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ABSTRACT:
Transcriptional regulation of miRNAs that control the pathogenesis of breast 

cancer remains largely unknown. Here, we showed that ionizing radiation, a known 
breast carcinogen, triggered the differential expression of miR-20b in mammary 
tissues. We identified several GC-rich consensus binding motifs for the zinc finger 
transcription factor early growth response-1 (EGR1) in miR-20b promoter. miR-
20b was upregulated by IR and its upregulation correlated with EGR1 expression in 
the breast cancer cell line HCC1806. Therefore, we used HCC1806 cells as a model 
system to explore the role of EGR1 in miR-20b transcription. siRNA knockdown 
of EGR1 attenuated miR-20b expression. Luciferase assays showed that whereas 
EGR1 stimulated luciferase activity driven by the wild-type miR-20b promoter, 
this induction was abolished in the mutant miR-20b promoter construct. We noted 
significant enrichment of EGR1 at miR-20b promoter in HCC1806 cells compared 
with normal human mammary epithelial cells. Suppression of miR-20b significantly 
inhibited HCC1806 cell proliferation and migration, and led to G0/G1 and S phase 
arrest. In vitro RNA-pull down assays indicated that miR-20b targets numerous tumor 
suppressors, including PTEN and BRCA1, which were downregulated in HCC1806. 
Conversely, suppression of miR-20b increased PTEN and BRCA1 levels. Moreover, 
immunohistochemical and FISH analyses showed that the miR-20b expression 
correlated significantly with EGR1 levels in breast cancer tissues. Our findings thus 
demonstrate for the first time that EGR1 is a key player in the transcriptional control 
of miR-20b, and miR-20b may in turn function as an oncogene by contributing to 
breast tumorigenesis via tumor suppressor targeting. 

INTRODUCTION

Breast cancer is the most common malignancy 
in women worldwide and the second leading cause of 
cancer-related deaths among North American women[1].
Most breast cancer patients undergo radiation diagnosis 
and are treated with radiotherapy. In addition to being an 
important treatment modality, ionizing radiation (IR) is a 
potent tumor-causing agent that has been linked to breast 

cancer development[2-4]. However, the exact molecular 
etiology of IR-induced mammary gland carcinogenesis 
remains unknown. Breast cancer is currently recognized 
as a genetic and an epigenetic disease[5]. The contribution 
of epigenetic alterations to breast carcinogenesis remains 
relatively obscure.

In recent years, one of the key advances in our 
understanding of the fundamental mechanisms of 
gene regulation has been the discovery of microRNAs 
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(miRNAs/miRs). miRNAs are small noncoding RNA 
molecules that regulate gene expression either through 
translational repression or mRNA degradation, as 
determined by the degree of complementarity to 
the 3’ untranslated regions of cognate mRNAs[6,7].
Approximately 30% of all protein-coding genes are 
assumed to be targets of miRNAs[8]. miRNAs possess 
diverse functions in many biologic and pathologic 
processes, including control of cell differentiation, 
proliferation, and apoptosis. Aberrant expression and 
dysregulation of miRNAs contribute to tumorigenesis, 
angiogenesis, and metastasis[6,9,10]. Current evidence 
indicates that miRNAs can serve as either tumor 
suppressors or oncogenes[11,12]. 

miRNA also partake in genotoxic stress responses. 
Many genotoxic carcinogens affect miRNA patterns in the 
exposed tissues and organs. Amongst those, IR profoundly 
affects tissue miRNAome. Recently we have shown that 
IR exposure affects mammary gland tissue and causes 
profound deregulation of miRNA expression. Amongst 
miRNAs, miR-20b was significantly affected.

miRNA-20b (miR-20b) is encoded by the miR-
106a-363 cluster which, together with the miR-17-92 
and miR-106b-25 clusters, forms a large family of highly 
similar miRNAs called the miR-17 family[13]. Members 
of the miR-17 family are often upregulated in many human 
malignancies, such as lung cancer and leukemias[14-17]. 
Ectopic expression of miR-17 promotes motility 
and invasion of glioblastoma cells through targeting 
PTEN[18]. The high expression levels of miR-20b in 
gastric cancer constitute a negative survival prognostic 
factor[19]. miR-20b is upregulated in c-Myc-induced 
mouse mammary tumors[20]. Furthermore, several lines 
of evidence demonstrate that miR-20b downregulates 
ERα (estrogen receptor alpha) [21] and modulates VEGF 
expression by targeting HIF-1α and STAT3[22] in MCF7 
breast cancer cells. 

Transcriptional regulation of miR-20b in human 
cancers remains poorly understood to date. We therefore 
explored the transcription factor(s) involved in miR-
20b expression and the role of miR-20b in breast 
tumorigenesis. The data presented in this paper indicate 
that IR induces miR-20b expression in rat mammary 
gland tissues in a dose- and time-dependent manner. We 
also show that miR-20b is upregulated in HCC1806 breast 
cancer cells, and this upregulation correlates with EGR1 
expression. We provide evidence that EGR1 controls 
miR-20b transcription via putative EGR1 binding motifs 
present in miR-20b promoter. Suppression of miR-20b 
inhibits HCC1806 proliferation and migration, resulting 
in G0/G1 and S phase arrest. Furthermore, we provide 
the key evidence that miR-20b targets tumor suppressors 
BRCA1 and PTEN. Finally, immunohistochemical and 
FISH analyses indicate that miR-20b is elevated in 30% 
of breast cancer and 50% of metastatic breast cancer 
specimens examined, and this upregulation correlates 

significantly with EGR1 levels.

