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ABSTRACT

This study conducted comprehensive and comparative metabolic and lipidomic 
profiling of a human epithelial breast cell line (MCF-10A), a slightly metastatic 
(MCF-7), and a highly metastatic (MDA-MB-231) breast cancer cell line using gas 
chromatography mass spectrometry (GC-MS) and direct infusion mass spectrometry 
(DI-MS). Among 39 metabolites identified by GC-MS analysis, xanthine, glucose-
6-phosphate, mannose-6-phosphate, guanine, and adenine were selected as 
prognostic markers of breast cancer metastasis. Major metabolic pathways involved 
in differentiation of the cell lines were alanine, aspartate, and glutamate metabolism, 
purine metabolism and glycine, serine, and threonine metabolism. Among 44 intact 
lipid species identified by DI-MS analysis, the levels of most phospholipids were 
higher in both metastatic groups than in normal cells. Specifically, the levels 
of phosphatidylserine (PS) 18:0/20:4, phosphatidylinositol (PI) 18:0/20:4, 
and phosphatidylcholine (PC) 18:0/20:4 were markedly higher while those of 
phosphatidylethanolamine (PE) 18:1/18:1 and PI 18:0/18:1 were lower in MDA-
MB-231 cells than in MCF-7 cells. A partial-least-squares regression model was 
developed and validated for predicting the metastatic potential of breast cancer cells. 
The information obtained in this study will be useful when developing diagnostic tools 
and for identifying potential therapeutic targets for metastatic breast cancer.

INTRODUCTION

Breast cancer is the most common type of 
cancer in women and the second most common type 
of cancer overall worldwide. In Europe, Belgium has 
the highest prevalence of breast cancer, approximately 
112 per 100,000 population (World Cancer Research 
Fund International statistics available at http://www.
wcrf.org/int/cancer-facts-figures/data-specific-cancers/
breast-cancer-statistics). Among Asian countries, 
the incidence has increased rapidly in recent years. 
Especially, in South Korea and Japan, the incidence 
rates of breast cancer have increased by 6% annually [1]. 
Adjuvant chemotherapy is offered to most breast cancer 
patients, but about 40% of early-stage breast cancer 
patients are at risk of developing distant metastases, 
which can result in death [2].

Biological markers are needed to identify patients 
with developing metastases and to improve the clinical 
management of the disease. Potential biomarkers have 
been investigated for predicting breast cancer metastases, 
with some showing clinical efficacy. The developed 
markers that have true prognostic use for patients 
with breast cancer include the level of urokinase-type 
plasminogen activator/plasminogen activator inhibitor 
1 protein (uPA/PAI1), steroid-receptor expression, and 
epidermal growth factor receptor 2 (ERBB2) gene 
amplification and protein expression [3]. Overexpression 
of enzymes that degrade the extracellular matrix, such as 
uPA and matrix metalloproteinases, and oncoproteins such 
as ERBB2, ras, and c-Myc are known to be associated 
with a high risk of metastasis [3, 4]. Steroid receptor 
coactivator-1 expression is known to promote metastasis 
and is inversely correlated with estrogen receptor (ER) β 
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expression, which is a predictor of a better prognosis in 
breast cancer [4].

Metabolic profiling has been used to study 
comprehensive responses when characterizing tumor 
types in clinical research. Cancer cell analyses using 
metabolomic techniques have been reported using mass 
spectrometry for ovarian cancer and other gastrointestinal 
cancers such as pancreatic cancer and colorectal cancer 
[5–7]. The construction of a metabolic map of a large 
cohort of breast cancer tissues and plasma using gas 
chromatography mass spectrometry (GC-MS), and 
comparative lipid profiling between breast cancer and 
normal tissues from humans using ultra-performance 
liquid chromatography mass spectrometry (UPLC-MS) 
have been reported [8–10]. In addition, lipidomic analyses 
of mouse breast cancer cell lines [11] and human breast 
ductal carcinoma (T47-D) and adenocarcinoma (MDA-
MB-231) cell lines have been carried out using thin-layer-
chromatography mass spectrometry (TLC-MS) [12].

Two human breast cancer cell lines, MCF-
7 and MDA-MB-231, are known to present with 
different metastasis and metastatic properties and ER 
positivity in human breast cancers. ER+ MCF-7 cells 
are highly hormone-dependent for growth and have 
a comparatively low capacity for metastasis among 
breast tumor cells, while ER– MDA-MB-231 cells are 
completely hormone-independent and exhibit a high 
metastatic potential [13, 14]. Previous studies have 
used these cell lines to identify and assess alterations in 
genes and proteins associated with metastasis in breast 
cancer using various types of genomic and proteomic 
analyses. Of 12,625 genes, 26 were increased in both 
MCF-7 and MDA-MB-231 cells by hypoxia [13], and 
the expression of miR-125 was lower in MCF-7 cells 
but higher in MDA-MB-231 cells than in MCF-10A 
cells [14]. The level of 14-3-3σ protein was strongly 
decreased in MCF-7 and MDA-MB-231 cells and in 
primary breast carcinomas compared to normal cells 
[15]. However, no previous studies have performed 
comparative metabolomic and lipidomic profiling of 
breast cancer cell lines (MCF-7 and MDA-MB-231) 
with different degrees of metastasis.

In this study, we performed comprehensive and 
comparative metabolomic and lipidomic profiling 
of breast cancer cell lines with different degrees of 
metastasis (MCF-7 and MDA-MB-231 cells) using GC-
MS and direct infusion mass spectrometry (DI-MS) for 
the first time. In particular, DI-MS analysis using nano-
electrospray mass spectrometry facilitated the analysis 
of intact lipid species in a rapid, simple, and highly 
sensitive manner. In addition, a predictive model for the 
metastasis stage of breast cancer was developed using the 
metabolic and lipidomic data sets obtained in this study by 
partial-least-squares discriminant analysis (PLS-DA) and 
partial-least-squares (PLS) projection to latent structures 
regression.

RESULTS

Comparative metabolic profiling of breast cancer 
cells with different metastatic potentials using 
GC-MS

Comprehensive metabolic profiling of human 
mammary epithelial and breast cancer cell extracts was 
performed using GC-MS to investigate the profiles of 
major compounds that are detected in breast cancer cells 
according to different metastasis stages. As listed in Table 
1, the following 39 metabolites were identified in human 
mammary epithelial and breast cancer cells: 2 alcohols 
(erythritol and myo-inositol), 14 amino acids (alanine, 
asparagine, aspartic acid, glutamine, glycine, leucine, 
lysine, ornithine, proline, serine, threonine, tryptophan, 
tyrosine, and valine), 4 fatty acids (3-hydroxybutanoic 
acid, oleic acid, palmitic acid, and stearic acid), 5 organic 
acids (isocitric acid, lactic acid, malic acid, oxalic 
acid, and pyruvic acid), 6 purines (adenine, guanine, 
hypoxanthine, inosine, uracil, and xanthine), 7 sugars 
(6-phosphogluconic acid, fructose-6-phosphate, glucose, 
glucose-6-phosphate, glyceric acid, mannose-6-phosphate, 
and sucrose), and creatinine.

