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INTRODUCTION

Epithelial ovarian cancer (EOC) is the most fatal 
gynecologic malignancy worldwide. Approximately 

204,000 new EOC cases are diagnosed each year, of which 
125,000 women would die annually [1]. Cytoreductive 
surgery followed by platinum-based therapy combined 
with paclitaxel become the standard therapy in EOC 
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ABSTRACT
Epithelial ovarian cancer (EOC) is the most deadly gynecologic malignancy 

worldwide due to its high recurrence rate after surgery and chemotherapy. There is 
a critical need for discovery of novel biomarkers for EOC recurrence providing higher 
prediction power than that of the present ones. Lipids have been reported to associate 
with development and progression of cancer. In the current study, we aim to identify 
and validate the lipids which were relevant to the ovarian cancer recurrence based 
on plasma lipidomics performed by ultra-performance liquid chromatography coupled 
with mass spectrometry. In order to fulfill this objective, plasma from 70 EOC patients 
with follow up information was obtained. The results revealed that patients with and 
without recurrence could be clearly distinguished based on their lipid profiles. Thirty-
one lipid metabolites were identified as potential biomarkers for EOC recurrence. The 
AUC value of these metabolite combinations for predicting EOC recurrence was 0.897. 
In terms of clinical applicability, LysoPG(20:5) arose as a potential EOC recurrence 
predictive biomarker to increase the predictive power of clinical predictors from AUC 
value 0.739 to 0.875. Additionally, we still found that individuals with early relapses 
(< 6 months) had a distinctive metabolomic pattern compared with late EOC and 
non-EOC recurrence subjects. Interestingly, decreased levels of triglycerides (TGs) 
were found to be a specific metabolic feature foreshadowing an early relapse. In 
conclusion, plasma lipidomics study could be used for predicting EOC recurrences, 
as well as early and late recurrent cases. The lipid biomarker research improves the 
predictive power of clinical predictors and the identified biomarkers are of great 
prognostic and therapeutic potential. 
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[2, 3]. Despite ongoing progress in cytoreductive surgery 
and high initial chemotherapy sensitivity, more than 60% 
of patients with advanced stages will still relapse within 
five years after treatment. These patients are rarely curable 
and have a 5-year overall survival rate of 25–35% [4, 5]. 
Among the patients with a high risk of recurrence, early 
prediction may provide novel therapeutic modalities to 
improve their clinical outcomes and enhance survival 
rate. Though studies have concentrated on the prognostic 
importance of conventional demographics and clinical 
pathological predictors (such as age, FIGO stage, and 
grade in ovarian cancer), the variability in progression-
free and overall survival rate differs among patients with 
similar clinical and pathological characteristics, which 
makes it difficult to foresee the outcome reliably [6–8]. 
Recently, more studies have been focusing on identifying 
new genes, or protein markers to predict recurrence in 
EOC patients, but such markers might be costly [9, 10]. 
Thus, there is a great need for discovering effective and 
accessible predictive markers for EOC recurrence. Such 
biomarkers would facilitate implementation of both 
second-line chemotherapy and molecular targeted therapy. 

Lipids, as a kind of vital metabolites, comprise the 
majority of cellular membranes and involve in several cellular 
functions, including energy storage, cell differentiation and 
cell signaling. Over the past decade, numerous studies 
have demonstrated that dysregulated lipid metabolism 
was associated with the diagnosis and pathogenesis of 
human cancers, such as pancreatic adenocarcinoma, colon 
cancer, hepatocellular carcinoma, glioblastoma and prostate 
cancer [11–15]. Our previous metabolomic studies have 
demonstrated that lysophosphatidylcholine (LysoPC) might 
be a potential asset in the discrimination between EOC and 
controls [16]. In addition, we have previously reported a 
lipidomics study based on global plasma lipid profiling 
and found that a series of glycerophospholipids (GPs) 
were decreased, while a series of sphingolipids (SPs) were 
increased in EOC patients [17]. Besides, several studies 
have identified the predictive lipid biomarkers for disease 
recurrence [18, 19]. Allott et al. reported that higher levels of 
total cholesterol and triglycerides, in the blood of men who 
underwent surgery for prostate cancer, were associated with 
an increased risk for disease recurrence [20]. MarionaJové 
et al. showed that lipids could be used to predict stroke 
relapse, and found that low concentrations of a specific 
LysoPC were significantly associated with stroke recurrence 
[21]. In particular, our previous study performed a plasma 
metabolic profiling to predict recurrence of advanced EOC, 
and found that LysoPC and Lysophosphatidylethanolamine 
(LysoPE) were potential biomarkers [22]. However, plasma 
lipid profiling has not been performed to investigate EOC 
prognostic biomarkers systematically. Their potential role in 
EOC progression is currently under investigation.

In the present study, we employed an ultra-
performance liquid chromatography coupled with mass 
spectrometry (UPLC/MS) lipid profiling strategy to 

plasma samples obtained from 70 EOC patients. Our goals 
were to determine if lipidomics could (i) discriminate 
EOC recurrent patients from non-recurrent ones, as well 
as distinguish between early and late relapse, (ii) discover 
potential lipid prognostic biomarkers, and (iii) identify the 
temporal pattern of EOC recurrence.

RESULTS

Demographics and clinic pathological 
characteristics of patients

A total of 70 patients were enrolled into the study. 
The median follow up time was 49 months. Table 1 
displayed the baseline characteristics of all groups, 
comprising 39 EOC recurrent patients (12 ER patients 
and 27 LR patients) and 31 NR patients together. 
Serum CA-125 level, omentum metastasis, FIGO stage, 
histological differentiation, and lymph node metastasis 
were significantly different between recurrent and non-
recurrent groups (P < 0.05). Noteworthy, no difference 
was found between ER and LR groups, regarding the 
listed characteristics. 

