance 0.316±0.060 0.339±0.049 0.322± 0.047 0.185 0.377±0.066 0.386±0.054 0.396±0.046 0.598

 Inverse variance on 3 voxel distance 0.294±0.055 0.305±0.051 0.289± 0.049 0.487 0.372±0.059 0.375±0.056 0.390±0.047 0.558

Features showing uniform tendency are expressed in bold font. *P < 0.05.
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From November 2011 to December 2012, a total 
of 92 patients with operable lung adenocarcinoma were 
eligible for our study. The inclusion criteria of our 
study were as follows: (1) Clinically and radiologically 
suspected lung adenocarcinoma, (2) Newly diagnosed 
stage I or II disease from clinical work-up including F-18-
fluorodeoxyglucose (FDG) positron emission tomography 
(PET)/CT, (3) Eastern Cooperative Oncology Group 
(ECOG) performance status of 0 or 1 and eligible for 
surgery, (4) Age 20 years or older, (5) Able to tolerate 
DECT imaging as required per protocol, and (6) Able 
to give study-specific informed consent. The exclusion 
criteria were: (1) Prior malignancy, (2) Scheduled for 
definitive radiation therapy or neoadjuvant concurrent 
chemoradiation therapy, and (3) Poor cardiopulmonary 
reserve (a contraindication for surgery).

CT imaging and analysis

Patients underwent CT examination using a dual-
source CT scanner (Somatom Definition Flash; Siemens 
Medical Solutions, Forchheim, Germany) with the dual-
energy technique. Three types of data set were generated 
from the DECT scanning: 80 kV, 140 kV, and enhanced 
weighted-average images. See the supplement and 
Supplementary Figure S2 for further details about the 
image acquisition protocol and reconstruction process.

Virtual non-enhanced images and iodine-enhanced 
images were generated using the liver Virtual Non-
Contrast (VNC) application node of dedicated dual-energy 
post-processing software (Syngo Dual Energy; Siemens 
Medical Solution, Forchheim, Germany). To obtain the 
iodine value of both the solid and ground-glass opacity 
(GGO) component in each tumor, post-processing was 
performed with two different types of software. Image 
data were reconstructed with a section thickness of 1 mm 
using a D30f (medium smooth) kernel for the iodine-
enhanced image and a D45f (medium smooth) kernel for 
the virtual non-enhanced image.

In the quantitative analysis, regions of interest 
(ROIs) were delineated on the axial images to generate 
a volume of interest which included the entire tumor. 
Initially, we assessed the stability of all 51 radiomic 
parameters for which we performed the concordance 
correlation coefficients (CCC) regarding radiomic values 
extracted from two ROIs drawn by two radiologists in 25 
randomly selected patients. From the stability test, we 
found that all radiomic parameters were stable, where all 
CCCs were very high or high (range, 0.888 – 0.999; mean, 
0.934; SD, 0.008). As a next step, all included patient were 
handled by one radiologist.

Fifty one quantitative radiomic features were 
derived from this ROI to evaluate the heterogeneity of 
the tumors (Figure 2). The physical features included 
volume, size, density and mass. The histogram features 
included skewness, kurtosis, and Hounsfield units (HU) 

at the 2.5th, 25th, 50th, 75th and 97.5th percentiles. The 
regional features included uniformity, entropy, intensity 
variability and size-zone variability. There were 36 local 
texture features, including energy, entropy, correlation, 
contrast, variance, sum mean, inertia, cluster shade, 
cluster tendency, homogeneity, maximum probability, 
and inverse variance. Each local texture feature was 
derived from 13 directions according to 1-voxel, 
2-voxel, and 3-voxel distances at the gray value for each 
voxel. These radiomic features were evaluated both on 
non-contrast images and iodine contrast images. See the 
supplement for further details regarding the extraction of 
quantitative radiomic parameters.

Pathologic evaluation and analysis

For tumor sampling, tumor tissues with an interval 
of per approximately 10 mm were taken from the tumor 
specimen and placed on a slide. All slides were scanned 
to produce a high- resolution digital image (0.25 μm/pixel 
at 40× magnification) using the Aperio Slide Scanning 
System (ScanScope T3; Aperio Technologies Inc., Vista, 
CA, USA). Two experienced lung pathologists with 13 
and 18 years of experience (J.Y.J., Y.C.) interpreted all 
tissue sections by virtual slides using ImageScope viewing 
software (Aperio Technologies, Inc.) and a high-resolution 
monitor. For each case, the specimens were reviewed 
according to the International Association for the Study 
of Lung Cancer (IASLC), the American Thoracic Society 
(ATS), and the European Respiratory Society (ERS) 
International Multidisciplinary Lung Adenocarcinoma 
Classification Criteria [3] and comprehensive histologic 
subtyping was performed for a whole primary tumor in 
a semi-quantitative manner. The extent of existent tumor 
histologic subtypes and central fibrosis was quantified to 
the nearest 5% level, adding up to a total of 100% of the 
subtype components per tumor. They reported each of 
tumors as a relative ratio among total 100% in terms of all 
five with its whole histologic subtype.

The pathologic heterogeneity index was calculated 
from each tumor to evaluate the degree of pathologic 
heterogeneity, which was confirmed to reflect the survival 
predictive value according to the proportion of mixed 
histologic subtypes that were derived from the hazard 
ratio (HR) of each subtype using the disease-free survival 
curve of a large-scale study [4]. Further details about 
the pathologic heterogeneity index are described in the 
supplement.

Statistical analysis

A multivariate logistic regression model with the 
stepwise variable selection procedure based on Akaike’s 
Information Criterion (AIC) was applied to validate the 
performance of selected radiomic features to predict 
actually pathologic heterogeneity. Ten-fold cross-



Oncotarget67311www.impactjournals.com/oncotarget

validation [31] was used to evaluate the performance of 
this prediction model. After then, Pearson correlation 
analysis was applied to compare the predictive values 
from made prediction model with pathologic heterogeneity 
in each. The Spearman correlation coefficient was used 
to determine the relationship between radiomic features 
and pathologic heterogeneity index. When statistically 
significant, an absolute Rho (ρ) value between 0.00 
and 0.19 was considered very weak correlation, 0.20-
0.39, weak, 0.40–0.59, moderate, 0.60-0.79 strong and 
greater than 0.80, strong [32]. Radiomic parameters were 
compared among the three different groups that had been 

classified according to the number of histologic subtype 
within a tumor (e.g., tumor consistent with a single 
histologic subtype, two histologic subtypes, or three or 
four histologic subtypes) using ANOVA with Tukey’s post 
hoc test. In the cases with multiple tumors in a patient, 
we did not take into account within-patient correlation 
because each tumor was considered an independent 
synchronous lesion [33].

Statistical significance was evaluated with software 
(SPSS, version 19.0, 2010; SPSS, Chicago, Ill). A P value 
less than 0.05 was considered to represent a statistically 
significant difference.

Figure 2: Radiomic data extraction and analysis workflow.
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