Figure 1 depicts the interconnecting cellular 
metabolic pathways with superimposed levels of 
metabolites found in human breast cells with varying 
degrees of metastasis; the corresponding data are provided 
in Supplementary Table S1. ANOVA was performed to 
assess the statistical significance of the relative levels of 
each metabolite among different samples (p < 0.05). The 
levels of one alcohol (erythritol), amino acids (asparagine, 
glutamine, proline, serine, threonine, tyrosine, and valine), 
organic acids (isocitric acid, lactic acid, and malic acid), 
one purine (guanine), one sugar (glyceric acid), and 
creatinine were significantly higher in slightly metastatic 
cancer cells (MCF-7) than in normal breast cells (MCF-
10A) and highly metastatic cells (MDA-MB-231). In 
contrast, the levels of purines such as uracil and xanthine 
and sugars such as fructose-6-phosphate, glucose-6-
phosphate, and mannose-6-phosphate were significantly 
lower in MCF-7 cells than in MCF-10A and MDA-
MB-231 cells.

In highly metastatic cells (MDA-MB-231), the 
levels of alcohol (including erythritol), amino acids 
(including asparagine, glutamine, proline, serine, 
threonine, tyrosine, and valine), organic acids (including 
lactic acid and malic acid), purine (including inosine), 
and creatinine were reduced. In contrast, the level of 
uracil was higher than that in normal cells (MCF-10A). 
Isocitric acid and guanine levels remained high, whereas 
xanthine, fructose-6-phosphate, and mannose-6-phosphate 
levels stayed low. The levels of myo-inositol, ornithine, 
3-hydoxybutanoic acid, oxalic acid, and adenine were 
significantly higher while the levels of hypoxanthine were 
significantly lower in MDA-MB-231 cells than in MCF-7 
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Table 1: Mass fragment of metabolites contained in breast cancer cells and human mammary epithelial cells

Compound RT (min) Fragmentation ion (m/z) TMSa

Alcohol
Erythritol 19.03 103, 129, 205, 217 4

19.05

Myo-inositol 28.95 191, 217, 265, 305 6

Amino acid
Alanine 7.00 116, 133, 190, 218 2

Asparagine 20.85 116, 132, 188, 231 3

Aspartic acid 15.06 117, 130, 160, 245 2

17.41

17.43

Glutamine 19.78 128, 230, 246, 348 3

19.79

19.81

23.11 156, 203, 246, 347 3

Glycine 7.47 86, 102, 176, 204 2

12.02 86, 174, 248, 276 3

12.03

Leucine 8.30 86, 103, 170, 188 1

11.72 158, 218, 232, 260 2

Lysine 26.08 156, 174, 230, 317 4

Ornithine 24.00 100, 142, 200, 420 4

Proline 11.81 133, 142, 216, 230 2

Serine 10.81 103, 116, 132, 219 2

13.45 100, 204, 218, 278 3

Threonine 11.74 117, 130, 158, 219 2

11.75

14.08 117, 218, 291, 320 3

14.09

Tryptophan 30.92 202, 218, 291, 405 3

Tyrosine 26.37 179, 218, 280, 382 3

Valine 6.71 72, 130, 156, 174 1

9.74 100, 144, 174, 218 2

9.76

Fatty acid
3-hydroxybutanoic acid 8.05 117, 130, 191, 204 2

Oleic acid 31.08 117, 129, 145, 339 1

Palmitic acid 28.36 117, 129, 145, 313 1

Stearic acid 31.49 117, 129, 145, 341 1
(Continued )
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Compound RT (min) Fragmentation ion (m/z) TMSa

Organic acid

Isocitric acid 24.07 273, 305, 347, 465 4

Lactic acid 6.04 117, 133, 191, 219 2

Malic acid 16.67 189, 233, 245, 335 3

Oxalic acid 7.90 100, 117, 133, 190 2

Pyruvic acid 7.63 89, 131, 189, 218 2

Purine

Adenine 24.95 116, 133, 190, 218 2

Guanine 29.59 171, 264, 352, 367 3

Hypoxanthine 23.73 193, 206, 265, 280 2

Inosine 36.11 193, 217, 245, 281 4

Uracil 12.86 99, 113, 241, 256 2

Xanthine 27.80 279, 294, 353, 368 3

Sugar

6-phosphogluconic acid 33.93 217, 299, 357, 387 7

Fructose-6-phosphate 32.31 217, 315, 357, 387 6

Glucose 27.15 129, 191, 204, 217 5

Glucose-6-phosphate 32.32 129, 204, 299, 387 6

32.49

32.74

33.03

33.33

33.50

Glyceric acid 12.67

Mannose-6-phosphate 35.72 217, 299, 357, 387 6

Sucrose 36.96 217, 271, 361, 437 8

Other

Creatinine 18.10 100, 115, 143, 329 3

a TMS = trimethylsilylation.

cells. The glucose-6-phosphate level was also higher in 
MDA-MB-231 cells than in MCF-7 cells, but was not as 
high as that in MCF-10A cells.

Major pathways involved in the metabolic 
networks of human mammary epithelial and breast 
cancer cells were determined by annotating the 
identified metabolites using the MetaboAnalyst platform 
(http://www.metaboanalyst.ca). A list of 39 identified 
metabolites was used as an input for pathway analysis, 
and Homo sapiens (human; 80 pathways) was selected 
for further enrichment analyses. The most relevant 
pathways and metabolites that were strongly represented 

in metastatic breast cancer cells are listed in Table 2. 
These metabolic pathways were selected using the 
impact score and –log(p) value. The impact score was 
determined by the pathway topological importance of 
the metabolites, and –log(p) was used as the enrichment 
score, reflecting the probability of the pathway being 
identified at random; the number of ‘Hits’ was the 
actual number of matched metabolites in the pathway 
[16]. The following 10 metabolites were associated with 
aminoacyl-tRNA biosynthesis (p = 0.000): asparagine, 
leucine, lysine, glutamine, glycine, proline, serine, 
threonine, tyrosine, and valine. The following seven 
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Figure 1: Schematic diagram of the metabolic pathway and relative levels of detected compounds in breast cancer cells 
with different metastatic potentials. Schematic diagram modified from the pathway presented in the KEGG database (http://www.
genome.jp/kegg/). ANOVA was carried out to detect statistically significant differences between the samples (p <0.05). Data are presented 
as mean values with error bars representing standard deviation (n = 5). Different letters indicate statistically significant differences between 
metabolite levels.
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metabolites were associated with purine metabolism 
(p = 0.001): adenine, glutamine, glycine, guanine, 
hypoxanthine, inosine, and xanthine. In addition, five 
metabolites were associated with glycine, serine, and 
threonine metabolism (glyceric acid, glycine, pyruvic 
acid, serine, and threonine; p = 0.001) and with arginine 
and proline metabolism (creatinine, glutamine, ornithine, 
proline, and pyruvic acid; p = 0.007). Moreover, alanine, 
aspartate, and glutamate metabolism; glyoxylate and 
dicarboxylate metabolism; the pentose phosphate 
pathway; glycolysis or gluconeogenesis; starch and 
sucrose metabolism; and the tricarboxylic acid cycle 
were all associated with the metastasis of breast cancer 
cells. These various metabolic networks represent 
potential therapeutic targets that could be utilized in the 
development of new anticancer drugs for breast cancer.