Distinctive plasma lipid profiles of recurrent and 
non-recurrent EOC

After the peak alignment and removal of isotopic 
peaks and adducts, as described in previous publications, 
459 ions were measured in the ESI+ model [17]. PCA 
score plots revealed that the QC samples were tightly 
clustered, indicating the robustness of our metabolic 
profiling platform (Supplementary Figure S1). However, 
the unsupervised PCA did not detect obvious separation 
trends between those with and without recurrence. All 
of the statistically significant ions (Kruskal–Wallis rank 
sum test, P < 0.05) were subjected to further analysis. A 
supervised PLS-DA model was used to distinguish the 
difference between plasma samples in patients with and 
without EOC recurrence. The PLS-DA score revealed 
a clear separation between groups, which indicated that 
recurrent and non-recurrent EOC had different lipid 
profiling (Figure 1A). The cumulative R2Y and Q2 
were 0.701 and 0.224, respectively, when two principal 
components were calculated. Permutation test with 200 
iterations was performed to avoid the overfitting, and no 
overfitting was observed (Figure 1B).

Important lipid alterations related to recurrent 
EOC 

Following VIP values with a threshold of 1.0, 
differential lipids were selected as potential biomarkers 
for subsequent identification. Structure identification 
was performed, as described in our previous study [17]. 
In total, 31 differential lipids were selected as potential 
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lipid biomarkers of recurrent EOC, which were presented 
in Figure 1C and 1D and also listed in Table 2. Most of the 
identified lipids in EOC recurrent patients were decreased 
compared with the non-recurrent ones, except up-regulated 
PC(31:2) and PE-P(42:4) in EOC recurrent patients. 
The detailed individual data of these lipids between 
two groups were shown in Supplementary Figure S2. 
Mapping these differential metabolites to their biochemical 
pathways through database searches (HMDB, KEGG, and 
Lipidmaps) revealed evident disorders in the sphingolipid 
signaling pathway and glycerophospholipid metabolism.

Predictive performance of recurrent EOC 
biomarkers 

In order to evaluate the capacity of these potential 
biomarkers, a random forest based on leave-one out 
cross-validation and receiver operating characteristic 
(ROC) curves were performed. As expected, the panel of 
31 metabolites was able to discriminate between patients 

with and without recurrent EOC, with an AUC value of 
0.897 (Figure 2A), which suggests strong potential for 
predicting EOC recurrence. However, it is impossible 
to predict recurrence with many biomarkers in clinical 
practice. Therefore, identifying a few biomarkers or 
a panel of biomarkers, which could provide greater 
predictive ability, was particularly important. A binary 
logistic regression analysis carried out recurrence results 
as the dependent variables (0 = non-recurrence and 1 
= recurrence) and these candidate lipids and related 
prognostic clinical characteristics (including omentum 
metastasis, FIGO stage, histological differentiation, and 
lymph node metastasis; see Supplementary Table S1) as 
the independent variables. As a result, LysoPG(20:5), as a 
potential biomarker, could provide an AUC value of 0.736, 
significantly increasing the predictive power of clinical 
characteristics from AUC value 0.739 to 0.875 (Figure 
2B). The mass spectra and the possible fragment structures 
were then performed to confirm the chemical structures of 
the LysoPG(20:5), which were shown in Supplementary 

Table 1: Detailed demographic and clinical characteristics of EOC patients

Characteristics
Recurrence (N = 39) (%) Non-recurrence

(N = 31) (%) P-value
ER (N = 12) LR (N = 27) Total

Age
   < 50 7(58.33) 8(29.63) 15(38.46) 12(38.71) 0.9831
   ≥ 50 5(41.67) 19(70.37) 24(61.54) 19(61.29)
Serum CA-125 level
   < 35 1(8.33) 0(0) 1(2.56) 6(19.35) 0.0240*
   ≥ 35 11(91.67) 27(100) 38(97.44) 25(80.65)
Greater Omentum metastasis
   Absent 3(25.00) 5(18.52) 8(20.51) 19(61.29) 0.0007*
   Present 8(66.67) 20(74.07) 28(71.79) 11(35.48)
   Undocumented 1(8.33) 2(7.41) 3(7.70) 1(3.23)
FIGO stage
   I 1(8.33) 1(3.70) 2(5.13) 12(38.71) 0.0033*
   II 0(0) 3(11.11) 3(7.69) 3(9.68)
   III 10(83.34) 22(81.48) 32(82.05) 16(51.61)
   IV 1(8.33) 1(3.71) 2(5.13) 0(0)
Histology differentiation
   Well 0(0) 0(0) 0(0) 8(25.80) 0.0015*
   Moderately 3(25.00) 2(7.41) 5(12.82) 5(16.13)
   Poorly 9(75.00) 21(77.78) 30(76.92) 14(45.16)
   Undocumented 0(0) 4(14.81) 4(10.26) 4(12.90)
Lymph node metastasis
   Absent 7(58.33) 18(66.67) 25(64.10) 29(93.55) 0.0036*
   Present 5(41.67) 9(33.33) 14(25.90) 2(6.55)

*statistically significance between recurrence in total and non-recurrence group; 
Percentage in brackets is the column percent. 
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Figure S3 and Supplementary Figure S4 Based on the 
Youden index J = max (sensitivity +specificity-1), a cut-
off value of LysoPG (20:5) was selected. Seventy patients 
were divided into two groups based on the selected cut-
off value. A Kaplan-Meier was then performed for the 
recurrence rate analysis. The overall time to recurrence 
for recurrence in those patients with predicted probability 
below the cut-off value, was significantly lower than those 
with LysoPG(20:5) value above the cut-off value (30 vs 62 
months) (Figure 2C). 

Patients with early recurrent EOC have a 
specific metabolomic pattern 

We focused on early recurrent EOC because of its 
challenging clinical situation. We evaluated metabolomic 

profile differences between early and late relapses, as well 
as between early and non-relapse patients. EOC patients 
in early relapse were distinguishable from those in late 
relapse, with an AUC value of 0.756 (Figure 3A and 3B). 
Likewise, the discrimination between early relapse and 
non-recurrent patients was robust, with an AUC value 
of 0.884 (Figure 3C and 3D). The results revealed that 
metabolomic profiles were able to offer a highly accurate 
prediction of early relapse. 