RESULTS

IR-induced miR-20b expression in mammary 
gland tissues and cells

Our previous studies demonstrated that IR 
triggered a significant and sex-specific deregulation of 
the microRNAome, as well as altered levels of Dicer 
and components of the RNA-induced silencing complex 
in the spleen of C57BL/6 mice [23]. To understand the 
microRNAs that are differentially expressed in mammary 
gland tissues in response to IR, six-week old female Long 
Evans rats were exposed to different doses/energy X-ray 
and sacrificed at different time points after irradiation. 
microRNA microarray analysis showed that 96 hours 
after irradiation, miR-20b was significantly reduced (Fig. 
1A). This result was confirmed by quantitative real-time 
RT-PCR (qRT-PCR, Fig. 1B). A similar response was also 
displayed in human mammary epithelial cells (HMEC) 
96 hours post irradiation (Fig. S1A). The qRT-PCR using 
RNA samples from IR-exposed mammary gland tissues 
at different time points showed both a time- and dose-
dependent expression of miR-20b (Fig. 1C). IR also 
triggered a rapid and transient induction of miR-20b in 
HMEC cells which peaked at 24 hour post-IR (Fig. 1D 
and Fig. S1A), and correlated with the IR-inducible 
EGR-1 expression (Fig. 1E, Fig. S1B and C; correlation 
r=0.81926 in 30 kVp/0.1 Gy group; correlation r=0.68675 
in 80 kVp/2.5 Gy group), although the EGR1 mRNA was 
not elevated at 6 hour post-IR. In consideration of the 
involvement of gene copy numbers in gene expression, 
we determined the changes in copy number in HMEC cells 
as a response to IR. However, our results showed that IR 
did not affect the copy number of miR-20b gene (Fig. S2), 
indicating the involvement of other mechanisms in the 
control of IR-inducible miR-20b transcription. Software-
based bioinformatics analysis (Promoter 2.0 Prediction 
Server and Genomatix) identified several putative EGR1 
binding motifs present in miR-20b promoter (Fig. 3A). We 
therefore hypothesized that EGR1 may play a role in miR-
20b transcription.

EGR1 contributes to the transcriptional 
regulation of miR-20b in breast cancer cells

To explore our hypothesis, we determined the 
expression of EGR1 and miR-20b, as well as the 
contribution of EGR1 to miR-20b transcription in breast 
cancer cells. qRT-PCR showed an aberrant expression of 
miR-20b in the breast cancer cell lines examined (Fig. 
2A), which correlated with EGR1 expression (Fig. 2B), 
with the exception of MCF7. Knockdown of EGR1 in 
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HCC1806 cells with the use of siEGR1 (siRNA targeting 
EGR1) resulted in a reduction in miR-20b expression 
(Fig. 2C and D). This reduction was particularly potent at 
the 50 nM siEGR1 dose (Fig. 2D). Ectopic expression of 
Egr1 caused induction in luciferase activity in a reporter 
construct harboring the wild-type miR-20b promoter in a 
dose-dependent fashion. This EGR1 responsiveness was 
completely abolished in the mutant construct (Fig. 3B). 
EGR1 was overexpressed in HCC1806 cells (Fig. 2B), 
and both real-time ChIP-PCR and conventional ChIP-PCR 
indicated that EGR1 was functionally enriched at miR-20b 
promoter in HCC1806 cells compared with normal HMEC 
(Fig. 3C). Furthermore, EMSA assays indicated that EGR1 
specifically bound to miR-20b promoter (Fig. 3D). Taken 
together, these results suggested that EGR1 played a 
crucial role in controlling miR-20b transcription. We then 
determined the role of miR-20b in breast carcinogenesis.

miR-20b is a key player in breast cancer cell 
proliferation, migration, and cell cycle control

Because of the upregulation of miR-20b in 
HCC1806 cells, we selected this cell line as a model 

system to functionally suppress miR-20b with the use 
of specific inhibitors. HCC1806 cell proliferation was 
significantly suppressed by miR-20b inhibitor in an 
MTT assay (Fig. 4A), and HCC1806 cell migration was 
likewise inhibited in a wound healing assay (Fig. 4B and 
C). Inhibition of miR-20b also interestingly resulted in G0/
G1 and S phase cell cycle arrest (Fig. 4D), although miR-
20b inhibitor did not affect apoptosis (Fig. S3). To identify 
the target molecules of miR-20b that may be involved in 
these pathological processes, molecules that bind to miR-
20b were pulled down in vitro and subjected to deep 
sequencing analysis. Software predictions by MIRANDA 
and RNAhybrid showed that miR-20b could bind to the 
3’ UTRs of many tumor suppressors (Fig. 5A) that are 
primarily associated with cell proliferation, invasion, 
apoptosis, and cell cycle control. Among the predicted 
targets of miR-20b, phosphatase and tensin homolog 
(PTEN, Fig. 5B) and breast cancer 1 gene (BRCA1, Fig. 
5B) are critical in the maintenance of genomic stability, 
negative regulation of proliferative signaling, and 
prevention of cancer. Western blot analysis showed that 
PTEN and BRCA1 were downregulated in HCC1806 cells 
compared with HMEC, and that were inversely correlated 

