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ABSTRACT

Gliomas make up about 80% of all malignant brain tumors, and cause serious
public health problem. Genetic factors and environmental factors jointly caused the
development of gliomas, and understanding of the genetic basis is a key component
of preventive oncology. However, most genetic factors underlying carcinogenesis
of gliomas remain largely unclear. In current study, we systematically evaluated
whether genetic variants of SOX9 gene, a transcription factor that plays a central
role in the development and differentiation of tumors, contribute to susceptibility of
gliomas among Chinese population using a two-stage, case-control study. Results
showed that SOX9 rs1042667 was significant associated with increased gliomas risk
after adjusted by age, gender, family history of cancer, smoking status and alcohol
status (Allele C vs A: OR=1.25; 95% CI=1.11-1.40; P=1.2x10*). Compared with the
carriers of genotype AA, both those of genotype AC (OR=1.37; 95% CI=1.13-1.66)
and CC (OR=1.53; 95% CI=1.22-1.91) had significantly increased gliomas risk. This
should be the first genetic association study which aims to evaluated the association
between genetic variants of SOX9 and susceptibility of gliomas. Additional functional
and association studies with different ethnic groups included are needed to further
confirm our results.

of preventive oncology. Genome-wide association studies
(GWAS) have successfully identified a large number
of common single-nucleotide polymorphisms (SNPs)
influencing gliomas risk, while these SNPs only explain a
small proportion of the genetic risk [7]. Furthermore, due

INTRODUCTION

Brain and central nervous system (CNS)
malignancies refer to series of rarely occurred tumors
[1]. According to the data of National Office for Cancer

Prevention and Control in China, the estimated numbers
of new cases and deaths in China were 101600 and 61000,
respectively [2]. Gliomas, which are thought to arise from
glial cells, make up about 80% of all malignant brain
tumors [3]. Many risk factors have been identified as
potential contributors to gliomas risk [4]. For example,
ionizing radiation exposure, allergies or atopic disease(s)
history, and potential influence of occupational exposures
have been identified to be associated with gliomas risk [4—
6]. Understanding of the genetic basis is a key component

to the common methodological challenges among gliomas
studies include small sample sizes, heterogeneity of tumor
subtypes, and retrospective exposure assessment, limited
genetic loci were identified for gliomas risk [8—11].

SRY (Sex Determining Region Y)-Box (SOX)
genes, which encode transcription factors belonging to
the HMG (High Mobility Group) superfamily, have been
identified to be associated with a large number of tumour
types in vivo [12—14]. Among them, SOX9, which acts
as a transcription factor that plays a central role in the
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development and differentiation of multiple cell lineages,
were suggested to be associated with risk and prognosis of
gliomas [15-17]. Rani et al [18] found MiR-145 functed as
a tumor-suppressive RNA by targeting Sox9 and adducin
3 in human glioma cells. Genetic association studies
could provide solid evidence for the Oncogenic role of
SOX9 gene in human malignant gliomas. To present, no
studies have evaluated that whether genetic variants of
SOXO9 contribute to susceptibility of gliomas. Given the
biological importance of SOX9 gene and its implication in
gliomas, we performed the current two-stage, case—control
study to investigated the association between tag SNPs in
the SOX9 gene and gliomas susceptibility among Chinese
population.

RESULTS

Demographic characteristics of the subjects

In current study, totally 400 gliomas patients and
400 healthy control were recruited in the discovery
stage, while 800 gliomas patients and 800 healthy
control were recruited in the validation stage. Table 1
shows the comparison of gliomas patients and controls
by selective characteristics in both the discovery stage
and the validation stage. No significant variation in age,
gender, family history of cancer, and smoking status was
found between gliomas patients and healthy controls in
two stages (P> 0.05), while the gliomas patients are more
likely to be drinkers in the validation stage (P<0.001).