Temporal patterns of differential metabolites 
related to recurrent EOC

To further investigate the potential dynamics of 
the differential metabolites during EOC progression, 
we compared metabolite patterns of NR to LR and ER. 

Figure 1: (A) PLS-DA score plot distinguishing EOC recurrence from non-EOC recurrence (two latent variables with 
the performance of R2X = 0.364, R2Y = 0.701 and Q2 = 0.224); (B) Validation plot for discriminating between EOC 
recurrence and non-EOC recurrence with 200 permutations; (C) The scatter plot depicting the importance of metabolites 
in discriminating EOC recurrence from non-EOC recurrence; red dots represent down-regulation in EOC patients with 
recurrence, green dots represent up-regulation in EOC patients with recurrence; (D) The Z-score plot of differentiating 
metabolites between EOC recurrence and non-EOC recurrence. The values were standardized using mean centering and unit 
variance scaling of each variable. 
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In summary, there are two categories of metabolites. 
One represents significant alterations in early relapse 
compared to late relapse and non-recurrence, but no 
difference among late relapse and non-recurrence 
(Figure 4A). The other shows significant alterations 
in non-recurrence compared to early and late relapses, 
but no difference among early and late relapses (Figure 
4B). Unfortunately, we found that no metabolite had 
significant alterations among early relapse, late relapse 
and non-relapse. Remarkably, three triglycerides (TGs) 
were dysregulated in ER patients, which deserves our 
attentions. Unexpectedly, the plasma concentrations 
of many LysoPCs, phosphatidylcholine (PCs) and 
phosphatidylinositols (PIs) were up-regulated in LR 

patients in comparison to ER patients, whereas, they were 
remarkably low in non-EOC patients.

DISCUSSION

Recent evidence indicated that cancer progression 
was usually associated with changes in the levels of 
different lipid species, because lipid production has 
been linked to an increased need for membranes during 
rapid cell proliferation and apoptosis [23]. In this study, 
a non-targeted lipidomics approach using UPLC-MS 
has been applied to fingerprint the plasma lipids to 
screen for potential biomarkers of EOC recurrence. Our 
study suggested that the plasma lipidomics analyzed by 

Table 2: Identified differential metabolites between with and without recurrent EOC
ID Lipid MZ rt (min) ppm FC P-value VIP AUC
1 LysoPC(P-15:0) 466.3296 4.54 0.77 0.66 1.50E-05 1.34 0.792
2 LysoPC(O-16:0) 482.3592 2.91 2.60 0.70 0.0001 1.11 0.759
3 LysoPC(18:1) 522.3542 2.52 2.21 0.72 2.90E-05 1.08 0.783
4 LysoPC(18:0) 524.3717 3.85 1.06 0.74 0.0002 1.01 0.754
5 LysoPG(20:5) 531.2742 1.64 4.53 0.69 0.0006 3.05 0.736
6 LysoPC(20:3) 546.353 3.85 4.48 0.73 0.0001 1.01 0.763
7 LysoPC(22:6) 568.3387 2.08 1.96 0.71 1.22E-06 1.39 0.824
8 Cer(d18:1/23:0) 636.6274 18.58 2.28 0.81 0.0137 1.08 0.672
9 SM(d18:2/14:0) 673.5263 10.91 2.43 0.73 0.0024 1.05 0.71
10 SM(d18:1/14:0) 675.5436 12.62 0.02 0.76 0.0002 1.01 0.757
11 PC(31:2) 716.5254 15.14 4.09 1.25 0.0290 1.94 0.653
12 PC(P-34:4) 738.5461 13.25 3.90 0.71 3.92E-06 1.52 0.81
13 PC(34:4) 754.5385 13.55 0.41 0.74 0.0308 1.28 0.651
14 PC(P-36:3) 768.591 15.36 1.05 0.88 0.0256 1.08 0.656
15 PE(P-40:6) 776.5617 16.16 3.55 0.71 0.0017 1.73 0.717
16 PC(36:3) 784.5864 16.45 1.60 0.93 0.0403 1.45 0.644
17 PC(36:1) 788.6185 16.53 2.61 0.87 0.0147 1.11 0.67
18 PC(38:6) 806.5688 13.98 0.87 0.79 0.0025 1.03 0.709
19 PE(P-42:4) 808.624 16.94 3.09 1.04 0.0358 1.01 0.647
20 PC(38:4) 810.6009 16.53 0.06 0.87 0.0137 1.08 0.672
21 PC(38:3) 812.6174 16.11 1.20 0.80 0.0256 1.01 0.656
22 PC(38:2) 814.6357 16.69 4.42 0.79 0.0039 1.01 0.7
23 PC(P-40:6) 818.6053 14.89 0.60 0.86 0.0358 1.14 0.647
24 PG(39:1) 819.6087 16.32 2.80 0.89 0.0465 1.04 0.639
25 PC(40:5) 836.615 16.70 1.66 0.87 0.0174 1.61 0.666
26 PC(42:11) 852.5512 13.84 3.00 0.78 0.0008 1.13 0.731
27 LacCer(d18:1/16:0) 862.6208 14.26 4.91 0.84 0.0060 1.05 0.691
28 PS(32:6) 878.5878 16.54 3.23 0.90 0.0218 1.04 0.66
29 PI(40:9) 905.5171 13.60 0.46 0.84 0.0186 1.03 0.664
30 PI(42:9) 909.5477 14.75 1.21 0.66 0.0097 1.12 0.68
31 PI(40:7) 933.5453 14.62 3.71 0.74 0.0021 1.27 0.712

MZ mass-to-charge ratio, rt retention time, ppm parts per million, FC fold change, VIP variable important in projection.
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Figure 2: (A) ROC curves based on the random forest model with leave-one-out cross-validation for prediction with 31 
candidate lipid biomarkers; (B) The inclusion of LysoPG(20:5) level to related prognostic clinical characteristics including 
serum CA-125 level, omentum metastasis, FIGO stage, histology differentiation grade and lymph node metastasis to 
receiver operating characteristic curve increase the predictive power of EOC recurrence (area: clinical characteristics: 
0.739, P < 0.01(blue line); LysoPG(20:5): 0.736, P < 0.001 (red line); clinical characteristics + LysoPG(20:5): 0.875, 
P < 0.001(green line)); (C) Kaplan–Meier curve comparing EOC recurrence with lower LysoPG(20:5) values (blue line) and 
higher LysoPG(20:5) values (green line).