Comparative lipidomic profiling of breast cancer 
cells with different metastatic potentials using 
DI-MS

The nonpolar phase of extracts from human 
mammary epithelial and breast cancer cells, was used 
to investigate the lipid profile. Representative lipid 
spectra of samples derived from a pooled extract and 
MS/MS spectra of the assigned 44 intact lipids are 
presented in Supplementary Figure S1 and S2. In total, 
10 phosphatidylcholine (PC) species and one each 
of plasmenylphosphatidylcholine (plasmenyl-PC),  
plasmenylphosphatidylethanolamine (plasmenyl-PE), and 
sphingomyelin (SM) species were detected in positive 
ion mode, while four phosphatidylethanolamine (PE), 
one plasmenyl-PE, fifteen phosphatidylserine (PS), nine 
phosphatidylinositol (PI), and two phosphatidylglycerol 
(PG) species were detected in negative ion mode. In 
addition to identifying lipid species in the three different 
cell types, the relative abundance of each lipid in relation 
to the metastatic potential is listed in Supplementary 
Table S2. ANOVA with a Tukey’s post hoc test revealed 
significant differences between the cell groups (p < 0.05).

Table 3 lists the relative changes in lipid species 
between MCF-7 and MCF-10A cells, MDA-MB-231 and 
MCF-10A cells, and MDA-MB-231 and MCF-7 cells, with 
p values determined using Student’s t-tests. The relative 
changes between cell types ranged from 0.10- to 17.01-
fold. All PCs, PEs, and PGs showed relative changes of 
>1.0-fold in MCF-7 cells, most or all PCs, PEs, PSs, and 
PIs also showed relative changes of >1.0-fold in MDA-
MB-231 cells relative to the corresponding levels found in 
MCF-10A cells. In addition, compared to MDA-MB-231 
and MCF-7, the relative changes in plasmenyl-PEs and 
most of the identified PSs and PIs were greater than 1.0-
fold (which indicates higher levels in MDA-MB-231 than 
in MCF-7 cells), whereas those of plasmenyl-PC, PEs, and 
PGs were less than 1.0-fold (which indicates lower levels 

in MDA-MB-231 than in MCF-7 cells), and most PCs and 
SM levels did not change significantly.

Development of a predictive model for breast 
cancer cells according to the metastatic potential

To obtain models that enable discrimination of 
the three different cell types, and identify potential 
biomarkers for breast cancer, PLS-DA was performed 
using the total GC-MS and DI-MS data sets from normal 
cells (MCF-10A), slightly metastatic cells (MCF-7), and 
highly metastatic cells (MDA-MB-231). The variable 
influence on projection (VIP) value reflects the influence 
of components that contribute to separation in the PLS-
DA models. Generally, VIP cutoff values of 0.7–0.8 
have been accepted for variable selection, with those 
larger than 1.0 being the most influential for the model 
[17]. In this study, six PLS-DA models were developed 
for compounds selected using various VIP cutoff values 
(0, 0.7, 0.9, 1.0, 1.1, and 1.2) to predict breast cancer 
metastasis. The optimal PLS-DA model was determined 
based on the values of R2Y (goodness-of-fit parameter) and 
Q2Y (predictive ability parameter), with values close to 1 
being indicative of a perfect model. The best R2Y value 
of 0.990 and Q2Y value of 0.984 were obtained when 
the VIP cutoff value was >1.1 (Table 4). The PLS-DA 
model validity was investigated by performing 20-times 
random permutation testing, with the results showing 
that the model was valid (with an R2Y intercept of 0.019 
and a Q2Y intercept of –0.336). In addition, the score plot 
derived from the optimal PLS-DA model demonstrated 
that the normal group and two breast cancer groups could 
be clearly separated by PLS component 1, and that the 
slightly metastatic and highly metastatic cancer groups 
could be separated by PLS component 2 (Figure 2A). The 
corresponding loading plot showed the important variables 
responsible for the clustering observed in the score plot. 
From the loading plot, glucose-6-phosphate, xanthine, and 
mannose-6-phosphate were assigned as key metabolites 
in MCF-10A cells, and the levels of PI 16:0/18:1, PS 
17:0/18:1, and PE 18:1/20:4 were highest in MCF-7 cells. 
Adenine, PS 18:0/20:4, and PI 18:0/20:4 were identified as 
the main metabolites in MDA-MB-231 cells responsible 
for discrimination among groups (Figure 2B).

For external validation, a PLS regression model 
was developed from the training data set of five individual 
samples of each of MCF-10A, MCF-7, and MDA-MB-231 
cells, and contained variables with optimal VIP values. 
Cross-validation and permutation testing were performed 
to validate the prediction model, and the differences 
between the observed and predicted metastatic potentials 
of breast cancer cells were calculated and expressed as 
the root-mean-square error of estimation (RMSEE). In 
addition, one experimental data set from an independent 
sample was used as the test set and was imported into the 
PLS calibration plot—constructed by the training set—to 
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Table 2: List of selected pathways identified by pathway analysis using MetaboAnalyst

No. Interaction metabolite Pathway name Total cmpda Expected Hitsb Raw pc -log(p) Impactd

1
Glyceric acid, glycine, 
pyruvic acid, serine, 

threonine

Glycine, serine 
and threonine 
metabolism

48 0.78 5 0.0009 7.0325 0.4209

2
Asparagine, aspartic 

acid, glutamine, pyruvic 
acid

Alanine, aspartate 
and glutamate 
metabolism

24 0.39 4 0.0005 7.6095 0.2754

3
Creatinine, glutamine, 

ornithine, proline, 
pyruvic acid

Arginine and proline 
metabolism 77 1.25 5 0.0072 4.9304 0.2383

4
Glyceric acid, isocitric 

acid, pyruvic acid, 
oxalic acid

Glyoxylate and 
dicarboxylate 
metabolism

50 0.81 4 0.0079 4.8364 0.1868

5
6-phosphogluconic 

acid, glucose, glyceric 
acid, pyruvic acid

Pentose phosphate 
pathway 32 0.52 4 0.0015 6.4838 0.1574

6 Isocitric acid, pyruvic 
acid

Citrate cycle (TCA 
cycle) 20 0.32 2 0.0404 3.2077 0.1485

7

Asparagine, leucine, 
lysine, glutamine, 

glycine, proline, serine, 
threonine, tyrosine, 

valine

Aminoacyl-tRNA 
biosynthesis 75 1.22 10 0.0000 15.75 0.1127

8 Glucose, lactic acid, 
pyruvic acid

Glycolysis or 
Gluconeogenesis 31 0.50 3 0.0129 4.3487 0.0953

9 Glucose, glucose-6-
phosphate, sucrose

Starch and sucrose 
metabolism 50 0.81 3 0.0456 3.0869 0.0768

10

Adenine, glutamine, 
glycine, guanine, 

hypoxanthine, inosine, 
xanthine

Purine metabolism 92 1.49 7 0.0005 7.5315 0.0636

a Total cmpd is the total number of compounds in the pathway.
b Hits is the actual matched number from the uploaded data.
c Raw p is the original p-value calculated from the pathway analysis.
d Impact is the pathway impact value calculated from pathway topology analysis.