Associations between SOX9 gene polymorphisms
and gliomas risk in the discovery stage

Totally seven tagSNPs (rs1042667, rs918080,
rs16977091, 1rs9893662, rs7502198, rs6501522, and
1s9915657) are selected using the SNPinfo web-based
software. As shown in Table 2, the genotype frequencies
of the selected SNPs and their associations with gliomas
risk are presented. All of the genotype distributions for the
seven tag SNPs were consistent with the HWE (P > 0.05).
Our results indicated that SOX9 rs1042667 was significant
associated with increased gliomas risk (Allele C vs A:
OR=1.26; 95% CI=1.04—1.54; P=0.019). Compared with
the carriers of genotype AA, both those of genotype AC
(OR=1.45; 95% CI=1.03-2.04) and CC (OR=1.55; 95%
CI=1.06-2.28) had significantly increased gliomas risk.
However, no significant trend was detected for rs918080,
rs16977091, 1rs9893662, rs7502198, rs6501522, and
1s9915657.

Validation analysis of the association between
SOX9 rs1042667 and gliomas risk

To validate the positive findings, the association
between SOX9 151042667 and gliomas risk was

evaluated in an independent stage (Table 3). The genotype
distribution for rs1042667 was also consistent with
the HWE in the stage (P > 0.05). The results showed
that SOX9 rs1042667 was also significant associated
with increased gliomas risk (Allele C vs A: OR=1.24;
95% CI=1.08-1.42; P=0.002). when merged two stages
together, SOX9 rs1042667 was significant associated
with increased gliomas risk (Allele C vs A: OR=1.25; 95%
CI=1.11-1.40; P=1.2x107*). Compared with the carriers of
genotype AA, both those of genotype AC (OR=1.37; 95%
CI=1.13-1.66) and CC (OR=1.53; 95% CI=1.22-1.91) had
significantly increased gliomas risk. We also conducted
stratified analysis by alcohol status. However, the results
didn’t changed materially (Table 4).

DISCUSSION

In current study, we systematically evaluated
whether genetic variants of SOX9 contribute to
susceptibility of gliomas among Chinese population
using a two-stage, case—control study. Results strongly
indicated that SOX9 rs1042667 was significant associated
with 1.25-flod increased gliomas risk, after adjusted by
age, gender, family history of cancer, smoking status and
alcohol status. To be best of our knowledge, this should be
the first genetic association study which aims to evaluated
the association between genetic variants of SOX9 and
susceptibility of gliomas.

The prognosis for patients with gliomas is often
very poor, only ~2% of which aged 65 years or older
[19]. Previous studies revealed that genetic, behavioral,
environmental and developmental contributed to gliomas
risk, although only exposure to therapeutic or high-dose
radiation was firmly established [20]. Studies of genetic
syndromes, familial aggregation, linkage and mutagen
sensitivity, which identified specific candidate genes
including APC, hMLH1, hMSH2, PMS2, PTEN, NF1,
NF2, et al, indicated the genetic susceptibility to gliomas
[20-22]. Furthermore, genome-wide association studies
(GWASSs) show that common genetic variation contributes
to the heritable risk of gliomas, and identify some new
gliomas susceptibility loci, however, these only account
for a small proportion of gliomas cases [8]. Additional
studies, which aims to find more potential susceptibility
loci to reveal the underlying genetic basis for gliomas,
are needed and may yield increased insight into the
development of this malignancy.

SOX9 gene is located on a gene desert on 17q24
in humans, and could recognize the CCTTGAG sequence
along with other members of the HMG-box class DNA-
binding proteins [23, 24]. Sox9 is required for the early
differentiation of the prostate bud epithelia, and fully
involved in the carcinogenesis, differentiation, and
invasion prostate cancer through reactivating the WNT/
beta-catenin signaling that mediates ductal morphogenesis
[25-28]. Besides, Sox9 was also associated the
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Table 1: Comparison of gliomas patients and controls by selective characteristics

