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ABSTRACT

Gliomas make up about 80% of all malignant brain tumors, and cause serious 
public health problem. Genetic factors and environmental factors jointly caused the 
development of gliomas, and understanding of the genetic basis is a key component 
of preventive oncology. However, most genetic factors underlying carcinogenesis 
of gliomas remain largely unclear. In current study, we systematically evaluated 
whether genetic variants of SOX9 gene, a transcription factor that plays a central 
role in the development and differentiation of tumors, contribute to susceptibility of 
gliomas among Chinese population using a two-stage, case–control study. Results 
showed that SOX9 rs1042667 was significant associated with increased gliomas risk 
after adjusted by age, gender, family history of cancer, smoking status and alcohol 
status (Allele C vs A: OR=1.25; 95% CI=1.11-1.40; P=1.2×10−4). Compared with the 
carriers of genotype AA, both those of genotype AC (OR=1.37; 95% CI=1.13-1.66) 
and CC (OR=1.53; 95% CI=1.22-1.91) had significantly increased gliomas risk. This 
should be the first genetic association study which aims to evaluated the association 
between genetic variants of SOX9 and susceptibility of gliomas. Additional functional 
and association studies with different ethnic groups included are needed to further 
confirm our results.

INTRODUCTION

Brain and central nervous system (CNS) 
malignancies refer to series of rarely occurred tumors 
[1]. According to the data of National Office for Cancer 
Prevention and Control in China, the estimated numbers 
of new cases and deaths in China were 101600 and 61000, 
respectively [2]. Gliomas, which are thought to arise from 
glial cells, make up about 80% of all malignant brain 
tumors [3]. Many risk factors have been identified as 
potential contributors to gliomas risk [4]. For example, 
ionizing radiation exposure, allergies or atopic disease(s) 
history, and potential influence of occupational exposures 
have been identified to be associated with gliomas risk [4–
6]. Understanding of the genetic basis is a key component 

of preventive oncology. Genome-wide association studies 
(GWAS) have successfully identified a large number 
of common single-nucleotide polymorphisms (SNPs) 
influencing gliomas risk, while these SNPs only explain a 
small proportion of the genetic risk [7]. Furthermore, due 
to the common methodological challenges among gliomas 
studies include small sample sizes, heterogeneity of tumor 
subtypes, and retrospective exposure assessment, limited 
genetic loci were identified for gliomas risk [8–11].

SRY (Sex Determining Region Y)-Box (SOX) 
genes, which encode transcription factors belonging to 
the HMG (High Mobility Group) superfamily, have been 
identified to be associated with a large number of tumour 
types in vivo [12–14]. Among them, SOX9, which acts 
as a transcription factor that plays a central role in the 
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development and differentiation of multiple cell lineages, 
were suggested to be associated with risk and prognosis of 
gliomas [15–17]. Rani et al [18] found MiR-145 functed as 
a tumor-suppressive RNA by targeting Sox9 and adducin 
3 in human glioma cells. Genetic association studies 
could provide solid evidence for the Oncogenic role of 
SOX9 gene in human malignant gliomas. To present, no 
studies have evaluated that whether genetic variants of 
SOX9 contribute to susceptibility of gliomas. Given the 
biological importance of SOX9 gene and its implication in 
gliomas, we performed the current two-stage, case–control 
study to investigated the association between tag SNPs in 
the SOX9 gene and gliomas susceptibility among Chinese 
population.

RESULTS

Demographic characteristics of the subjects

In current study, totally 400 gliomas patients and 
400 healthy control were recruited in the discovery 
stage, while 800 gliomas patients and 800 healthy 
control were recruited in the validation stage. Table 1 
shows the comparison of gliomas patients and controls 
by selective characteristics in both the discovery stage 
and the validation stage. No significant variation in age, 
gender, family history of cancer, and smoking status was 
found between gliomas patients and healthy controls in 
two stages (P > 0.05), while the gliomas patients are more 
likely to be drinkers in the validation stage (P<0.001).