Figure 1: IR induces miR-20b expression in mammary gland tissues/cells in a dose- and time-dependent manner. (A 
and B) Total RNA isolated from the mammary gland tissues of six-week-old female Long Evans rats exposed to either 30 kVp/0.1 Gy, 80 
kVp/2.5 Gy X-ray, or sham-treatment 96 hours post-irradiation was subjected to microRNA microarray; the levels of rno-miR-20b were 
determined by real-time RT-PCR. (C) Total RNA was isolated from the mammary gland tissues of six-week-old female Long Evans rats 
at different time points post-IR, and the levels of rno-miR-20b were examined by real-time RT-PCR. (D and E) Total RNA isolated from 
HMEC exposed to either 30 kVp/0.1 Gy or 80 kVp/2.5 Gy X-ray was subjected to real-time RT-PCR using primers for hsa-miR-20b and 
EGR1. The hash indicates p<0.1; the asterisk indicates p<0.05.
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with miR-20b expression in these cell lines (Fig. 5C, Fig. 
2A). By contrast, suppression of miR-20b resulted in an 
elevation of the aforementioned proteins in HCC1806 
cells (Fig. 5C). Luciferase activity in both pGL3-PTEN 
and pGL3-BRCA1 reporters was significantly reduced by 
miR-20b (Fig. 5D), suggesting that PTEN and BRCA1 
were direct targets of miR-20b.

EGR1 expression correlates with miR-20b 
expression in breast cancer specimens

To further confirm the role of EGR1 in miR-20b 
transcription in diseased tissues, immunohistochemical 
staining and FISH analysis were performed to determine 
the expression of EGR1 and miR-20b in breast cancer 
tissue arrays. EGR1 was upregulated in 40% breast 
cancer tissues, and miR-20b was elevated in 30% 
breast cancer tissues examined: upregulated EGR1 
correlated significantly with upregulated miR-20b in 
the normal, benign, and tumor tissues tested (Fig. 6A 
and B; r=0.99, p=0.032). Likewise, downregulation of 
EGR1 also correlated with downregulated miR-20b in 

the normal, benign, and tumor tissues examined (Fig. 
6A and B; r=0.99, p=0.054). More important, EGR1 
was overexpressed in 50% of the metastatic breast 
cancer tissues examined. Once again, this overexpresion 
correlated strongly with an upregulation of miR-20b (Fig. 
6C and D). These results further confirm the role of EGR1 
in the transcriptional control of miR-20b and that aberrant 
expression contributed to the development of breast 
cancer, particularly metastatic breast cancer.

Expression of PTEN and BRCA1 is negatively 
correlated with miR-20b expression in metastatic 
breast cancers

To determine if the differentially expressed miR-
20b contributes to the expression of PTEN and BRCA1 
in breast cancer, we further looked at the levels of their 
expression in breast cancer cell lines and breast cancer 
tissue arrays. Western blot analysis showed that levels 
of PTEN and BRCA1 were downregulated in all breast 
cancer cell lines examined (Fig. S4). While only in MCF7 
and HCC1806 lines (50%, n=4), the levels of PTEN 

Figure 2: EGR1 correlates with miR-20b expression levels. (A) Total RNA isolated from HMEC and breast cancer cell lines 
MCF7, ZR75-1, HCC1419, and HCC1806 was subjected to real-time RT-PCR with a primer set for miR-20b. (B) Whole cell lysates 
prepared from the above cell lines were subjected to Western blot analysis using antibodies against EGR1 and GAPDH. (C) HCC1806 cells 
were transiently transfected with either siEGR1 (siRNA targeting EGR1) or control siRNA; the levels of EGR1 mRNA and protein were 
determined by real-time RT-PCR (upper panel) and Western blot analysis (lower panel). (D) HCC1806 cells were transiently transfected 
with either siEGR1 or control siRNA; the levels of miR-20b were determined by real-time RT-PCR. The asterisk indicates p<0.05.
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and BRCA1 are negatively correlated with the miR-20b 
expression (Fig. 2A). Immunohistochemical analysis 
indicated that PTEN and BRCA1 are downregulated 
in 47% and 77.8% of metastatic breast cancer tissues, 
respectively (Fig. S5 and S6), and the levels of PTEN and 
BRCA1 were both negatively correlated with the miR-20b 
expression (Fig. 6D) (r=-0.996 and -0.778, respectively). 
Furthermore, the levels of PTEN and BRCA1 in normal 
and benign breast tissues were also negatively correlated 
with the miR-20b expression (Fig. S7 and S8, and Fig. 
6B) (Normal: r=-0.949 and -0.749, respectively; benign: 
r=-0.761 and -0.52, respectively). However, no correlation 
was found in malignant breast cancer tissues. These results 
suggest that miR-20b contributes, at least in part, to the 
aberrant expression of PTEN and BRCA1 in breast cancer.

DISCUSSION

In recent years, small noncoding RNAs, especially 
miRNAs, have been extensively investigated as possible 
key players in the process of breast cancer development 
and breast cancer treatment responses. However, all 
research efforts have primarily focused on identifying 
genes that miRNAs target and affect. Little is known 
about how miRNA transcription is regulated. A better 
understanding of the mechanisms that regulate miRNA 
transcription would provide an essential backdrop for 

future interventional approaches.
This study for the first time demonstrated that EGR1 

regulated miR-20b transcription and provided important 
clues on the role of miR-20b in breast tumorigenesis (Fig. 
7). Breast cancer is a multifactorial and multistage process 
that involves many environmental and genetic factors. 
Among the environmental factors that cause breast cancer, 
IR may be one of the high-risk factors because it has 
been shown to strongly induce breast cancer in exposed 
individuals[2]. Furthermore, the IR-induced mouse breast 
cancer model has been widely used in the field of breast 
cancer research. Unfortunately, the epigenetic mechanisms 
underlying IR-induced mammary carcinogenesis largely 
remain unknown. We showed in this paper that IR 
triggered miR-20b expression in mammary gland tissues 
in a dose- and time-dependent manner (Fig. 1C). Although 
IR is a putative inducer of genomic instability, including 
gene amplification [24], miR-20b gene copy number in our 
case did not contribute to IR-induced miR-20b expression 
(Fig. S1 and Fig. 1D). 

