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ABSTRACT
The recurrence of breast cancer (BC) is a serious therapeutic problem, and the 

risk factors for recurrence urgently need to be identified. In this study, we examined 
the functional pathways in tumor and normal tissues to more comprehensively 
identify biomarkers for the risk of BC recurrence. We collected tumor and normal 
tissue gene expression profiles of recurrent BC patients and non-recurrent BC patients 
from the TCGA database.We derived an expression interval (mean ± 1.96SD) based 
on non-recurrent patients rather than a single value, such as a mean or median. If the 
expression of a gene was significantly different from its normal expression interval, 
it was considered a differentially expressed gene. Eight pathways that significantly 
distinguished recurrent and non-recurrent BC patients were obtained based on 65% 
accuracy, and these pathways were all associated with the immune response and 
sensitivity to drugs. The genes in these eight pathways were also used to analyze 
survival, and the significance level reached 0.003 in an independent dataset (p = 0.02 
in tumor and p = 0.03 in normal tissue). Our results reveal that the integration 
of tumor and normal tissue functional analyses can comprehensively enhance the 
understanding of BC prognosis.

INTRODUCTION

Breast cancer (BC) is a highly heterogeneous 
disease with different clinical manifestations. Although 
some patients can benefit from adjuvant systemic 
therapies, a substantial proportion of BC patients have 
poor therapeutic outcomes [1]. After chemotherapy, 
many patients develop adverse consequences of heavy 
metal poisoning, which decrease the success rate of 
therapy [2], and how to identify patients suitable for 
chemotherapy remains a challenge in the field. Many 
clinical and pathological factors are currently employed 
to predict the prognosis of patients, such as the Gallen 
guidelines [3], the National Institutes of Health guidelines 
[4], the Nottingham Prognostic Index guidelines [5] and 
the computer program Adjuvant! [6]. However, most 
of these prognosis factors rely on changes in the status 
of the patient’s tumor, such as changes in the tumor 
diameter, axillary lymph node status, histologic grade, 
estrogen receptor (ER) status and progesterone receptor 

(PR) status [7]. Several other cancer studies have found 
that precancerous tissue dysfunctions are associated 
with cancer prognosis, and these abnormal functions are 
often related to protective antitumor immunity [8]. In 
addition, the early identification of precancerous normal 
tissue damage may provide better prognosis biomarkers 
[9, 10]. To this end, Ye M and Herszényi L considered the 
difference and uniformity between the precancerous and 
cancer statuses.Activated leukocyte cell adhesion molecule 
(ALCAM) has been identified as a novel potential 
molecular marker of gastric cancer. Ye M analyzed the 
serum soluble ALCAM (sALCAM) in large numbers of 
patients with gastric cancer, patients with precancerous 
lesions, and controls. The expression of ALCAM mRNA 
in different disease status was significantly different 
[11]. Herszényi L found that proteolytic enzymes play a 
major role not only in colorectal cancer (CRC) invasion 
and metastasis but also in the malignant transformation 
of precancerous lesions into cancer [12]. This finding 
indicates that the precancerous and cancer statuses may 
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share common mechanisms that may influence prognosis. 
these findings show that precancerous and cancer status 
have not only differences in expression level but also 
uniformity in predicting prognosis Therefore, only 
considering the characteristics of cancer and ignoring 
precancerous characteristics is insufficient to predict 
prognosis. However, the studies combining these two 
statuses at the functional level to systematically assess 
cancer prognosis are rare. Therefore, we herein utilized 
both tumor and normal tissue from recurrent BC patients 
and from non-recurrent BC patients, identificated 
differentially expressed genes of precancerous normal 
tissue and tumor tissue between two patient groups and the 
biological processes affected by these genes. Finally, the 
utility of these genes to predict prognosis was evaluated. 