Table 3: Identification of lipid species from human MCF-10A mammary epithelial cells and MCF-7 and MDA-
MB-231 human breast cancer cells by nano-electrospray mass spectrometry, along with p values and relative 
changes in identified peak intensities

Ion 
mode

Ion 
species m/z Proposed 

composition
MCF-7/MCF-10A MDA-MB-231/ 

MCF-10A MDA-MB-231/MCF-7

p Fold change p Fold change p Fold change

PC

(+) [M + H]+ 758 C16:1/C18:1 0.000 1.99 (↑) 0.000 2.47 (↑) 0.136 1.24 (ns)

(+) [M + H]+ 784 C18:1/C18:2 0.000 2.40 (↑) 0.004 4.10 (↑) 0.063 1.71 (ns)

(+) [M + H]+ 786 C18:1/C18:1 0.000 2.54 (↑) 0.002 4.07 (↑) 0.064 1.60 (ns)
(Continued )
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Ion 
mode

Ion 
species m/z Proposed 

composition
MCF-7/MCF-10A MDA-MB-231/ 

MCF-10A MDA-MB-231/MCF-7

p Fold change p Fold change p Fold change

(+) [M + H]+ 798 C18:3/C19:0 0.287 1.43 (ns) 0.636 1.16 (ns) 0.240 0.81 (ns)

(+) [M + H]+ 808 C18:2/C20:3 0.000 3.19 (↑) 0.005 4.48 (↑) 0.223 1.40 (ns)

(+) [M + H]+ 810 C18:0/C20:4 0.004 1.59 (↑) 0.000 4.48 (↑) 0.000 2.81 (↑)

(+) [M + H]+ 814 C18:1/C20:1 0.000 1.87 (↑) 0.829 1.02 (ns) 0.000 0.55 (↓)

(+) [M + H]+ 816 C18:1/C20:0 0.001 1.57 (↑) 0.000 1.83 (↑) 0.145 1.16 (ns)

(+) [M + H]+ 818 C18:0/C20:0 0.192 1.51 (ns) 0.017 2.28 (↑) 0.134 1.51 (ns)

(+) [M + H]+ 834 C18:1/C22:5 0.000 1.57 (↑) 0.000 1.52 (↑) 0.634 0.97 (ns)

plasmenyl-PC

(+) [M + H]+ 800 C20:0/C18:1 0.000 1.93 (↑) 0.859 0.95 (ns) 0.004 0.49 (↓)

plasmenyl-PE

(+) [M + H]+ 704 C18:0/C16:0 0.108 1.49 (ns) 0.028 1.53 (↑) 0.886 1.02 (ns)

SM

(+) [M]+ 703 D18:1/16:0 0.750 1.09 (ns) 0.094 1.50 (ns) 0.157 1.37 (ns)

PE

(−) [M − H]- 742 C18:1/C18:1 0.000 1.62 (↑) 0.000 0.47 (↓) 0.000 0.29 (↓)

(−) [M − H]- 746 C17:0/C19:0 0.000 2.62 (↑) 0.047 1.56 (↑) 0.002 0.60 (↓)

(−) [M − H]- 764 C18:1/C20:4 0.000 2.68 (↑) 0.035 1.23 (↑) 0.000 0.46 (↓)

(−) [M − H]- 792 C18:1/C22:4 0.000 1.67 (↑) 0.002 1.55 (↑) 0.350 0.93 (ns)

plasmenyl-PE

(−) [M − H]- 750 C18:0/C20:4 0.000 0.36 (↓) 0.000 2.87 (↑) 0.000 7.90 (↑)

PS

(−) [M − H]- 758 C16:1/C18:1 0.000 1.98 (↑) 0.000 3.32 (↑) 0.001 1.67 (↑)

(−) [M − H]- 760 C16:0/C18:1 0.000 1.48 (↑) 0.000 2.44 (↑) 0.000 1.65 (↑)

(−) [M − H]- 762 C16:0/C18:0 0.006 1.22 (↑) 0.000 2.06 (↑) 0.000 1.70 (↑)

(−) [M − H]- 774 C17:0/C18:1 0.000 2.46 (↑) 0.025 1.21 (↑) 0.000 0.49 (↓)

(−) [M − H]- 784 C18:1/C18:2 0.000 0.60 (↓) 0.000 3.29 (↑) 0.000 5.45 (↑)

(−) [M − H]- 786 C18:0/C18:2 0.796 0.99 (ns) 0.000 2.12 (↑) 0.000 2.15 (↑)

(−) [M − H]- 788 C18:0/C18:1 0.007 0.86 (↓) 0.000 2.04 (↑) 0.000 2.37 (↑)

(−) [M − H]- 790 C18:0/C18:0 0.000 2.01 (↑) 0.000 2.11 (↑) 0.241 1.05 (ns)

(−) [M − H]- 810 C18:0/C20:4 0.468 1.07 (ns) 0.000 4.43 (↑) 0.000 4.15 (↑)

(−) [M − H]- 816 C18:1/C20:0 0.000 1.57 (↑) 0.000 1.40 (↑) 0.031 0.90 (↓)

(−) [M − H]- 834 C18:0/C22:6 0.000 1.19 (↑) 0.000 4.17 (↑) 0.000 2.15 (↑)

(−) [M − H]- 836 C18:1/C22:4 0.000 2.45 (↑) 0.000 2.41 (↑) 0.716 0.98 (ns)

(−) [M − H]- 838 C18:0/C22:4 0.331 1.07 (ns) 0.000 3.76 (↑) 0.000 3.52 (↑)

(−) [M − H]- 842 C18:1/C22:1 0.000 0.64 (↓) 0.180 1.07 (ns) 0.000 1.67 (↑)

(−) [M − H]- 844 C18:1/C22:0 0.000 1.58 (↑) 0.000 1.37 (↑) 0.111 0.87 (ns)
(Continued )
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Ion 
mode

Ion 
species m/z Proposed 

composition
MCF-7/MCF-10A MDA-MB-231/ 

MCF-10A MDA-MB-231/MCF-7

p Fold change p Fold change p Fold change

PI

(−) [M − H]- 807 C16:0/C16:1 0.000 3.23 (↑) 0.000 17.01 (↑) 0.000 5.27 (↑)

(−) [M − H]- 833 C16:1/C18:1 0.021 1.14 (↑) 0.000 2.10 (↑) 0.000 1.84 (↑)

(−) [M − H]- 835 C16:0/C18:1 0.000 2.46 (↑) 0.009 1.40 (↑) 0.000 0.57 (↓)

(−) [M − H]- 861 C18:1/C18:1 0.000 0.66 (↓) 0.000 0.25 (↓) 0.000 0.37 (↓)