Interestingly, bioinformatic analysis showed 
several putative EGR1 binding motifs present in miR-
20b promoter, and EGR1 expression was correlated 
with miR-20b expression in HMEC cells in response to 
IR, suggesting a role of EGR1 in miR-20b transcription. 
Our deduction was confirmed by experiments performed 
on breast cancer cell lines, in which miR-20b expression 

Figure 3: EGR1 regulates miR-20b transcription. (A) The wild-type and mutant miR-20b promoter reporters used in this project. 
(B) HEK293 cells were transiently transfected with pGL3-WT-miR20b-Prom or pGL3-MT-miR20b-Prom and pCB6-Egr1 or pCB6; 
luciferase activity was detected according to the manufacturer’s instruction. (C) Real-time ChIP-PCR and conventional ChIP-PCR were 
performed as described in “Materials and Methods”. (D) Nuclear extracts were prepared from HCC1806 cells, and EMSA was performed 
using ChIP-grade antibody to EGR1 according to the manufacturer’s instruction. The asterisk indicates p<0.05.
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was positively correlated with EGR1 expression in the 
cell lines examined, except for MCF7. Furthermore, 
knockdown of EGR1 resulted in a reduction in miR-20b 
expression. The regulation of gene expression is known 
as a complex process in which numerous mechanisms 
are involved, such as genetics, epigenetics and molecular 
biology, transcriptional and post-transcriptional levels. 
In MCF7, the EGR does not appear to contribute to the 
miR-20b transcription. That, however, may reflect the 
involvement of other transcription factors or mechanisms.

EGR1 is a zinc finger transcription factor that plays 
a crucial role in controlling cell growth, proliferation, 
differentiation and apoptosis [25-29]. EGR1 regulates 
transcription of target genes by binding to GC-rich 
consensus DNA elements present in the regulatory 
regions. EGR1 is induced in response to a wide range 
of extracellular stimuli that includes growth factors, 
cytokines, ionizing radiation, UV light, and mechanical 
injury [30-33]. Growing evidence indicates that EGR1 
activation may serve as a key switch in many pathological 
processes, including cardiovascular disease and cancers. 
EGR1 has been indicated in the progression of breast, 
colon, prostate and esophageal cancers[34-38]. Elevated 
EGR1 in esophageal cancer plays an important role in 
mediating and maintaining growth-related oncogene/

CXC chemokine receptor 2 proliferative signaling[34].
EGR1 is overexpressed in primary human prostate 
carcinomas [36,37], and several EGR1 target genes (e.g. 
insulin-like growth factor II, transforming growth factor 
β1, and platelet-derived growth factor A-chain) have been 
implicated in prostate tumorigenesis [37]. Knockdown of 
EGR1 suppresses prostate cancer cell proliferation and 
tumor development in transgenic adenocarcinoma mouse 
prostate mice [39]. Furthermore, DNAzymes targeting 
EGR1 inhibit breast cancer cell proliferation, migration 
and tumor growth in nude mice [38] although the 
underlying mechanisms are still unclear. Here, we provide 
evidence to show that miR-20b is a direct target of EGR1. 
Our findings demonstrate that EGR1 is associated with 
miR-20b expression in IR-exposed HMEC cells, breast 
cancer cell lines and tissues examined, and that EGR1 
interacts with the miR-20b promoter and functionally 
regulates miR-20b transcription. Although here we only 
discuss the oncogenic role of EGR1, several lines of 
evidence have indicated a tumor suppressor role in both 
p53-dependent and –independent apoptosis [40,41].

Although this is the first report regarding EGR1 
in the transcriptional regulation of miR-20b, EGR1 was 
previously reported to regulate mir-106a expression[42].
This result suggested that in addition to the well-defined 

Figure 4: miR-20b inhibitor suppresses breast cancer cell proliferation and migration, as well as induces G0/G1 and 
S phase arrest. (A) HCC1806 cells were transfected with either miR-20b inhibitor or a negative control; MTT assay (cell proliferation 
assay) was performed according to the manufacturer’s instruction. (B and C) HCC1806 cells were transfected with either miR-20b inhibitor 
or negative control; 24 hours after transfection, wound-healing assay and statistical analysis of migrated cells were performed. (D) HCC1806 
cells were transfected with either miR-20b inhibitor or negative control; 96 hours after transfection, cell cycle analysis was conducted using 
DB FACSCanto II Flow Cytometer. The asterisk indicates p<0.05.
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mRNA transcription, EGR1 may play a critical role in 
the transcriptional control of miRNAs of miR-17 family. 
The latters may be important in mediating the biological 
functions of EGR1. 

The absence of ERα in breast carcinomas has been 
known for years to be associated with a less-differentiated 
phenotype and with resistance to endocrine therapies, thus 
presenting poor prognosis. A recent study identified a new 
modulator of ERα, miR-20b, which downregulated ERα in 

MCF7 breast cancer cells [21]. However, the role of miR-
20b in breast tumorigenesis remains elusive. 