Figure 3: (A) PLS-DA score plot for discriminating early and late EOC recurrence; (B) Validation plot for discriminating 
early and late recurrent EOC patients with 200 permutations; (C) PLS-DA score plot for discriminating early and non- EOC 
recurrence; (D) Validation plot for discriminating early and non- EOC recurrence. ER: early recurrence; LR: late recurrence; NR: 
non-recurrence.
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UPLC-QTOF/MS could be used to discriminate EOC 
recurrence from non-recurrence, and the 31 differential 
metabolites were highly associated with EOC recurrence. 
In addition, the lipid changes were found between early 
and late EOC recurrence, as well as between early 
and non-EOC recurrence. Meanwhile, the ascertained 
biomarker significantly improved prediction capacities 
of related prognostic clinical characteristics, such as CA-
125 level, omentum metastasis, FIGO stage, histological 
differentiation grade, and lymph node metastasis. The 
excellent prediction performance through the plasma lipids 
suggests that the lipidomics approach might be particularly 
noteworthy, especially for predicting EOC recurrence 
remains challenging around the world, especially in early 
EOC relapse. These findings support the hypothesis that 
tumor molecular characteristics may predict the survival 
outcome, in addition to clinical characteristics. 

There is a considerable interest in developing a 
prognostic model for ovarian cancer, which can be used for 
predicting the risk of EOC recurrence in clinical practice. 

There have been several attempts to design clinically 
feasible prognostic models in ovarian cancer. Liu et al. 
developed a prognostic model for disease-free survival 
(PFS) in 161 primary EOC patients and found that FIGO 
stage, histological grade, residual disease after primary 
surgery, recurrent season, and adjuvant chemotherapy 
cycles were associated with a significantly greater 
risk of recurrence [24]. Hendrickson et al. developed a 
prognostic model for 12-month PFS derived from Mayo 
Clinic Ovarian Cancer registry, and found that histological 
subtype, grade, CA-125 and stage were strongly associated 
with PFS [25]. However, age at diagnosis and CA125 pre-
surgery were not significantly associated with PFS. In 
contrast, we found that omentum metastasis and lymph 
node metastasis were associated with PFS. Particularly, 
decreased LysoPG(20:5) level was identified as the most 
important prognostic feature in our model, which may 
provide additional prognostic information for EOC. 
LysoPG stimulated intracellular calcium signaling via 
phospholipase C activation in OVCAR-3 human ovarian 

Figure 4: Changing patterns of differential metabolites from non-EOC recurrence across late recurrence and early 
recurrence. (A) Significant alterations in early recurrence compared to late relapse and non-recurrence, but no difference among late and 
non-recurrence; (B) Significant alterations in non-recurrence compared to early and late recurrence, but no difference among early and late 
recurrence. ER: early recurrence; LR: late recurrence; NR: non-recurrence.
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cancer cells [26]. It also stimulated chemotactic migration 
in endothelial cells of human umbilical vein and human 
natural killer cells in a PTX-sensitive manner. These 
cellular responses support the assumption that LysoPG 
acts as a lysophospholipid mediator through possible G 
protein–coupled receptors (GPCRs) for LysoPG. GPCRs 
could result in the initiation of tumor growth and survival 
pathways, and may, therefore, play important roles in the 
development and progression of EOC. However, such 
specific GPCRs have not been elucidated so far. It is also 
suggested that LysoPG behaves as a lysophosphatidic acid 
(LPA) receptor antagonist. 

Consistent with our previous metabolomics-based 
reports on EOC recurrence, LysoPCs were down-regulated 
in recurrent EOC patients compared with the non-
recurrent patients [22]. It has been reported that LysoPC 
is an important signaling molecule in regulating cellular 
proliferation, inflammation, and cancer cell invasion. It 
is also the substrate of lysophospholipase D, an enzyme 
converting LysoPC to LPA during cancer progression [27]. 
Lysophospholipase D over-expression has been determined 
in several cancers, such as breast cancer, glioblastoma, and 
hepatocellular carcinoma [28, 29]. A recent study has also 
suggested that decreased LysoPC (16:0) raises the risk 
of stroke recurrence [21]. Thus, alterations in LysoPCs 
metabolism may, therefore, play important roles in the 
development and progression of EOC.

PC is an important constituent of the choline-
containing metabolite signaling. It is involved in cell 
signaling, structural integrity of the cell membrane, 
and is a breakdown product of the catabolic pathway of 
choline phospholipid metabolism, which may serve as an 
index of membrane change. In this study, a series of PCs 
were down-regulated in EOC recurrent patients, which 
suggests a higher cellular proliferation rate of ovarian 
cancer cells in recurrent patients. Altered PC metabolism 
was found in breast and prostate cancer cell lines, and a 
previous study suggested that abnormal PC metabolism 
in EOC could provide choline-based imaging approaches 
as powerful tools, to improve diagnosis and identify new 
therapeutic targets [30]. In current study, the decreased 
plasmenylcholine (pPCs) and plasmenylethanolamine 
(pPEs) levels in EOC recurrent patients suggested that 
most cancer cells might exhibit elevated oxidative stress, 
which is consistent with previous findings that oxidative 
stress is associated with cancer progression. 