(−) [M − H]- 863 C18:0/C18:1 0.000 1.67 (↑) 0.000 0.16 (↓) 0.000 0.10 (↓)

(−) [M − H]- 881 C16:0/C22:6 0.056 1.58 (ns) 0.005 3.83 (↑) 0.011 2.43 (↑)

(−) [M − H]- 883 C18:1/C20:4 0.024 1.25 (↑) 0.000 4.23 (↑) 0.000 3.38 (↑)

(−) [M − H]- 885 C18:0/C20:4 0.000 0.69 (↓) 0.000 5.80 (↑) 0.000 8.38 (↑)

(−) [M − H]- 887 C18:0/C20:3 0.000 0.48 (↓) 0.038 1.17 (↑) 0.000 2.42 (↑)

PG

(−) [M − H]- 747 C16:0/C18:1 0.000 1.64 (↑) 0.026 0.72 (↓) 0.000 0.44 (↓)

(−) [M − H]- 773 C18:1/C18:1 0.000 2.02 (↑) 0.000 0.22 (↓) 0.000 0.11 (↓)

PC, phosphatidylcholine; plasmenyl-PC, plasmenylphosphatidylcholine; plasmenyl-PE, plasmenylphosphatidylethanolamine; 
PE, phosphatidylethanolamine; PS, phosphatidylserine; PI, phosphatidylinositol; PG, phosphatidylglycerol.
ns, no significant difference (p > 0.05); ↑, significant difference (p < 0.05) and relative fold change > 1; ↓, significant 
difference (p < 0.05) and relative fold change < 1.

Table 4: PLS-DA model parameters using selected metabolomes and lipidomes for VIP cutoff values of 0, 0.7, 0.9, 
1.0, 1.1, and 1.2

VIP cut-
off values

Total no. of 
compounds

Compoundsa

R2Y Q2Y R2Y- 
intercept

Q2Y- 
intercept

Component 
No.GC-MS DI-MS

0 83 1-39 1-44 0.982 0.957 0.371 −0.299 3

0.7 75 1-17, 21-24, 26-31, 
33-37, 39

1-3, 5-12, 
14-44 0.984 0.959 0.355 −0.444 3

0.9 63

1, 2, 4, 6, 10-13, 
15, 16, 21-23, 26, 
27, 29-31, 33, 35-

37, 39

1-3, 5-8, 10, 
11, 14-44 0.985 0.962 0.267 −0.292 3

1.0 48
10, 13, 16, 21, 22, 
26, 27, 30, 31, 33, 

35, 37

1, 3, 6-8, 10, 
14-38, 40-44 0.986 0.981 0.053 −0.318 2

1.1 27 26, 27, 31, 35, 37

1, 6-8, 10, 
14-17, 19, 22, 

26, 27, 29, 
30, 32, 33, 

36-38, 41, 42

0.990 0.984 0.019 −0.336 2

1.2 4 – 8, 26, 30, 33 0.852 0.776 0.097 −0.331 3

a Compounds corresponding to numbers were listed in Supplementary Table S1 and S2.
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yield the root-mean-square error of prediction (RMSEP). 
The plots and parameters are presented in Figure 3 and 
Table 5. In this model, the values of RMSEE and RMSEP 
were calculated to be 0.102 and 0.140, respectively, 
which indicated the high accuracy of the model. These 
results indicate that the PLS model used in this study 
is a potentially useful predictive model for determining 
the degree of metastasis in cell samples obtained from 
patients.

For potential biomarker discovery, metabolites and 
lipids were selected with VIP values of >1.1 in the PLS-

DA model. Among them, the top five ranked lipid species 
with higher relative changes were selected as effective 
biomarkers for metastatic breast cancer. The selected 
biomarkers are listed in Table 6. Five potential biomarkers 
for metastatic cancer cells were discovered in the GC-MS 
analysis. Among these biomarkers, the guanine level was 
312.9-fold higher (p = 0.002) while the levels of xanthine, 
glucose-6-phosphate, and mannose-6-phosphate were 
lower in MCF-7 cells than in MCF-10A cells (all p values 
<0.005). The levels of guanine and adenine were higher 
(all p values <0.001) while those of xanthine, glucose-6-

Figure 2: A. PLS-DA-derived score plot for mammary epithelial and metastatic breast cancer cells (n = 5 for each group). 
B. PLS-DA loading plot of variables with a VIP value of >1.1 explaining the separation above. The graphs show changes in 
major compounds in each group. Data represent mean values with error bars representing the standard deviation values. Different letters on the 
graph indicate statistically significant differences between samples based on ANOVA with Tukey’s post hoc test. ●: MCF-10A; ♦: MCF-7; ▲: 
MDA-MB-231
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phosphate, and mannose-6-phosphate were lower (all p 
values <0.02) in MDA-MB-231 cells than in MCF-10A 
cells. The levels of xanthine, glucose-6-phosphate, and 
adenine were higher in MDA-MB-231 cells than in MCF-
7 cells (all p values <0.03). The levels of potential lipid 
biomarkers PS 18:1/22:4, PE 18:1/20:4, PI 16:0/18:1, PS 
17:0/18:1, and PE 17:0/19:0 were all higher in slightly 
metastatic MCF-7 cells than in MCF-10A cells, with 
relative changes greater than 2.45-fold (all p values 
<0.001). The levels of these lipids were higher in MCF-
7 cells than in the other two cell types. The levels of PS 

18:0/22:6, PS 18:0/20:4, PI 18:0/20:4, and PC 18:0/20:4 
were higher while the level of PI 18:0/18:1 was lower in 
highly metastatic MDA-MB-231 cells than in MCF-10A 
cells. In particular, the level of PS 18:0/22:6 was highest 
in MDA-MB-231 cells, followed by MCF-7 and MCF-
10A cells. Additionally, the levels of PS 18:0/20:4, PI 
18:0/20:4, and PC 18:0/20:4 were markedly higher in 
the highly metastatic MDA-MB-231 cells than in MCF-7 
cells, with relative changes of 4.15-, 8.38-, and 2.81-fold, 
respectively (all p values <0.001). In contrast, the levels 
of PE 18:1/18:1 and PI 18:0/18:1 were markedly lower 

Figure 3: PLS-derived relationship between observed and predicted metastatic potentials of mammary epithelial and 
metastatic breast cancer cell samples using the training set A. and test set B. analyzed with variables having a VIP 
value of >1.1.
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Table 5: Validation of quality parameters of PLS projection to latent structures regression models derived from the 
data sets of the metabolomes and lipidomes in mammary epithelial and breast cancer cells 

PLS parameters Values

R2Y 0.987

Q2Y 0.981

R2Y intercept 0.154

Q2Y intercept −0.452

RMSEE 0.102

RMSEP 0.140

There were two PLS components

Table 6: Potential biomarkers of breast cancer metastasis identified by GC-MS and DI-MS, along with p values and 
relative changes in identified peak intensities