We showed here that miR-20b inhibitor dramatically 
suppressed HCC1806 breast cancer cell proliferation and 
migration resulting in a G0/G1 and S phase arrest in cell 
cycle that clearly indicated the key role of miR-20b in the 
development of this disease. To globally identify miR-20b 
targets associated with cell proliferation, migration, and 
cell cycle control, in vitro RNA pulldown and deep RNA 

Figure 5: PTEN and BRCA1 are direct targets of miR-20b. (A) The network of the predicted targets of hsa-miR-20b was 
generated using STRING 9.0. (B) Diagram of 3’UTR sequences of PTEN and BRCA1 targeted by hsa-miR-20b. (C) Whole cellular lysates 
prepared from HMEC, HCC1806, and HCC1806 transfected with either 50 nM miR-20b inhibitor or non-specific control for 72 hours 
were subjected to Western blot analysis using antibodies specific to PTEN and BRCA1. (D) HEK293 cells grown to 90% confluency were 
cotransfected with either pGL3-PTEN or pGL3-BRCA1 reporter, and the indicated concentration of hsa-miR-20b or 50 nM nonspecific 
miRNA as a control; 24 hours after transfection, luciferase activity was detected using Dual-Luciferase Reporter Assay System according 
to the manufacturer’s instruction. The asterisk indicates p<0.05.
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sequencing analyses were performed. Our results indicated 
that miR-20b could target many tumor suppressors (Fig. 
5A), including PTEN and BRCA1, which were of a 
particular interest to us (Fig. 5B), since the inhibitory 
role of these two genes in proliferation, migration, and 

cell cycle has been well documented [43-49]. PTEN is 
frequently mutated in human primary tumors and cell 
lines. The involvement of PTEN in human mammary 
tumorigenesis has been demonstrated from studies 
showing that germline PTEN mutations in Cowden 

Figure 6: EGR1 expression is correlated with miR-20b expression in breast cancer tissues. (A) Representatives of EGR1 
and hsa-miR-20b stainings in the same sections of breast cancer tissue arrays. (B) Statistical and correlation analyses of EGR1 and hsa-
miR-20b expression in breast cancer tissues. (C) Representatives of EGR1 and hsa-miR-20b staining in the same sections of metastatic 
breast cancer tissue arrays. (D) Statistical and correlation analyses of EGR1 and hsa-miR-20b expression in metastatic breast cancer tissues. 
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disease predisposes afflicted individuals to breast cancer. 
The frequent loss of heterozygosity at the PTEN locus and 
reduced PTEN protein levels are often seen in sporadic 
breast cancers [43]. Germline mutation of BRCA1 
frequently leads to hereditary breast and ovarian cancer 
(HBOC) syndrome, which accounts for 5% to 7% of all 
breast cancer cases. Individuals with HBOC syndrome 
have a 50% to 80% lifetime risk of developing breast 
cancer [44], suggesting the crucial role of loss-function of 
BRCA1 in the development of breast cancer. We showed 
in this paper that the expression of PTEN and BRCA1 
was downregulated in HCC1806 breast cancer cells 
compared with HMEC cells, and this diminished presence 
was negatively correlated with miR-20b expression in 
such cell lines. Conversely, suppression of miR-20b with 
the use of its inhibitor remarkably enhanced the protein 
levels of PTEN and BRCA1 in HCC1806 cells (Fig. 5C). 
Furthermore, PTEN and BRCA1 are both downregulated 
in metastatic breast cancer tissues (Fig. S5 and S6), and 
that is negatively correlated with miR-2b expression 
in these tissues (Fig. 6D). Moreover, luciferase assays 
confirmed that PTEN and BRCA1 3’ UTRs were direct 
targets of miR-20b (Fig. 5D). The expression of PTEN 
and BRCA1 in ZR75-1 and HCC1419 breast cancer cells 
and malignant breast cancer tissues (Fig. S4, S7 and S8), 
however, was not negatively correlated with the miR-20b 
expression (Fig. 2A and 6B), implicating the involvement 
of other factors/mechanisms in the expression of PTEN 
and BRCA1, in addition to miR-20b. Transcription factors, 
miRNAs and target proteins may form a complex network 
that plays an essential role in biologic and pathologic 
processes [50]. Although here we only showed that miR-

20b transcriptionally activated by EGR1 directly targets 
PTEN and BRCA1, PTEN may also be directly activated 
by EGR1 [51], and BRCA1 may also play a role in the 
expression of other microRNAs, such as miR-155 [52].

To further establish the relationship between EGR1 
and miR-20b expression in a large amount of breast 
tissue samples, we performed immunohistochemical and 
FISH analyses of EGR1 and miR-20b on breast cancer 
tissue arrays. Our data indicated that EGR1 expression 
was significantly correlated with miR-20b expression 
in normal, benign, and breast cancer tissues (Pearson 
Correlation r=0.99, Fig. 6A and B). Furthermore, 
both EGR1 and miR-20b were overexpressed in 50% 
metastatic breast cancer tissues compared with normal 
tissues and were correlated with each other remarkably 
well (Fig. 6C and D). These results further confirmed the 
relationship between EGR and miR-20b expression, as 
well as the involvement of miR-20b in the metastasis of 
breast cancer cells. Although normal tissues adjacent to 
tumors are generally used in comparative studies, it may 
be debateable whether or not the adjacent normal breast 
tissues used in these studies were really “normal”. A 
recent report indicated that the “normal” tissue adjacent 
to pancreatic cancer has already acquired a number 
of transcriptional alterations, and therefore is not an 
appropriate baseline for comparison with cancers[53].
This may partially explain why EGR1 and miR-20b are 
elevated 44% and 31%, respectively, in adjacent normal 
breast tissues examined (n=16). Although we did not 
analyze the correlation between miR-20b and triple-
negative primary breast cancers due to the restriction in 
clinical data, other miRNAs, such as miR-21, miR-210 