Three sphingolipids, Cer(d18:1/23:0), SM(d18:1/14:0), 
SM(d18:2/14:0) were decreased in EOC recurrent patients. 
Bioactive sphingolipid metabolites have served as important 
lipid second messengers in the regulation of tumor cell 
survival, cell growth, differentiation, migration and 
angiogenesis [31]. Ceramide is metabolized by ceramide 
kinase to generate ceramide-1-phosphate (C1P) and by 
ceramidase to generate sphingosine, which is further 
phosphorylated to sphingosine-1-phosphate (S1P) by 
sphingosine kinase. High ceramide kinase expression has 

been reported to be associated with poor recurrence-free 
survival in women with ER-negative breast cancer [32]. 
S1P and sphingosine kinase, have been implicated in many 
cellular processes including cell growth, proliferation, 
survival, and migration. These findings suggest that defects 
on ceramide generation and sphingolipid metabolism exist 
in order to promote cancer cell survival and cancer therapy 
resistance. Altogether, these opinions pinpoint the evidence 
that ceramide plays a role in cancer, as well as identify a 
potential target for the treatment and prevention of ovarian 
cancer recurrence. 

In this study, PIs levels were lower in patients with 
recurrent EOC than in those without recurrent EOC. PIs were 
metabolized by 1- phosphatidylinositol-3-phosphate 5-kinase 
(PIKfyve) to generate phosphatidylinositol 5-phosphate, 
which was further metabolized by 1-phosphatidylinositol-
5-phosphate 4- kinase (PIP4K2) to generate 
phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) [33] 05:30. 
PI(4,5)P2 was the direct substrate of phosphatidylinositol 
3-kinase (PI3K)/AKT signaling pathway conducted by PIK3C 
to generate PI(3,4,5)P3. Recent studies have shown that the 
PI3K/AKT pathway was frequently disturbed in ovarian 
cancer, and had a vital role in the resistance of ovarian cancer 
cells to cisplatin and recurrence of ovarian cancer [34, 35]. 

A correlation network based on the Pearson 
correlation coefficients was constructed using Cytoscape 
software to explore the latent relationships of differential 
lipid species (Figure 5). A total of 24 differential lipids 
were included in this network, while the other seven 
lipids were excluded because of |r| < 0.6. A remarkable 
connection between LysoPCs, PCs, and SPs suggested 
that a series of biological conversions between GPs and 
SPs might occur during EOC recurrence. PS was located 
between PCs and Cer, which might reflect the fact that 
PCs and Cer can be transformed between each other by 
PS, given that PS participates in ceramide biosynthesis 
as serine donors. Labeling of ceramide by serine from 
PS provides evidence for a new metabolic relationship 
between GPs and SPs. PIs were also associated with 
LysoPCs, possibly suggesting that LysoPCs interact with 
them to exert effects. This figure reinforces the fact that 
each subclass was tightly correlated.

Interestingly, lower plasma levels of serum TGs 
arose as potential predictor of early EOC recurrence. TG, 
as an important energy storage form, is closely related to 
glucose homeostasis and its dysregulation is associated 
with the onset of metabolic syndrome such as diabetes, 
obesity, and cardiovascular diseases [36]. The three types 
of fatty acids that compose triglycerides include: saturated, 
monounsaturated and polyunsaturated fatty acids 
(PUFAs). PUFAs are essential, as they are biologically 
active molecules that serve as structural components 
of cellular membranes and play important roles in 
metabolism, inflammation, cell signaling, and regulating 
gene expression. A large cohort, conducted by Murff  
et al., reported women with lower intake of long chain n-3 
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PUFAs and higher intake of n-6 PUFA had an increased 
risk for breast cancer compared with women with higher 
intake of long chain n-3 PUFAs and lower intake of n-6 
PUFAs [37]. Another study, comprising of 30,252 breast 
cancer patients, revealed that eicosapentaenoic acid 
and docosahexaenoic acid were significantly inversely 
associated with risk for breast cancer (HR: 0.70, 95% 
CI: 0.54–0.90; HR: 0.67, 95% CI: 0.52–0.87) [38]. A 
recent study showed that PUFAs decreased TG levels in 
plasma [39]. In addition, Mika Hilvo et al. indicated that 
monounsaturated fatty acids in serum triacylglycerols were 
associated with response to neoadjuvant chemotherapy in 
breast cancer patients [40]. However, Allott et al. reported 
that higher levels of triglycerides the blood of male 
patients were associated with increased risk for prostate 
cancer recurrence, which presented a reverse trend to that 
in our study [20]. Overall, a trend of down-regulation of 
TGs in current study may originate from the accumulation 
of PUFAs, which might be correlated with chemotherapy-
resistance, leading to the early relapse in EOC patients.

In terms of limitations of the present work, we 
recognize small sample size for EOC recurrence, 
especially early recurrence, among the studied population, 
which might exhibit a considerable variance in certain 
metabolites. Future studies with larger independent 
cohorts are necessary to validate the current findings. 
Furthermore, plasma specimens were collected upon 

initial tumor presentation from EOC patients, without 
controlling previous food intake, as well as the lack of 
blood samples after surgery. Moreover, we were not able 
to identify an important percentage of lipids present in 
samples, due to the major bottle neck in lipidomics: the 
lack of comprehensive lipid databases. 

In summary, we have presented a holistic view of 
the plasma lipid changes related to EOC recurrence and 
temporal pattern. Lipid metabolites of EOC recurrent 
patients, as expected, differ a lot from that of non-EOC 
recurrent patients, and potential lipid markers have been 
identified that could be used to predicted EOC recurrence. 
Extending our previous lipid studies on EOC, the current 
study provided comprehensive lipid changes on the 
recurrence of EOC. At last, we have described the lipid 
metabolic characteristics associated with early recurrence, 
which might provide additional information concerning the 
recurrent mechanism of EOC that allows us to expand our 
understanding of EOC progression, potentially facilitate 
the medical management, and improve clinical outcomes. 

MATERIALS AND METHODS 

Sample collection and treatment

This study was approved by the Tumor Hospital 
Institutional Review Board of Harbin Medical University. 