MCF-7/MCF-10A MDA-MB-231/MCF-10A MDA-MB-231/MCF-7

Compound VIPa Fold  
changeb p-value Compound VIPa Fold 

changeb p-value Compound VIPa Fold 
changeb p-value

GC-MS

Xanthine 1.20 0.02 (↓) 0.000 Xanthine 1.20 0.13 (↓) 0.000 Xanthine 1.20 8.35 (↑) 0.000

Glucose-6-
phosphate 1.15 0.22 (↓) 0.000 Glucose-6-

phosphate 1.15 0.63 (↓) 0.011 Glucose-6-
phosphate 1.15 2.84 (↑) 0.002

Mannose-6-
phosphate 1.14 0.29 (↓) 0.002 Mannose-6-

phosphate 1.14 0.20 (↓) 0.000 Mannose-6-
phosphate 1.14 0.68 (ns) 0.269

Guanine 1.11 312.9 (↑) 0.002 Guanine 1.11 371.5 (↑) 0.000 Guanine 1.11 1.19 (ns) 0.452

Adenine 1.11 1.23 (ns) 0.088 Adenine 1.11 16.26 (↑) 0.000 Adenine 1.11 13.18 
(↑) 0.000

DI-MS

PS 18:1/22:4 1.24 2.45 (↑) 0.000 PS 18:0/22:6 1.14 4.17 (↑) 0.000 PS 18:0/20:4 1.11 4.15 (↑) 0.000

PE 18:1/20:4 1.20 2.68 (↑) 0.000 PS 18:0/20:4 1.11 4.43 (↑) 0.000 PE 18:1/18:1 1.11 0.29 (↓) 0.000

PI 16:0/18:1 1.19 2.46 (↑) 0.000 PI 18:0/20:4 1.10 5.80 (↑) 0.000 PI 18:0/20:4 1.10 8.38 (↑) 0.000

PS 17:0/18:1 1.18 2.46 (↑) 0.000 PC 18:0/20:4 1.10 4.48 (↑) 0.000 PC 18:0/20:4 1.10 2.81 (↑) 0.000

PE 17:0/19:0 1.15 2.62 (↑) 0.000 PI 18:0/18:1 1.10 0.16 (↓) 0.000 PI 18:0/18:1 1.10 0.10 (↓) 0.000

a variable influence on projection.
b↑, significant difference (p < 0.05) and relative fold change > 1; ↓, significant difference (p < 0.05) and relative fold 
change < 1.
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in cells with high metastatic potential than in slightly 
metastatic cells.

DISCUSSION

This study performed cellular metabolic and 
lipidomic profiling of breast cancer cells with different 
metastatic potentials. This is the first study to analyze the 
metabolic profiles of breast cancer cells with different 
metastatic potentials, and to compare normal controls with 
two breast cancer cell groups.

The levels of ornithine, adenine, and guanine were 
significantly higher in highly metastatic cancer cells 
(MDA-MB-231) than in normal cells (MCF-10A). These 
metabolites were also found to be significantly elevated 
in breast cancer tissue compared to normal tissue in a 
previous study that investigated a large cohort of breast 
cancer cases [8]. Via the action of ornithine decarboxylase 
(ODC), ornithine is the starting point for the synthesis 
of polyamines that are associated with tumor promotion 
and progression [18]. That study found that the level of 
ODC expression was highest in MDA-MB-231 cells, 
which implies that ornithine plays an important role in 
determining tumor growth and aggressiveness. Increase in 
adenine has also been found in human gastric cancer cells, 
and it was speculated that this phenomenon is necessary 
for ATP transfer and synthesizing nucleic acids for 
abnormal cell proliferation [19]. Guanine is reportedly the 
most readily oxidized base in cancer cells, which makes it 
vulnerable to DNA mutations [20]. Furthermore, adenine 
and guanine are obtained from inosine monophosphate 
during purine metabolism. Imbalanced enzymatic 
activities during purine metabolism, such as a decrease in 
xanthine oxidase, were found to be associated with the 
transformation and progression of cancer cells, suggesting 
that there is a correlation between increase in adenine and 
guanine and cancer cell metastasis [21]. A metabolomic 
study using mouse tumor models with different metastatic 
potentials found that the level of guanine was higher in 
highly metastatic cell lines (4TO7, 66cl4, and 4T1) than 
in a slightly metastatic cell line (168FARN) [22]. This 
implies that there is a relationship between changes in 
purine metabolism and the metastatic potential of breast 
cancer cells.

Aminoacyl-tRNA biosynthesis was found to be 
activated in breast cancer tissues in a previous study of 
breast cancer and normal tissues [8]. In our study, these 
amino acids were increased in slightly metastatic cells 
(MCF-7), but their levels were at control levels in MDA-
MB-231 cells with a high metastatic potential. Lower 
levels in cells with greater metastasis could be due to their 
greater consumption of amino acids [22]. In particular, 
among amino acids, glutamine has been known to be a 
major source of carbon for fatty acid synthesis in cancer 
cells with defective mitochondria, and these fatty acids 
can be used for energy storage [23].

The level of PE 18:1/18:1 was higher in MCF-7 
cells than in MCF-10A and MDA-MB-231 cells in our 
study. The level of PE 18:1/18:1 was previously found 
to be higher in T-47D cells than in MDA-MB-231 cells 
[12]. In addition, the level of plasmenyl-PE 18:0/20:4 
was significantly higher in MDA-MB-231 cells but 
significantly lower in MCF-7 cells than in MCF-10A cells. 
These differences may be associated with differences in 
the hormonal status and metastatic potential between 
breast cancer cell lines. It was reported that the levels 
of PE were higher in ER+ hormone-sensitive cell lines 
(MCF-7, LCC2, and MIII) than in ER– hormone-resistant 
cell lines (MDA-MB-231 and MDA-MB-435), whereas 
plasmenyl-PE was either absent or present only at a 
very low level in the ER+ cell lines, but was present at a 
significant level in ER– cell lines [24].

Moreover, it was found for the first time that the 
levels of PG 16:0/18:1 and PG 18:1/18:1 were higher 
in MCF-7 cells but lower in MDA-MB-231 cells 
than in MCF-10A cells. PG is an important precursor 
of cardiolipin (CL), which plays a critical role in 
mitochondrial structure and function. PG deficiency 
results in CL deficiency and it may cause mitochondrial 
dysfunction in highly metastatic cancer cells [25].

Most phospholipids are more abundant in breast 
cancer cells than in normal cells. A previous study found 
similar results in human breast cancer tissues [10]. It 
was reported that the levels of membrane phospholipids, 
including PC, PE, PI, SM, and ceramides, were higher in 
breast cancer tissue than in normal tissue samples, with 
the levels being maximal in the most aggressive tumors. 
It has been suggested that overexpression of fatty acid 
synthase plays an important role in the tumorigenesis, and 
that de novo synthesized fatty acids are required for the 
rapid proliferation of cancer cells. High levels of lipogenic 
enzymes and related gene expression were observed in 
several types of cancer cells; this was especially true for 
ERLIN2, a lipogenic gene found in breast cancer cells [26, 
27]. The most significantly increased saturated fatty acids 
were palmitic (C16:0) and stearic (C18:0) acids, and the 
most increased unsaturated fatty acid was arachidonic acid 
(C20:4) in breast cancer tissue, whose level increased with 
cancer progression [10]. We found that the levels of PS 
18:0/20:4, PI 18:0/20:4, and PC 18:0/20:4 were markedly 
higher in highly metastatic MDA-MB-231 cells than 
in slightly metastatic MCF-7 cells, with no significant 
differences between MCF-7 cells and normal MCF-10A 
cells. Thus, those compounds can be suggested as potential 
biomarkers for metastatic potential of breast cancer.