Figure 7: miR-20b transcriptionally activated by EGR1 directly targets PTEN and BRCA1 in breast cancer. Serum-
inducible zinc finger transcription factor EGR1 is induced and activated in response to a wide range of extracellular stimuli, including 
growth factors, cytokines, UV light, ionizing radiation, and mechanical injury. Once activated, EGR1 translocates into nucleus and binds 
to the consensus motifs at miR-20b promoter, leading to miR-20b transcription. The mature miR-20b assembles with other proteins to 
form RNA-induced silencing complex (RISC), the later recognizes and binds to PTEN and BRCA1 mRNAs, leading to either translational 
suppression or degradation of those two molecules, consequently resulting in breast cancer cell proliferation and migration.
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and miR-221 have been reported to play a significant role 
in these breast cancers[54].

In summary, the transcription factor EGR1 is a 
key regulator in the transcriptional control of miR-20b, 
which is aberrantly expressed in breast cancer tissues and 
cell lines. miR-20b may serve as an oncomiR that plays 
a crucial role in breast tumorigenesis by targeting tumor 
suppressors PTEN and BRCA1.

MATERIALS AND METHODS

Animal irradiation

Six-week old female Long Evans rats were 
randomly assigned to different treatment groups. Group 1: 
30 kVp X-ray, 0.1 Gy (low dose/low energy, cumulative 
dose from multiple mammography screen); Group 2: 80 
kVp X-ray, 2.5 Gy (High dose/high energy); and, Group 3: 
sham-treated controls. Ten rats per group were sacrificed 
at 6 hours, 96 hours, 4 weeks or 24 weeks after irradiation. 
Mammary gland specimens were frozen immediately and 
stored at -80°C, or fixed in 10% neutral buffered formalin 
and embedded in paraffin. Handling and care of animals 
were in accordance with the recommendations of the 
Canadian Council for Animal Care and Use. Procedures 
were approved by the University of Lethbridge Animal 
Welfare Committee. Animals were housed in a virus-free 
facility and given food and water ad libitum.

microRNA profiling

Total RNA was isolated from mammary gland tissue 
of different group IR-exposed rats using TRIzol reagent 
(Invitrogen) according to the manufacturer’s instruction. 
MicroRNA profiling, clustering and data analysis were 
carried out by LC Sciences.

Cell culture

Human mammary epithelial cells (HMEC) 
purchased from Invitrogen were cultured in HuMEC 
Basal Serum-Free Medium (Invitrogen) containing 
HuMEC Supplement (Invitrogen); breast cancer cell lines 
ZR75-1, HCC1419, and HCC1806 obtained from ATCC 
were grown in ATCC-formulated RPMI-1640 Medium 
(ATCC) containing 10% FBS; MCF7 cells were cultured 
in DMEM/F-12 (HyClone) containing 10% FBS; HEK293 
cells were grown in DMEM/High Glucose (Thermo 
Scientific Limited) containing 10% FBS at 37°C in a 
humidified atmosphere of 5% CO2.

microRNA real-time RT-PCR

Total RNAs isolated from IR-exposed rat mammary 
gland tissue, HMEC, MCF7, ZR75-1, HCC1419, and 
HCC1806 cells were subjected to real-time RT-PCR 
using primer sets for either rno-miR-20b-5p or hsa-miR-
20b (SABiosciences) according to the manufacturer’s 
instruction. Rat and human RNU6-2 served as a loading 
control. 

miR-20b gene copy number analysis

Genomic DNAs extracted from IR-exposed HMEC 
cells using a kit for purification of total DNA from animal 
blood or cells (QIAGEN) were subjected to real-time 
PCR using SsoFast EvaGreen Spermix (Bio-Rad) with 
the following primers; 20bCopyNo-F: 5’-TGC AGG 
TAG TTT TGG CAT GA-3’, 20bCopyNo-R: 5’-TCA 
ACA AGA GAT TTG TTA TCC AAG AG-3’; RPP38-F: 
5’-TGG TTG TGA AGA CGT CGT TGA-3’, RPP38-R: 
5’-TGC ATA TCC TCG CTC TCC AGA-3’. The copy 
number level relative to the internal control (RNase P/
RPP38) was calculated by the comparative threshold cycle 
(Ct) method, and results are shown as fold induction.

Immunofluorescence

HMEC cells grown on coverslips were exposed 
to either 30 kVp/0.1 Gy, 80 kVp/2.5 Gy X-ray or left 
sham-treatment as a control. 96 hours after irradiation, 
immunofluorescence staining was performed using rabbit 
monoclonal antibody against EGR1 (Cell Signaling 
Technology) as described previously.55 Fluorescence was 
observed under 400x on an inverted microscope (ZEISS).

EGR1 real-time RT-PCR

Total RNA isolated from HCC1806 transiently 
transfected with 10 nM or 50 nM of siEGR1 (QIAGEN) 
or 50 nM of AllStar negative control (QIAGEN) for 96 
hours was subjected to real-time RT-PCR using EGR1 
primers (QuantiTect Primer Assay, QIAGEN) and 
SsoFast EvaGreen Supermix (BIO-RAD) according to 
manufacturer’s instruction.