Associations between SOX9 gene polymorphisms 
and gliomas risk in the discovery stage

Totally seven tagSNPs (rs1042667, rs918080, 
rs16977091, rs9893662, rs7502198, rs6501522, and 
rs9915657) are selected using the SNPinfo web-based 
software. As shown in Table 2, the genotype frequencies 
of the selected SNPs and their associations with gliomas 
risk are presented. All of the genotype distributions for the 
seven tag SNPs were consistent with the HWE (P > 0.05). 
Our results indicated that SOX9 rs1042667 was significant 
associated with increased gliomas risk (Allele C vs A: 
OR=1.26; 95% CI=1.04–1.54; P=0.019). Compared with 
the carriers of genotype AA, both those of genotype AC 
(OR=1.45; 95% CI=1.03–2.04) and CC (OR=1.55; 95% 
CI=1.06–2.28) had significantly increased gliomas risk. 
However, no significant trend was detected for rs918080, 
rs16977091, rs9893662, rs7502198, rs6501522, and 
rs9915657.

Validation analysis of the association between 
SOX9 rs1042667 and gliomas risk

To validate the positive findings, the association 
between SOX9 rs1042667 and gliomas risk was 

evaluated in an independent stage (Table 3). The genotype 
distribution for rs1042667 was also consistent with 
the HWE in the stage (P > 0.05). The results showed 
that SOX9 rs1042667 was also significant associated 
with increased gliomas risk (Allele C vs A: OR=1.24; 
95% CI=1.08-1.42; P=0.002). when merged two stages 
together, SOX9 rs1042667 was significant associated 
with increased gliomas risk (Allele C vs A: OR=1.25; 95% 
CI=1.11-1.40; P=1.2×10−4). Compared with the carriers of 
genotype AA, both those of genotype AC (OR=1.37; 95% 
CI=1.13-1.66) and CC (OR=1.53; 95% CI=1.22-1.91) had 
significantly increased gliomas risk. We also conducted 
stratified analysis by alcohol status. However, the results 
didn’t changed materially (Table 4).

DISCUSSION

In current study, we systematically evaluated 
whether genetic variants of SOX9 contribute to 
susceptibility of gliomas among Chinese population 
using a two-stage, case–control study. Results strongly 
indicated that SOX9 rs1042667 was significant associated 
with 1.25-flod increased gliomas risk, after adjusted by 
age, gender, family history of cancer, smoking status and 
alcohol status. To be best of our knowledge, this should be 
the first genetic association study which aims to evaluated 
the association between genetic variants of SOX9 and 
susceptibility of gliomas.

The prognosis for patients with gliomas is often 
very poor, only ~2% of which aged 65 years or older 
[19]. Previous studies revealed that genetic, behavioral, 
environmental and developmental contributed to gliomas 
risk, although only exposure to therapeutic or high-dose 
radiation was firmly established [20]. Studies of genetic 
syndromes, familial aggregation, linkage and mutagen 
sensitivity, which identified specific candidate genes 
including APC, hMLH1, hMSH2, PMS2, PTEN, NF1, 
NF2, et al, indicated the genetic susceptibility to gliomas 
[20–22]. Furthermore, genome-wide association studies 
(GWASs) show that common genetic variation contributes 
to the heritable risk of gliomas, and identify some new 
gliomas susceptibility loci, however, these only account 
for a small proportion of gliomas cases [8]. Additional 
studies, which aims to find more potential susceptibility 
loci to reveal the underlying genetic basis for gliomas, 
are needed and may yield increased insight into the 
development of this malignancy.

SOX9 gene is located on a gene desert on 17q24 
in humans, and could recognize the CCTTGAG sequence 
along with other members of the HMG-box class DNA-
binding proteins [23, 24]. Sox9 is required for the early 
differentiation of the prostate bud epithelia, and fully 
involved in the carcinogenesis, differentiation, and 
invasion prostate cancer through reactivating the WNT/
beta-catenin signaling that mediates ductal morphogenesis 
[25–28]. Besides, Sox9 was also associated the 
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carcinogenesis, development and prognosis of colorectal 
cancer, lung cancer, melanoma, hepatocellular carcinoma, 
skin tumors, and cervical cancer [29–37]. Pop et al [38] 
found a homozygous nonsense mutation in SOX9 in the 
dominant disorder campomelic dysplasia. Zhang et al 
[39] identified that multiple genetic variants mapping to 
a unique enhancer looping to the SOX9 oncogene could 
account for the risk associated with 17q24.3 locus of 
prostate cancer.