Figure 5: Correlation network of differential lipids between patients with and without EOC recurrence related 
metabolites (Pearson correlation analysis, |r| > 0.6) are connected with a line.
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Patients with EOC administratedby Department of 
Gynecologic Oncology, the affiliated Tumor Hospital of 
Harbin Medical University between August 2009 and 
April 2013 were prospectively recruited with informed 
consents. Plasma samples were obtained from patients 
prior to surgery. Samples were maintained at room 
temperature during transportation and then centrifuged 
at 1000 g for 10 min within four hours since collected 
and the isolated supernatant were extracted and stored at 
–80°C until further analysis. Patients enrolled in this study 
were not taking any medications and those suffering from 
metabolic diseases, liver diseases, kidney diseases or any 
other cancers were excluded. All the patients underwent 
complete cytoreductive surgery and received postoperative 
intravenous platinumbasedcombination chemotherapy. The 
interval of chemotherapy was 3 weeks. The chemotherapy 
regimen consisted of cisplatin plus paclitaxel or cisplatin, 
epirubicin and cyclophosphamide which was in line with 
National Comprehensive Cancer Network Guidelines.

Follow-up and clinical endpoints

Following up was performed and disease recurrence 
or progression was recorded on routine hospital flow charts 
every 3 months for the first 1–2 yearafter surgery, and at 
6-month intervals in 3–5 years. Patients were followed until 
recurrence or April, 2016. Due to patients recurring within 
the first 6 months are considered platinum resistant and 
require different therapeutic regimen, we defined patients 
who relapsed within the first 6 months after treatment 
as early relapse (ER). Patients relapsing after 6 months 
were included into the late relapse group (LR). No 
relapse group (NR) corresponded to patients showing no 
evidence of recurrence after at least 36 months of follow-
up. Endpoint event was EOC recurrence. Recurrence was 
systematically assessed by conventional imaging (computed 
tomography),positron emission tomography (PET) scan or 
laparoscopic exploration.

Sample preparation

All the plasma samples were thaw in 4°C and a 30 μl 
of plasma was mixed with 90 μl of precooled methanol. 
300 ul methyl tert-butyl ether (MTBE) was then added 
into the mixture, which was oscillated at 1000 rpm in 
25°C for 1 hour and was further added by 75 μl deionized 
water, vortex-mixed for 1 min, and oscillated at 1000 rpm 
in 4°C for 10 min, then the final mixture was centrifuged 
at 12000. 240 ul of upper layer was transferred into a 
clear vial and dried in vacuum rotary dryer. Lastly, the 
residue was dissolved in 100 μl of a 50/50 (v/v) solution 
of isopropanol/methonal for further analysis. To assess 
the stability and repeatability of the UPLC/MS systems, a 
total of 15 quality control (QC) samples were used in this 
study. The QC samples were prepared by pooling equal 
volumes of plasma from each of the 70 samples.

Chromatography and mass spectrometry

A 5 μl aliquot of the pre-treated sample was 
injected a column of Kinetex Core-shell Silica C18 2.1 
mm× 50 mm, 1.3 μl (Phenomenex, Torrance, CA, USA) 
on UPLC system (Waters, Milford, USA). The mobile 
phase consisted of acetonitrile/isopropanol 10/90 (v/v) 
(solvent A) and acetonitrile/deionized water 60/40 (v/v) 
(solvent B). The flow rate was set at 0.26 ml/min with 
a colume temperature of 40°C. A linear mobile phase 
gradient was used as follows: 10% A, held for 1 min; 
1–8 min, increased to 30% A; 8–18 min, increased to 
75% A; 18–20 min, increased to 97% A; 20–24 min, 
maintained at 97% A; 24–25 min, decreased to 10% A, and 
25– 26.4 min, maintained at 10% A. After each analytical 
running, the mobile phase was returned to 1% A for 0.1 
min and equilibrated at 1% A for 1 min. To minimize the 
analytical variation, all samples were randomly analyzed 
in succession. Meanwhile, samples of quality control were 
analyzed at the beginning and the end of each running 
batch to ensure the stability during analysis.

Data acquisition were performed with an Agilent 
6520-QTOF (Agilent Technologies) equipped with an 
electrospray ionization source operating at positive-
ion electrospray ionization (ESI+) modes. The capillary 
voltage was 4.0 kV. Nitrogen was used as the dry gas, 
and the desolvation gas flow was set at 10 L/min. The 
desolvation temperature was set at 330°C. Centroid data 
were collected in the full scan mode from 50 to 1000 m/z.

Data preprocessing and annotation

Raw data were converted into mzdata-format files 
by MassHunter Qualitative Analysis Software (Agilent 
Technologies) and then these files were imported to the XCMS 
package in R platform for preprocessing. The parameters 
were set as default values in XCMS function, following: 
xcmsSet (method=”centWave”, peakwidth5c (5, 20)); group 
(bw5); rector (method5”obiwarp”). The preprocessing results 
generated a data matrix that consisted of the retention time 
(RT), mass-to-charge ratio (m/z) values, and peak intensity. 
CAMERA package in R project was used for annotation of 
isotope peaks, adducts and fragments in the peak lists. Isotopic 
peaks were excluded prior to statistical analysis. 

Statistical analysis

Kruskal–Wallis rank sum test was used to determine 
the significance of each lipid (P < 0.05). Principal 
component analysis (PCA) was first used to detect stability 
and replication. Partial least squares discriminant analysis 
(PLS-DA) with mean centering and unit variance scaling 
of significant metabolites were carried out to understand 
global lipid changes between with and without EOC 
recurrence groups, as well as between ER and LR, NR. 
The parameters of the model, such as R2Y and Q2 were 
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used to evaluate the over-fitting of model based on 7-fold 
cross-validation. The variable importance in the projection 
(VIP) values, calculated based on the established PLS-
DA models with thresholds of 1.0, were used for the 
selection of potential biomarkers. Random forest model 
was used to evaluate predictive performance of potential 
biomarkers based on leave-one-out cross-validation in 
terms of area under the receiver operating characteristic 
(ROC). In terms of clinical applicability, we selected 
the lipid with strongest prediction performance that 
would be complementary to demographic and clinical 
predictors. The predictive accuracy of demographic and 
clinical predictors alone and with the predictive lipids was 
performed using the logistic regression modeling with 
AUC value. For both the potential lipid biomarkers and 
the clinical predictors, 2 models are presented. Model 1 
includes clinical characteristics. Model 2 adds individual 
lipid. Statistical analysis was performed in the R platform, 
with the exception of PLS-DA which was analyzed using 
SIMCA-P (version 11.5; Umetrics, Malmo, Sweden). 