Generation of plasmid constructs

Wild-type and mutant fragments of the hsa-miR-20b 
promoter amplified by PCR using genomic DNA were 
cloned into pGEM-T easy vector (Promega), released 
by digestion with Kpn I and Hind III, and subcloned into 
pGL3-Basic vector (Promega); sequence identity was 
confirmed by automatic sequencing; primers used here 
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for amplifying miR-20b promoters are as follows, 20b 
WT-Prom F: 5’-ATT GGT ACC GTT TTC GCT TTG-
3’, 20b mt-Prom F: 5’-TTG GTA CCG AGA CTG CGC 
T-3’, 20b Prom R: 5’-ATA AGC TTG CCC CAA CGA 
AG-3’. To generate luciferase miR-20b target reporters, 
oligos corresponding to portions of the 3’UTRs of 
either PTEN or BRCA1 were synthesized, annealed and 
cloned into downstream of the luciferase gene in the 
pGL3-Basic vector between Xba I and EcoR I (a linker 
introduced by Dr James Meservy); the sequence identity 
was confirmed by automatic sequencing. Oligo sequences 
were as follows. PTEN 3’UTR-1: 5’-/5Phos/CTA GAA 
GAT GGC ACT TTC ACT GCT TGT TGT TTG CGC 
ATT TTT G-3’, PTEN 3’UTR-2: 5’-/5Phos/AAT TCA 
AAA ATG CGC AAA CAA CAA GCA GTG AAA GTG 
CCA TCT T-3’; BRCA1 3’UTR-1: 5’-/5Phos/CTA GAT 
CAC GCC TGT AAT CCC AGC ACT TTG GGA G-3’, 
BRCA1 3’UTR-2: 5’-/5Phos/AAT TCT CCC AAA GTG 
CTG GGA TTA CAG GCG TGA T-3’.

Bioinformatics

The transcription start site of hsa-miR-20b was 
predicted using Promoter 2.0 Prediction Server. Common 
transcription factor binding sites at hsa-miR-20b promoter 
were analysed using Genomatix. Potential hsa-miR-
20b targets were predicted by both MIRANDA and 
RNAhybrid softwares. A network of predicted hsa-miR-
20b targets were generated by STRING 9.0.

Cell cycle and apoptosis analyses

HCC1806 cells grown to 90% confluency (as 
determined by microscopy analysis) were transiently 
transfected with either miRCURY LNA hsa-miR-20b 
power inhibitor or miRCURY LNA microRNA power 
inhibitor negative control A (Exiqon). 96 hours after 
transfection, the cells were harvested for cell cycle and 
apoptosis analyses that were performed with a BD 
FACSCanto II Flow Cytometer (BD Biosciences) using 
propidium iodide staining solution and FITC Annexin V 
Apoptosis Detection Kit II (BD Biosciences) according to 
manufacturer’s instruction.

Western blot analysis

HMEC, MCF7, ZR75-1, HCC1419, and 
HCC1806 cells grown to 90% confluency were rinsed 
twice with ice-cold PBS and scraped off the plate in 
radioimmunoprecipitation assay buffer (RIPA). 30-100 µg 
of protein per sample was electrophoresed on 6% or 10% 
SDS-PAGE and electrophoretically transferred to PVDF 
membrane (Amersham HybondTM-P, GE Healthcare) at 
4°C for 1.5 hours. Blots were incubated for 1 hour with 

5% nonfat dry milk to block nonspecific binding sites and 
then incubated with polyclonal/monoclonal antibodies 
against PTEN, BRCA1 (Santa Cruz Biotechnology) or 
EGR1 (Cell Signaling Technology) at 4°C overnight. 
The immunoreactivity was detected using peroxidase-
conjugated antibody and visualized by ECL Plus Western 
Blotting Detection System (GE Healthcare). The blots 
were stripped before reprobing with antibodies to GAPDH 
or actin (Santa Cruz Biotechnology).

MTT assay

24 hours after transfection with miR-20b inhibitor 
(Exiqon), 3.0 × 103 HCC1806 cells were plated in 
96-well plates. 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide assays were carried out using 
the Cell Proliferation Kit I (Roche Diagnostics GmbH) as 
described by the manufacturer. The spectrophotometric 
absorbance of samples was measured at 595 nm using 
a microtiter plate reader (FLUOstar Omega, BMG 
LABTECH).

Wound healing assay

24 hours after transfection with miR-20b inhibitor 
(Exiqon), HCC1806 cells were replated in 6-well plates 
and incubated at 37°C in a humidified atmosphere of 5% 
CO2 for another 24 hours. The cells were treated with 10 
μg/ml mitomycin C (Sigma) for 2 hours before injury. 
The wound healing assay was carried out as described 
previously[56].