Variables Discovery stage Validation stage
Cases (n=400) Controls Pvalue Cases (n=800) Controls P value
(n=400) (n=800)
Age (years) 48.243.8 48.5+3.3 0.233 45.3+4.2 45.1+4.7 0.370
Gender (male) 244 (61.0%) 248 (62.0%) 0.771 480 (60.0%) 468 (58.5%) 0.542
f::;{clry history of 86 (21.5%) 75 (18.8%) 0.332 160 (20.0%) 131 (16.4%) 0.060
Smoking status
Ever 100 (25.0%) 97 (24.2%) 0.806 162 (20.2%) 132 (16.5%) 0.053
Never 300 (75.0%) 303 (75.8%) 638 (79.8%) 668 (83.5%)
Alcohol status
Ever 114 (28.5%) 104 (26.0%) 0.435 238 (29.8%) 160 (20.0%) P<0.001
Never 326 (81.5%) 336 (84.0%) 562 (70.2%) 640 (80.0%)
Table 2: Association between SOX9 gene polymorphisms and the risk of gliomas in the discovery stage
SNPs Subject  Genotype (N) OR (95 % CI)! P
1n 12 2 2vs1 12vs 11 2 vs 11 value
rs1042667 Case 91 195 114 1.26 (1.04-1.54) 1.45(1.03-2.04) 1.55 (1.06-2.28) 0.019
Control 122 180 98
rs918080 Case 271 100 29 1.20 (0.93-1.55) 0.99 (0.72-1.37) 1.87 (1.00-3.50) 0.156
Control 280 104 16
rs16977091 Case 310 72 18 0.92 (0.69-1.22) 0.75 (0.53-1.06) 1.43 (0.68-3.01) 0.564
Control 296 92 12
rs9893662 Case 193 140 67 1.20 (0.97-1.48) 0.91 (0.68-1.24) 1.65 (1.07-2.54) 0.087
Control 200 158 42
rs7502198 Case 122 210 68 1.20 (0.88-1.64) 1.30 (0.85-1.98) 1.14 (0.94-1.39) 0.187
Control 140 200 60
rs6501522 Case 250 116 34 1.07 (0.84-1.36) 0.92 (0.68-1.25) 1.41 (0.82-2.45) 0.549
Control 250 126 24
1s9915657 Case 252 108 40 1.08 (0.85-1.36) 0.84 (0.61-1.14) 1.57 (0.93-2.66) 0.512
Control 248 127 25

'adjusted for Age, gender, family history of cancer, smoking status and alcohol status

carcinogenesis, development and prognosis of colorectal
cancer, lung cancer, melanoma, hepatocellular carcinoma,
skin tumors, and cervical cancer [29-37]. Pop et al [38]
found a homozygous nonsense mutation in SOX9 in the
dominant disorder campomelic dysplasia. Zhang et al
[39] identified that multiple genetic variants mapping to
a unique enhancer looping to the SOX9 oncogene could
account for the risk associated with 17q24.3 locus of
prostate cancer.

In current study, we confirmed that SOXO rs1042667
was significantly associated with increased gliomas risk
(Allele C vs A: OR=1.25; 95% CI=1.11-1.40; P=1.2x107%).
Using Quanto software (http://biostats.usc.edu/Quanto.
html), we found we have 97% statistical power to get such
an association. Rs1042667 located at the 3° UTR region of
the SOX9 gene. Using RegulomeDB [40, 41], rs1042667
was identified to be likely to affect binding capacity with
other genes and transcription factors. While it was reported
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Table 3: Genotype frequencies of rs1042667 and association with risk of gliomas in validation stage and the merged

results
rs1042667 Cases (n=800) Controls (n=800) OR! (95% Cls) P value
validation stage
AA 185 (23.1%) 236 (29.5%) Reference
AC 390 (48.8%) 374 (46.8%) 1.33 (1.05-1.69) 0.019
CcC 225 (28.1%) 190 (23.7%) 1.51 (1.15-1.98) 0.003
Additive model 1.24 (1.08-1.42) 0.002
Merged results
AA 276 (23.0%) 358 (29.8%) Reference
AC 585 (48.7%) 554 (46.2%) 1.37 (1.13-1.66) 1.6x107°
CcC 339 (28.3%) 288 (24.0%) 1.53 (1.22-1.91) 1.8x107*
Additive model 1.25 (1.11-1.40) 1.2x107*
"adjusted for Age, gender, family history of cancer, smoking status and alcohol status
Table 4: Association of rs1042667 with risk of gliomas stratified by Alcohol status
rs1042667 Cases (n=1200) Controls (n=1200) OR! (95% Cls) P value
Ever drinkers 352 264
AA 77 (21.9%) 80 (30.3%) Reference
AC 173 (49.1%) 121 (45.8%) 1.48 (1.05-1.64) 0.046
CcC 102 (29.0%) 63 (23.9%) 1.68 (1.08-2.62) 0.021
Additive model 1.31 (1.05-1.64) 0.018
Never drinkers 848 936
AA 199 (23.5%) 278 (29.7%) Reference
AC 412 (48.6%) 433 (46.3%) 1.33 (1.06-1.67) 0.014
CcC 237 (27.9%) 225 (24.0%) 1.47 (1.14-1.90) 3.2x1073
Additive model 1.23 (1.07-1.40) 2.5x107