ACKNOWLEDGMENTS AND FUNDING

This work has received financial support from the 
National Natural Science Foundation of China (81573256, 
81473072, 81302511), National Natural Science 
Foundation of Heilong Jiang Province (QC2015098) and 
Heilongjiang Postdoctoral Fund (LBH-Z14174).

CONFLICTS OF INTEREST

The authors have no conflicts of interest to declare.

REFERENCES

1. Rauh-Hain JA, Krivak TC, del Carmen MG, Olawaiye AB. 
Ovarian cancer screening and early detection in the general 
population. Reviews in Obstetrics and Gynecology.  
2011; 4:15.

2. du Bois A, Lück HJ, Meier W, Adams HP, Möbus V, 
Costa S, Bauknecht T, Richter B, Warm M, Schröder W. 
A randomized clinical trial of cisplatin/paclitaxel versus 
carboplatin/paclitaxel as first-line treatment of ovarian 
cancer. Journal of the National Cancer Institute. 2003; 
95:1320–1329.

3. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, 
Partridge EE, Look KY, Clarke-Pearson DL, Davidson M. 
Cyclophosphamide and cisplatin compared with paclitaxel and 
cisplatin in patients with stage III and stage IV ovarian cancer. 
The New England Journal Of Medicine. 1996; 334:1–6.

 4. Colombo PE, Fabbro M, Theillet C, Bibeau F, Rouanet P, 
Ray-Coquard I. Sensitivity and resistance to treatment in the 
primary management of epithelial ovarian cancer. Critical 
reviews in oncology/hematology. 2014; 89:207–216.

 5. Burke TW, Morris M. Secondary cytoreductive surgery for 
ovarian cancer. Obstetrics and gynecology clinics of North 
America. 1994; 21:167–178.

 6. Chan JK, Loizzi V, Lin YG, Osann K, Brewster WR, 
DiSaia PJ. Stages III and IV invasive epithelial ovarian 
carcinoma in younger versus older women: what prognostic 
factors are important? Obstetrics and Gynecology. 2003; 
102:156–161.

 7. Markman M, Lewis JL, Saigo P, Hakes T, Rubin S, 
Jones W, Reichman B, Curtin J, Barakat R, Almadrones L. 
Impact of age on survival of patients with ovarian cancer. 
Gynecologic oncology. 1993; 49:236–239.

 8. Winter WE, Maxwell GL, Tian C, Carlson JW, Ozols RF, 
Rose PG, Markman M, Armstrong DK, Muggia F, 
McGuireWP. Prognostic factors for stage III epithelial 
ovarian cancer: a Gynecologic Oncology Group Study. 
Journal of Clinical Oncology. 2007; 25:3621–3627.

 9. Xu L, Cai J, Yang Q, Ding H, Wu L, Li T, Wang Z. 
Prognostic significance of several biomarkers in epithelial 
ovarian cancer: a meta-analysis of published studies. 
Journal of cancer research and clinical oncology. 2013; 
139:1257–1277.

10. Felisiak-Golabek A, Dansonka-Mieszkowska A, 
Rzepecka IK, Szafron L, Kwiatkowska E, Konopka B, 
Podgorska A, Rembiszewska A, Kupryjanczyk J. p19INK4d 
mRNA and protein expression as new prognostic factors in 
ovarian cancer patients. Cancer biology & therapy. 2013; 
14:973–981.

11. Roberg-Larsen H, Lund K, Vehus T, Solberg N, Vesterdal C, 
Misaghian D, Olsen PA, Krauss S, Wilson SR, Lundanes E. 
Highly automated nano-LC/MS-based approach for thousand 
cell-scale quantification of side chain-hydroxylated oxysterols. 
The Journal of lipid research. 2014; 55:1531–1536.

12. Fhaner CJ, Liu S, Ji H, Simpson RJ, Reid GE. 
Comprehensive lipidome profiling of isogenic primary 
and metastatic colon adenocarcinoma cell lines. Analytical 
chemistry. 2012; 84:8917–8926.

13. Chen S, Yin P, Zhao X, Xing W, Hu C, Zhou L, Xu G. 
Serum lipid profiling of patients with chronic hepatitis B, 
cirrhosis, and hepatocellular carcinoma by ultra fast LC/IT-
TOF MS. Electrophoresis. 2013; 34:2848–2856.

14. Görke R, Meyer-Bäse A, Wagner D, He H, Emmett MR, 
Conrad CA. Determining and interpreting correlations 
in lipidomic networks found in glioblastoma cells. BMC 
systems biology. 2010; 4:126.

15. Min HK, Lim S, Chung BC, Moon MH. Shotgun lipidomics 
for candidate biomarkers of urinary phospholipids in 
prostate cancer. Analytical and bioanalytical chemistry. 
2011; 399:823–830.

16. Ke C, Hou Y, Zhang H, Fan L, Ge T, Guo B, Zhang F, 
Yang K, Wang J, Lou G. Large-scale profiling of metabolic 
dysregulation in ovarian cancer. International Journal of 
Cancer. 2015; 136:516–526.



Oncotarget46845www.impactjournals.com/oncotarget

17. Hou Y, Li J, Xie H, Sun F, Yang K, Wang J, Ke C, Lou G, 
Li K. Differential plasma lipids profiling and lipid 
signatures as biomarkers in the early diagnosis of ovarian 
carcinoma using UPLC-MS. Metabolomics. 2016; 12:1–12.

18. Zhou L, Liao Y, Yin P, Zeng Z, Li J, Lu X, Zheng L, Xu G. 
Metabolic profiling study of early and late recurrence of 
hepatocellular carcinoma based on liquid chromatography-
mass spectrometry. Journal of Chromatography B. 2014; 
966:163–170.