In current study, we confirmed that SOX9 rs1042667 
was significantly associated with increased gliomas risk 
(Allele C vs A: OR=1.25; 95% CI=1.11-1.40; P=1.2×10−4). 
Using Quanto software (http://biostats.usc.edu/Quanto.
html), we found we have 97% statistical power to get such 
an association. Rs1042667 located at the 3’ UTR region of 
the SOX9 gene. Using RegulomeDB [40, 41], rs1042667 
was identified to be likely to affect binding capacity with 
other genes and transcription factors. While it was reported 

Table 2: Association between SOX9 gene polymorphisms and the risk of gliomas in the discovery stage

SNPs Subject Genotype (N) OR (95 % CI)1 P 
value11 12 22 2 vs 1 12 vs 11 22 vs 11

rs1042667 Case 91 195 114 1.26 (1.04–1.54) 1.45 (1.03–2.04) 1.55 (1.06–2.28) 0.019

Control 122 180 98

rs918080 Case 271 100 29 1.20 (0.93-1.55) 0.99 (0.72-1.37) 1.87 (1.00-3.50) 0.156

Control 280 104 16

rs16977091 Case 310 72 18 0.92 (0.69-1.22) 0.75 (0.53-1.06) 1.43 (0.68-3.01) 0.564

Control 296 92 12

rs9893662 Case 193 140 67 1.20 (0.97-1.48) 0.91 (0.68-1.24) 1.65 (1.07-2.54) 0.087

Control 200 158 42

rs7502198 Case 122 210 68 1.20 (0.88-1.64) 1.30 (0.85-1.98) 1.14 (0.94-1.39) 0.187

Control 140 200 60

rs6501522 Case 250 116 34 1.07 (0.84-1.36) 0.92 (0.68-1.25) 1.41 (0.82-2.45) 0.549

Control 250 126 24

rs9915657 Case 252 108 40 1.08 (0.85-1.36) 0.84 (0.61-1.14) 1.57 (0.93-2.66) 0.512

Control 248 127 25

1adjusted for Age, gender, family history of cancer, smoking status and alcohol status

Table 1: Comparison of gliomas patients and controls by selective characteristics

Variables Discovery stage Validation stage

Cases (n=400) Controls 
(n=400)

P value Cases (n=800) Controls 
(n=800)

P value

Age (years) 48.2±3.8 48.5±3.3 0.233 45.3±4.2 45.1±4.7 0.370

Gender (male) 244 (61.0%) 248 (62.0%) 0.771 480 (60.0%) 468 (58.5%) 0.542

Family history of 
cancer 86 (21.5%) 75 (18.8%) 0.332 160 (20.0%) 131 (16.4%) 0.060

Smoking status

      Ever 100 (25.0%) 97 (24.2%) 0.806 162 (20.2%) 132 (16.5%) 0.053

      Never 300 (75.0%) 303 (75.8%) 638 (79.8%) 668 (83.5%)

Alcohol status

      Ever 114 (28.5%) 104 (26.0%) 0.435 238 (29.8%) 160 (20.0%) P<0.001

      Never 326 (81.5%) 336 (84.0%) 562 (70.2%) 640 (80.0%)
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to be associated with the expression of AC005152.2 in 
Heart Left Ventricle, and could alter regulatory motifs, 
including GR_disc4, TATA_disc1, THAP1_disc2, and 
YY1_disc1, when analyzed by HaploReg v4.1 [42]. It 
was also predicted to be the binding site of transcription 
factors (ATF6_01, CACD_01, CDPCR3_01, et al) using 
the SNPinfo package (https://snpinfo.niehs.nih.gov/cgi-
bin/snpinfo/snpfunc.cgi). Overall, our findings provided 
evidence for the important role of SOX9 gene in the 
tumorigenesis of gliomas.

Several limitations should be considered when 
interpreting the results of this study. First, due to the 
natural of case-control study design, selection and 
information bias might be unavoidable. We have tried 

our best to eliminate this by matching the control by 
age, gender, and race from the same hospital, a face to 
face interview, and unified training of the investigators. 
Second, gene-environment interactions was not detected 
in current study, which may be caused by the relatively not 
very large sample size.

Conclusively, the present two-stage, case-control 
study revealed that SOX9 rs1042667 was associated with 
increased gliomas risk in a Chinese population. Further 
functional and genetic association studies in larger 
population, with different ethnic groups included, are 
warranted to further validate our results and explore the 
possible mechanism of SOX9 gene in the carcinogenesis 
and development of gliomas.