Transient transfection and luciferase assay

HEK293 cells grown to 90% confluence in 6-well 
plates in antibiotic-free DMEM/High Glucose (Thermo 
Scientific Limited) containing 10% FBS were transiently 
cotransfected with either 0.5 μg WT-miR20b promoter or 
MT-miR20b promoter reporter, 0.2 μg or 1 μg pCB6-Egr1, 
5 ng pRL-TK, and left empty vector pCB6 as a control; 
or contransfected with 0.4 μg reporter plasmid (either 
pGL3-PTEN or pGL3-BRCA1), 5 ng pRL-TK plasmid, 
10 nM or 50 nM hsa-miR-20b mimic (5’-CAA AGU GCU 
CAU AGU GCA GGU AG-3’, QIAGEN) and mirVana 
miRNA mimic negative control #1 (Ambion) using 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) as 
per manufacturer’s instruction. 24 hours after transfection, 
cells were harvested, the relative luciferase activity was 
measured by the Dual-Luciferase Reporter Assay System 
(Promega) using a luminometer (FLUOstar Omega, BMG 
LABTECH) and with Firefly luciferase data normalized to 
Renilla luciferase.
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ChIP-PCR

HMEC and HCC1806 cells grown to 90% 
confluence were subjected to quantitative ChIP assays 
as detailed elsewhere [57,58]. Briefly cells were treated 
with 0.4% formaldehyde and the cross-linked chromatin 
retrieved by nuclei isolation and lysis. The chromatin was 
sonicated to ~300 bp, pre-cleared with rabbit serum and 
immunoprecipitated with ChIP-grade rabbit monoclonal 
antibody to EGR1 (Cell Signaling Technology). 
Enrichments were measured by both conventional PCR 
and real-time PCR using SsoFast EvaGreen Supermix 
(Bio-Rad) as previously described [58]. The levels of 
enrichment were normalized to that obtained with total 
input. The following primer pairs were used; Hu20b-
EGR1-ChIP-PCR F: 5’-GGA AGA GAG AAG GGC TTT 
GG-3’, HU20B-EGR1-CHIP-PCR R: 5’-TGC CTT TAA 
TAG CCC AAG GA-3’.

Electrophoretic mobility shift assay (EMSA)

HCC1806 cells grown to 90% confluency, nuclear 
extracts were prepared using NE-PER Nulcear and 
Cytoplasmic Extraction Reagents (Thermo Scientific 
Limited), and EMSA was performed using Lightshift 
Chemilluminescent EMSA Kit (Thermo Scientific 
Limited) according to the manufacturer’s instruction. 
20 µl of binding reaction contained 1 × EGR1 binding 
buffer, 50 ng/µl Poly(dI/dC), 0.05% NP-40, 800 nM cold 
probe (20bEGR1-EMSA-Oligo 1: 5’-GGC CGG GTG 
GGC GGG GGC GGG C-3; 20bEGR1-EMSA-Oligo 2: 
5’-GCC CGC CCC CGC CCA CCC GGC C-3’), 2 nM 
Biotin probe (20bEGR1-EMSA-Biotin 1: 5’-Biotin/GGC 
CGG GTG GGC GGG GGC GGG C-3’; 20bEGR1-
EMSA-Biotin 2: 5’-Biotin/ GCC CGC CCC CGC CCA 
CCC GGC C-3’), 2 µl nuclear extract, 1 µg/µl BSA, 2 µl 
EGR1 antibody or 2 µl normal rabbit IgG (Cell Signaling 
Technology). 

Fluorescence in situ hybridization (FISH)

Hsa-miR-20b expression in breast cancer specimens 
(BRC961, BRC962 and BRM961 arrays; Pantomics) was 
determined by FISH as detailed elsewhere[59]. Briefly, 
after deparafinization, the sections were prehybidized for 
20 minutes at 55°C, followed by 1 hour hybridization at 
the same temperature with 1:1000 dilution of miRCURY 
LNA hsa-miR-20b detection probe (Exiqon); after 
washing, the sections were blocked for 1 hour with 
blocking solution, and incubated with 1:1000 dilution of 
anti-Digoxigenin-Fluorescein, Fab fragments (Roche) at 
4°C overnight.

RNA pulldown and RNA sequencing analysis

Total RNA isolated from HCC1806 cells using 
TRIzol Reagent (Invitrogen) and treated RNase-free 
DNase I (Fermentas) was subjected to RNA pulldown 
assay using µMACS Streptavidin Kit (Miltenyi Biotec 
Inc.) as described previously [60] and according to the 
manufacturer’s instruction. 15 µg of total RNA and 1 
µg of biotinylated capture DNA were used in the RNA 
pulldown, including wild-type miR-20b capture oligo: 
5Biosg/CAA AGT GCT CAT AGT GCA GGT AG, and 
scrambled miR-20b capture oligo: 5Biosg/CCA GTG 
AAT CAT AGT GCA GGT AG (Exiqon). 300 ng of 
total pulldown RNA was subjected to high throughput 
RNA sequencing analysis using our in house sequencing 
platform (Illumina, Genome Analyser). Sequences with 
>2-fold increase compared to scrambled oligo were pulled 
out for further analysis. Prediction of miR-20b-targeting 
mRNAs was performed using MIRANDA and RNAhybrid 
with default settings [61,62]. A network of the predicted 
tumor suppressors targeted by miR-20b was generated by 
STRING 9.0.

Immunohistochemical analysis

The expression of EGR1, PTEN and BRCA1 
in breast cancer specimens (BRC961, BRC962 and 
BRM961 arrays; Pantomics) was determined by 
immunohistochemical staining using antibodies to 
EGR1 (Cell Signaling Technology), PTEN and BRCA1 
(Biocare Medical, performed by Pantomics) as described 
by manufacturers. Stained tissue sections were analyzed 
independently by a pathologist and scientists in blind 
manner. 

Statistical analysis

The Student’s t test was used for statistical 
significance of differences in miR-20b expression, EGR1 
expression, luciferase activity, enrichment of EGR1 
at miR-20b promoter, cell growth, and cell migration 
between groups. Pearson Correlation was used for 
statistical significance between miR-20b expression and 
the exression of EGR1 or PTEN or BRCA1 in breast 
cancer specimens examined. P < 0.05 was considered 
significant.
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