Various predictive models and markers of cancer 
metastasis have been developed previously. Many recent 
studies have shown that levels of circulating tumor cells 
(CTCs) might be associated with the metastatic spread of 
various types of carcinomas [28, 29]. In addition, gene-
expression profiling of breast cancer can be used to predict 
the risk of metastasis. A large amount of data has been 
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generated for breast cancer, relating expression data to 
histological subtype [30, 31], site of tumor metastasis [32, 
33], and metastatic potential [34, 35]. Circulating cell-free 
DNA, which carries tumor-specific alterations (circulating 
tumor DNA), was recently investigated in advanced 
cancer patients as an early-stage diagnostic biomarker 
[36, 37]. In present study, we demonstrated a PLSR model 
to predict metastasis of breast cancer based on metabolic 
and lipidomic profiles for the first time. Since whole 
data of metabolites and lipids are used for modeling, the 
PLSR model established with multivariate leads to better 
precisive and accurate prediction than univariate models.

Metabolomic analysis is complementary to genomic 
and proteomic approaches, and is being used to discover 
prognostic biomarkers in cancer. The present study 
simultaneously performed comprehensive profiling of 
alcohols, amino acids, fatty acids, organic acids, purines, 
sugars, and intact lipid species in breast cancer cells 
with different metastatic potentials. A predictive model 
was also developed. This resulted in adenine, guanine, 
xanthine, glucose-6-phosphate, and mannose-6-phosphate 
being identified as the novel potential biomarkers for 
the detection of the extent of breast cancer metastasis. 
In addition, this is the first report of the levels of PS 
18:0/20:4, PI 18:0/20:4, and PC 18:0/20:4 being higher 
in highly metastatic cells (MDA-MB-231 cells) than in 
slightly metastatic cells (MCF-7 cells). Further study 
of a large cohort of breast cancer patients with different 
metastatic potentials should be conducted to verify these 
biomarkers.

The PLS regression model adopted in this study 
was able to successfully differentiate normal, slightly 
metastatic, and highly metastatic breast cancer cells with 
a high predictive accuracy. To establish an accessible and 
easily applicable data set for this predictive model, it is 
necessary to isolate primary human mammary cells from 
breast tissue taken from breast cancer patients. Breast 
tissues are generally dissociated by enzymatic digestion 
(most efficiently when using collagenase III), and then a 
differential centrifugation technique is applied to obtain 
the separated cells. The pellet consisting of epithelial 
cells can be utilized for metabolic profiling to predict the 
metastasis stage of breast cancer [38–40]. The metabolic 
and lipidomic approaches of this study provide an in-depth 
understanding of metabolism in breast cancer metastasis. 
It also provides valuable new information for assessing 
the metastatic potential of breast cancer in patients and for 
developing potential therapeutic agents.

MATERIALS AND METHODS

Chemicals and reagents

Butylated hydroxytoluene (BHT), myristic-d27 
acid, methoxylamine hydrochloride, and pyridine were 
purchased from Sigma-Aldrich (St. Louis, MO). BSTFA 

[N,O-Bis(trimethylsilyl) trifluoroacetamide] containing 
1% TMCS (trimethylchlorosilane) was purchased from Alfa 
Aesar (Ward Hill, MA). HPLC grade methanol, chloroform, 
and water were purchased from Fisher Scientific 
(Pittsburgh, PA). HPLC grade hexane was purchased from 
Honeywell Burdick & Jackson (Muskegon, MI).

Cell culture

Human breast cancer cell lines MCF-7 and MDA-
MB-231 (American Type Culture Collection, Manassas, 
VA) and the immortalized normal breast epithelial cell 
line, MCF-10A (American Type Culture Collection, 
Manassas, VA), were used for the experiments. MCF-
7 and MDA-MB-231 cells originated from a human 
invasive adenocarcinoma. MCF-7 cells have slightly 
metastatic potential and belong to the luminal A group, 
and are known to express estrogen and progesterone 
receptors. MDA-MB-231 cells are highly metastatic and 
belong to the triple-negative basal-like group. MCF-7 
and MDA-MB-231 cells were cultured in RPMI medium 
supplemented with 10% (v/v) heat-inactivated fetal 
bovine serum and 1% penicillin-streptomycin (Hyclone 
labs, Logan, UT). MCF-10A cells were cultured in 
DMEM/F12 medium supplemented with 5% horse serum 
(ThermoFisher Scientific, Waltham, MA), 20 ng/mL 
epidermal growth factor (Peprotech, Rocky Hill, NJ), 
0.5 mg/mL hydrocortisone (Sigma-Aldrich, St. Louis, 
MO), 100 ng/mL cholera toxin (Sigma-Aldrich, St. Louis, 
MO), 10 μg/mL insulin (Sigma-Aldrich, St. Louis, MO), 
and 1% penicillin-streptomycin at 37°C in a humidified 
incubator with 5% CO2. The cells were sub-cultured with 
a seeding density of 1 × 106 cells/mL and were grown 
to approximately 90% confluence for metabolic and 
lipidomic profiling experiments.

Harvesting cell samples

Cells were detached using a 1× trypsin solution 
at 37°C in a humidified atmosphere of 5% CO2. After 
incubation, MCF-10A cells were resuspended in 
resuspension media and centrifuged at 150 × g for 3 min; 
MCF-7 and MDA-MB-231 cell lines were resuspended in 
growth media and centrifuged at 185 × g for 3 min. The 
media was aspirated, and the cell pellet was washed twice 
with 1.5 mL ice-cold phosphate-buffered saline (PBS) 
to remove extracellular metabolites. After the final wash 
step, cells were suspended in PBS and transferred into 2 
mL Eppendorf tubes. Cell suspensions were immediately 
frozen in liquid nitrogen and stored at −80°C until 
analysis.

Sample preparation and metabolite extraction

The cell suspensions were lysed by two freeze-
thaw cycles, followed by sonication on ice. Briefly, cells 
were thawed in a 4°C water bath, vortexed vigorously, 
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and sonicated for 20 min. They were then transferred to 
liquid nitrogen for 60 min, thawed in a 37°C water bath 
for 30 min, and briefly vortexed. This freeze-thaw cycle 
was repeated once for complete cell disruption, and was 
followed by an additional sonication for 10 min. Protein 
concentrations were determined using the Bio-Rad protein 
assay kit (Thermo Scientific, Rockford, IL) with bovine 
serum albumin (BSA) standards for normalization. The 
samples were centrifuged at 18,500 × g for 10 min at 4°C, 
dried in a freeze dryer (IlShinBioBase, Dongduchun city, 
Kyunggi-do, Korea), and stored at −70°C until analysis. 
Each sample was prepared and analyzed in quintuplicate.