19. Alberice JV, Amaral AF, Armitage EG, Lorente JA, Algaba F, 
Carrilho E, Márquez M, García A, Malats N, Barbas C. 
Searching for urine biomarkers of bladder cancer recurrence 
using a liquid chromatography–mass spectrometry and 
capillary electrophoresis–mass spectrometry metabolomics 
approach. Journal of Chromatography A. 2013; 1318:163–170.

20. Allott EH, Howard LE, Cooperberg MR, Kane CJ, 
Aronson WJ, Terris MK, Amling CL, Freedland SJ. Serum 
lipid profile and risk of prostate cancer recurrence: results 
from the SEARCH Database. Cancer Epidemiology 
Biomarkers & Prevention. 2014; 23:2349–2356.

21. Jové M, Mauri-Capdevila G, Suárez I, Cambray S, 
Sanahuja J, Quílez A, Farré J, Benabdelhak I, Pamplona R, 
Portero-Otín M. Metabolomics predicts stroke recurrence 
after transient ischemic attack. Neurology. 2015; 84:36–45.

22. Zhang H, Ge T, Cui X, Hou Y, Ke C, Yang M, Yang K, 
Wang J, Guo B, Zhang F. Prediction of advanced ovarian 
cancer recurrence by plasma metabolic profiling. Molecular 
BioSystems. 2015; 11:516–521.

23. Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the 
role of lipid synthesis in cancer metabolism and tumour 
development. Disease Models and Mechanisms. 2013; 
6:1353–1363.

24. Liu XH, Man YN, Wu XZ. Recurrence season impacts the 
survival of epithelial ovarian cancer patients. Asian Pacific 
journal of cancer prevention: APJCP. 2013; 15:1627–1632.

25. Hendrickson AEW, Hawthorne KM, Goode EL, Kalli KR, 
Goergen KM, Bakkum-Gamez JN, Cliby WA, Keeney GL, 
Visscher DW, Tarabishy Y. Assessment of published models 
and prognostic variables in epithelial ovarian cancer at 
Mayo Clinic. Gynecologic oncology. 2015; 137:77–85.

26. Park KS, Kim MK, Im DS, Bae YS. Effect of 
lysophosphatidylglycerol on several signaling molecules 
in OVCAR-3 human ovarian cancer cells: involvement 
of pertussis toxin-sensitive G-protein coupled receptor. 
Biochemical pharmacology. 2007; 73:675–681.

27. Barber MN, Risis S, Yang C, Meikle PJ, Staples M, 
Febbraio MA, Bruce CR. Plasma lysophosphatidylcholine 
levels are reduced in obesity and type 2 diabetes. PLoS One. 
2012; 7:e41456.

28. Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, 
Yu S, Stephens LC, Cui X, Murrow G. Expression of 
autotaxin and lysophosphatidic acid receptors increases 
mammary tumorigenesis, invasion, and metastases. Cancer 
cell. 2009; 15:539–550.

29. Wu JM, Xu Y, Skill NJ, Sheng H, Zhao Z, Yu M, Saxena R, 
Maluccio MA. Autotaxin expression and its connection 
with the TNF-alpha-NF-κB axis in human hepatocellular 
carcinoma. Molecular cancer. 2010; 9:1.

30. Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, 
Di Vito M, Venturini E, Glunde K, Bhujwalla ZM, 
Mezzanzanica D. Activation of phosphatidylcholine cycle 
enzymes in human epithelial ovarian cancer cells. Cancer 
research. 2010; 70:2126–2135.

31. Oskouian B, Saba JD. Cancer treatment strategies targeting 
sphingolipid metabolism. Sphingolipids as Signaling and 
Regulatory Molecules: Springer), pp. 185–205.

32. Payne AW, Pant DK, Pan TC, Chodosh LA. Ceramide 
kinase promotes tumor cell survival and mammary tumor 
recurrence. Cancer research. 2014; 74:6352–6363.

33. Liu Y, Lai YC, Hill EV, Tyteca D, Carpentier S, 
Ingvaldsen A, Vertommen D, Lantier L, Foretz M, 
Dequiedt F. Phosphatidylinositol 3-phosphate 5-kinase 
(PIKfyve) is an AMPK target participating in contraction-
stimulated glucose uptake in skeletal muscle. Biochemical 
Journal. 2013; 455:195–206.

34. Cheaib B, Auguste A, Leary A. The PI3K/Akt/mTOR 
pathway in ovarian cancer: therapeutic opportunities and 
challenges. Chinese journal of cancer. 2015; 34:4.

35. Leary A, Auclin E, Pautier P, Lhommé C. The PI3K/Akt/
mTOR Pathway in Ovarian Cancer: Biological Rationale 
and Therapeutic Opportunities. Ovarian cancer-a clinical 
and translational update Croatia: InTech. 2013:275–302.

36. Hu F, Zhang Y, Song Y. Lipid metabolism, metabolic 
syndrome, and cancer: INTECH Open Access Publisher).

37. Murff HJ, Shu XO, Li H, Yang G, Wu X, Cai H, Wen W, 
Gao YT, Zheng W. Dietary polyunsaturated fatty acids and 
breast cancer risk in Chinese women: a prospective cohort 
study. International Journal of Cancer. 2011; 128:1434–1441.

38. Li CI, Mathes RW, Malone KE, Daling JR, Bernstein L, 
Marchbanks PA, Strom BL, Simon MS, Press MF, 
Deapen D. Relationship between migraine history 
and breast cancer risk among premenopausal and 
postmenopausal women. Cancer Epidemiology Biomarkers 
& Prevention. 2009; 18:2030–2034.

39. Christensen JH, Sølling J, Schmidt EB. The effect of n-3 
fatty acids on plasma lipids and lipoproteins and blood 
pressure in patients with CRF. American journal of kidney 
diseases. 2004; 44:77–83.

40. Hilvo M, Gade S, Hyötyläinen T, Nekljudova V, Seppänen-
Laakso T, Sysi-Aho M, Untch M, Huober J, Minckwitz G, 
Denkert C. Monounsaturated fatty acids in serum 
triacylglycerols are associated with response to neoadjuvant 
chemotherapy in breast cancer patients. International 
Journal of Cancer. 2014; 134:1725–1733.