Table 4: Association of rs1042667 with risk of gliomas stratified by Alcohol status

rs1042667 Cases (n=1200) Controls (n=1200) OR1 (95% CIs) P value

Ever drinkers 352 264

      AA 77 (21.9%) 80 (30.3%) Reference

      AC 173 (49.1%) 121 (45.8%) 1.48 (1.05-1.64) 0.046

      CC 102 (29.0%) 63 (23.9%) 1.68 (1.08-2.62) 0.021

  Additive model 1.31 (1.05-1.64) 0.018

Never drinkers 848 936

      AA 199 (23.5%) 278 (29.7%) Reference

      AC 412 (48.6%) 433 (46.3%) 1.33 (1.06-1.67) 0.014

      CC 237 (27.9%) 225 (24.0%) 1.47 (1.14-1.90) 3.2×10−3

  Additive model 1.23 (1.07-1.40) 2.5×10−3

1adjusted for Age, gender, family history of cancer, and smoking status

Table 3: Genotype frequencies of rs1042667 and association with risk of gliomas in validation stage and the merged 
results

rs1042667 Cases (n=800) Controls (n=800) OR1 (95% CIs) P value

validation stage

      AA 185 (23.1%) 236 (29.5%) Reference

      AC 390 (48.8%) 374 (46.8%) 1.33 (1.05-1.69) 0.019

      CC 225 (28.1%) 190 (23.7%) 1.51 (1.15-1.98) 0.003

  Additive model 1.24 (1.08-1.42) 0.002

Merged results

      AA 276 (23.0%) 358 (29.8%) Reference

      AC 585 (48.7%) 554 (46.2%) 1.37 (1.13-1.66) 1.6×10−3

      CC 339 (28.3%) 288 (24.0%) 1.53 (1.22-1.91) 1.8×10−4

  Additive model 1.25 (1.11-1.40) 1.2×10−4

1 adjusted for Age, gender, family history of cancer, smoking status and alcohol status
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MATERIALS AND METHODS

Subjects

All of the gliomas cases received treatments 
from the Tangdu Hospital until November 2015, 
we recruited 1,200 genetically unrelated Chinese 
patients with newly diagnosed and histopathologically 
confirmed primary gliomas. We also included a total 
of 1,200 age-, gender-, race-matched, cancer-free 
volunteers recruited from the same hospital. The 
response rate was approximately 95% and 92% for 
gliomas subjects and cancer-free controls, respectively. 
All the participants have no previous history of cancer 
and CNS-related diseases. Structured-interviewer-
administered questionnaires were used to collect 
data on demographic characteristics and potential 
gliomas risk factors. The study was approved by the 
Institutional Review Board of Tangdu Hospital. All of 
the participants provided written informed consent by 
themselves or their guardians.

SNP selection and genotyping

The tag SNPs of SOX9 gene and its 10kb flanking 
region were selected using SNPinfo (http://snpinfo.
niehs.nih.gov/) based on the criteria of minor allele 
frequency(MAF) >5% for Chinese Han subjects; Seven 
tag SNPs in the SOX9 gene that met the criteria were 
chosen in this study (Figure 1). Genomic DNAs were 
extracted by Qiagen DNA blood kit (Qiagen, Hilden, 

Germany) from whole blood samples collected from 
all subjects. The extraction of genomic DNAs was 
performed following the manufacturer’s protocols. SNP 
genotyping was performed by Sequenom MassArray 
iPLEX platform (Sequenom Inc., San Diego, CA, USA). 
To validate the accuracy of genotyping results and for 
quality control, approximately 10% of the samples were 
randomly selected and genotyped with sequencing. 
Results showed that the concordance for the quality 
control samples was 100%.

Statistical analysis

All the data was analyzed with SPSS software 
version 13.0 (SPSS Inc, Chicago, IL, USA). All 
statistical tests were two-sided, with a significance 
level of P < 0.05. The chi-square test was used to 
compare the difference in gender, family history of 
cancer, smoking status and alcohol status between 
gliomas patients and healthy controls, while Student’s 
paired t test was performed to compare the difference 
in age between gliomas patients and healthy controls. 
Genotypic frequencies in controls for each SNP were 
tested for departure from HWE using goodness-of-fit 
χ2 test. Odds ratios and corresponding 95% confidence 
intervals (CIs) were used to estimate the association 
between selected polymorphisms and gliomas risk. 
Adjusted ORs were calculated by multivariate analysis 
with unconditional logistic regression, with adjustment 
for age, gender, family history of cancer, smoking status 
and alcohol status.

Figure 1: tag SNP selection of the SOX9 gene.
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