'adjusted for Age, gender, family history of cancer, and smoking status

to be associated with the expression of AC005152.2 in
Heart Left Ventricle, and could alter regulatory motifs,
including GR disc4, TATA discl, THAPI disc2, and
YY1 discl, when analyzed by HaploReg v4.1 [42]. It
was also predicted to be the binding site of transcription
factors (ATF6 01, CACD_01, CDPCR3 01, et al) using
the SNPinfo package (https://snpinfo.niehs.nih.gov/cgi-
bin/snpinfo/snpfunc.cgi). Overall, our findings provided
evidence for the important role of SOX9 gene in the
tumorigenesis of gliomas.

Several limitations should be considered when
interpreting the results of this study. First, due to the
natural of case-control study design, selection and
information bias might be unavoidable. We have tried

our best to eliminate this by matching the control by
age, gender, and race from the same hospital, a face to
face interview, and unified training of the investigators.
Second, gene-environment interactions was not detected
in current study, which may be caused by the relatively not
very large sample size.

Conclusively, the present two-stage, case-control
study revealed that SOX9 rs1042667 was associated with
increased gliomas risk in a Chinese population. Further
functional and genetic association studies in larger
population, with different ethnic groups included, are
warranted to further validate our results and explore the
possible mechanism of SOX9 gene in the carcinogenesis
and development of gliomas.
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MATERIALS AND METHODS

Subjects

All of the gliomas cases received treatments
from the Tangdu Hospital until November 2015,
we recruited 1,200 genetically unrelated Chinese
patients with newly diagnosed and histopathologically
confirmed primary gliomas. We also included a total
of 1,200 age-, gender-, race-matched, cancer-free
volunteers recruited from the same hospital. The
response rate was approximately 95% and 92% for
gliomas subjects and cancer-free controls, respectively.
All the participants have no previous history of cancer
and CNS-related diseases. Structured-interviewer-
administered questionnaires were used to collect
data on demographic characteristics and potential
gliomas risk factors. The study was approved by the
Institutional Review Board of Tangdu Hospital. All of
the participants provided written informed consent by
themselves or their guardians.

SNP selection and genotyping

The tag SNPs of SOX9 gene and its 10kb flanking
region were selected using SNPinfo (http://snpinfo.
niehs.nih.gov/) based on the criteria of minor allele
frequency(MAF) >5% for Chinese Han subjects; Seven
tag SNPs in the SOX9 gene that met the criteria were
chosen in this study (Figure 1). Genomic DNAs were
extracted by Qiagen DNA blood kit (Qiagen, Hilden,

CHB : SOX9_6662

Figure 1: tag SNP selection of the SOX9 gene.

Germany) from whole blood samples collected from
all subjects. The extraction of genomic DNAs was
performed following the manufacturer’s protocols. SNP
genotyping was performed by Sequenom MassArray
iPLEX platform (Sequenom Inc., San Diego, CA, USA).
To validate the accuracy of genotyping results and for
quality control, approximately 10% of the samples were
randomly selected and genotyped with sequencing.
Results showed that the concordance for the quality
control samples was 100%.

Statistical analysis

All the data was analyzed with SPSS software
version 13.0 (SPSS Inc, Chicago, IL, USA). All
statistical tests were two-sided, with a significance
level of P < 0.05. The chi-square test was used to
compare the difference in gender, family history of
cancer, smoking status and alcohol status between
gliomas patients and healthy controls, while Student’s
paired t test was performed to compare the difference
in age between gliomas patients and healthy controls.
Genotypic frequencies in controls for each SNP were
tested for departure from HWE using goodness-of-fit
x2 test. Odds ratios and corresponding 95% confidence
intervals (CIs) were used to estimate the association
between selected polymorphisms and gliomas risk.
Adjusted ORs were calculated by multivariate analysis
with unconditional logistic regression, with adjustment
for age, gender, family history of cancer, smoking status
and alcohol status.

21442 bp

LD Value

Missing [ MAF
® Tag SNP % nsSNP
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