The samples were extracted using a modified Folch 
procedure [41]. In brief, ice-cold chloroform (1 mL) and 
methanol (0.5 mL), with 0.1% BHT, were added to the 
dried cells and vortexed for 20 sec. The mixture was then 
sonicated in a 4°C water bath for 30 min and incubated on 
ice for 60 min with shaking. Phase separation was induced 
by adding 380 μL of water with 0.1% BHT, followed by 
incubation on ice for 10 min with shaking. The mixture 
was then centrifuged at 18,500 × g for 10 min at 4°C. The 
mixture was split into two aliquots, the upper (methanol) 
phase for GC-MS analysis, and the lower (chloroform) 
phase for lipid analysis using nano electrospray ionization 
mass spectrometry (nanoESI-MS). The extracts were 
passed through 0.2 μm PTFE syringe filter (Whatman, 
Maidstone, UK) and then evaporated with nitrogen gas. 
The dried chloroform fraction was resuspended in 100 
μL of methanol-chloroform (9:1, v/v) containing 7.5 
mM ammonium acetate buffer solution for analysis, and 
the dried methanol fraction was used for derivatization 
procedures. All extracts were stored at −80°C before 
analysis.

GC-MS analysis

To perform derivatization of the extracted sample, 
30 μL of 20,000 μg/mL methoxylamine hydrochloride 
in pyridine, 50 μL of BSTFA containing 1% TMCS, and 
10 μL of myristic-d27 acid (500 μg/mL as an internal 
standard) were added to dried samples. The samples were 
then incubated for 60 min at 65°C. Finally, each extracted 
sample was used for GC-MS analysis.

GC-MS analysis was performed using a 7890A 
GC (Agilent Technologies, CA) model equipped with an 
autosampler (7683 B series, Agilent Technologies), and 
a 5975C mass selective detector (Agilent Technologies, 
CA). An injector volume of 1.0 μL was injected into a split/
splitless inlet at 250°C. Helium was used as the carrier gas 
with a constant flow rate of 1.0 mL/min. A fused silica 
capillary column of 5% phenylmethylpolysiloxane phase 
(DB-5, Agilent Technologies) with dimensions 30 m × 0.25 
mm i.d. × 0.25 μm film thickness was used for analysis. 
The auxiliary, MS source, and MS quad temperatures 
were set to 280, 230, and 150°C, respectively. The mass 
range was 50–700 Da, and data were obtained in full scan 

mode. Electron impact ionization mode, with ionization 
energy of 70 eV and a split ratio of 1:10, were used for 
GC-MS detection. The initial oven temperature was set to 
70°C and was programmed to increase to 190°C (at 5°C/
min) and then 240°C (at 6°C/min), and finally 280°C (at 
5°C/min). The metabolites were identified by comparison 
of mass spectra with those of NIST-Wiley Mass Spectra 
Library, Human Metabolome Database (HMDB; http://
www.hmdb.ca/), and Golm metabolome Database (GMD; 
gmd.mpimp-golm.mpg.de/).

Lipid analysis

Lipid extracts were analyzed in positive and negative 
ion modes via nanoESI-MS using a linear ion-trap mass 
spectrometer (LTQ-XL, ThermoFisher Scientific, San 
Jose, CA) equipped with an automated nanoinfusion/
nanospray source (TriVersa NanoMateSystem, Advion 
Biosciences, Ithaca, NY). The spray parameters were 
set with a gas pressure of 0.2 psi and ionization voltage 
applied at 1.2 kV for positive and negative ion modes. The 
ion source was controlled using Chipsoft 8.3.1 software 
(Advion Biosciences). Aliquots (30 μL) were loaded into 
a 96-well plate, which was placed on a Nanomate cooling 
plate set to 4°C and 10 μL of each sample was infused into 
a mass spectrometer via an Advion ESI chip with 5.5 μm 
(inner diameter) emitter nozzles.

Full-scan spectra were collected in mass-to-charge 
ratio (m/z) ranges of 400–1200 and 500–1300, for positive 
and negative ion modes, respectively. The mass spectra of 
each sample were acquired in profile mode over a 2 min 
period. The capillary temperature was set to 200°C; the 
capillary and tube-lens voltages were set to 32 V and 95 
V, respectively, in positive ion mode, and to –41 V and 
–93 V in negative ion mode. The target automatic-gain-
control values for full MS and multistage MS were 30,000 
and 1,000, respectively. MS/MS was applied to pooled 
samples for identification of lipid species. The normalized 
collision energy was set to 35%, with an isolated width 
of 1.5 m/z units and a charge state of 1. The dynamic 
exclusion parameters were a repeat duration of 60 sec, 
exclusion duration of 60 sec, and an exclusion list size 
of 50.

Lipid species were identified based on the MS/MS 
spectra of an authentic reference and an in-house MS/MS 
library. In addition, databases of Lipidmaps (http://www.
lipidmaps.org/) and LipidBlast were used to match with 
spectra.

Data acquisition and processing

The raw data files (*.raw) of lipids acquired from 
analyzed samples were converted into *.mzXML format 
using Proteo Wizard MSConvert [42]. Then, mass spectra 
were processed with Expressionist MSX software (version 
2013.0.39, Genedata, Basel, Switzerland). The spectra 
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scans were averaged and then spectrum smoothing, m/z 
alignment, and baseline subtraction were performed. 
Then, the data matrices were exported from Expressionist 
MSX as Excel files. For the relative quantification of 
metabolomes and lipidomes, relative levels of metabolites 
and lipids were calculated by dividing the peak intensity 
of the internal standard (PE 17:0/17:0) by the total protein 
content.

Fold changes, Student’s t-tests (at a threshold of 
p <0.05), and pathway analysis were assessed using 
MetaboAnalyst (version 3.0; http://www.metaboanalyst.
ca), a web-based software tool for metabolomics analysis. 
Significant differences were evaluated by a one-way 
analysis of variance (ANOVA) with a Tukey’s post-hoc 
test using SPSS software (version 21, IBM, Somers, 
NY) and different letters indicate statistically significant 
differences between samples. The level of statistical 
significance was set at p <0.05.

For multivariate statistical analysis, partial least-
squares discriminant analysis (PLS-DA) and partial 
least-squares projection to latent structures (PLS) 
regression (PLSR) were performed using SIMCA-P+ 
software (version 13.0, Umetrics, Umeå, Sweden) 
using mean-centered and unit variance-scaled data. The 
PLSR model was validated using the following steps: (i) 
cross-validation to assess the predictive power with Q2Y 
(predicted variation, or goodness of prediction) and R2Y 
(explained variation, or goodness of fit); (ii) response 
permutation testing to assess the statistical significance 
of the estimated predictive power with an R2Y intercept 
and Q2Y intercept on the validation plots; and (iii) external 
validation to test predictive performance by importing the 
lipid profiles of unknown samples [16].
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