Because breast cancer is highly heterogeneous, 
even in the patients with the same phenotype (such as 
good or poor outcome), these tumors also significantly 
exist differences at the molecular level. Due to this 
sample heterogeneity, genes that are only specifically 
expressed in small number groups are often not identified 
using traditional statistical methods, such as the t-test, 
Mann–Whitney test or the Significance Analysis of 
Microarrays (SAM) approach [13]. To identify DEGs 
between groups and genes that are specifically expressed 
in small number groups, we propose a new algorithm that 
uses the range of the expression levels in non-recurrent 
BC patients as a reference instead of comparing the mean 
expression levels between groups. Randomization was 
used to identify specific genes that were only altered in 
subgroups and reflect individual recurrence risk. 

Thus, we used the randomization method to 
identify genes that express significantly beyond the 
normal interval.. We then identified pathways associated 
with recurrence risk in both normal and tumor tissues. In 
these pathways, patients with diverse prognosis present 
different functional level. We finally identified eight risk-
associated pathways based on a transcriptional profile 
analysis that were efficiently able to predict BC patients 
with different prognosis outcomes. The risk-associated 
genes were differentially expressed genes in the risk-
associated pathways. Calcium signaling, Gap junction, 
MAPK signaling and Jak-STAT signaling were obtained 
from tumor status, and explained the prognosis related 
functions in tumor therapeutic status.Tuberculosis, 
Salmonella infection, small cell lung cancer and influenza 
A were obtained in normal status study and showed the 
relationship between intrinsic genetic background and 
prognosis. Kaplan-Meier (K-M) survival curves indicated 
that patients without changes in risk-associated genes 
survived significantly longer than patients exhibiting 
changes. These findings demonstrate that the eight risk-
associated pathways and genes can efficiently distinguish 
patients with good prognosis and patients with poor 
prognosis to predict recurrence risk. Our results can be used 
to objectively evaluate the need for further chemotherapy.

RESULTS

Tumor tissue study

Differentially expressed gene analysis 

For each gene we calculated the value sum beyond 
normal interval based on good group, and obtained its 
probability distribution. The number of genes with a 
p value less than 0.05 is 3852 genes. After FDR correction, 
we obtained 3254 genes, including 1923 up regulated 
genes and 1331 down regulated genes. (Supplementary 
Table S1).

Comparing with the traditional method

We used the R package of the Limma method to 
analyze the expression profile of tumor tissue and then 
compared this profile with our results. Specifically, the 
Limma algorithm returned 2684 differentially expressed 
genes, 2097 of which were also identified using our 
method. The normal tissue profiles were also analyzed, 
and the Limma algorithm identified 4565 differentially 
expressed genes, 3875 of which were also identified by 
our method.

However, we found that some significant differential 
expressed genes identified by Limma, i.e., DCAF17 and 
C7orf46, did not remain differentially expressed after 
random perturbation, as shown in Figure 1. These genes 
were considered as significantly expressed due to the mean 
difference between the two groups (recurrent and non-
recurrent) of data. However, according to the expression 
levels distribution, we found that these genes still fluctuate 
in the normal range, even if they have a different mean 
value with the control group (non-recurrent).

ANK2 and DCAF17 were extracted in tumor tissue 
of patients with different prognosis.After a randomization 
process, ANK2 was identified as differentially expressed 
(P = 0.0012), but this gene was not identified by the 
Limma algorithm (P = 0.07). Viewing from the expression 
value distribution, in spite of similar mean values between 
two groups, some samples in the poor prognosis group 
showed significantly higher expression level than the 
normal range, which shows that ANK2 may be involved 
in personalized relapse mechanism. For gene DCAF17, it 
was considered to be significant differentially expressed 
genes (P = 0.002) by the Limma algorithm, but was not 
significant after the process of randomization (P = 0.07). 
Although DCAF17 has different mean values between 
the two groups, it still fluctuate within the normal range. 
Similar results were obtained in normal tissue study, such 
as C7orf46 and CTHRC1. In conclusion, for some specific 
genes that are differentially expressed in small groups, 
traditional methods cannot identify them although there 
are differences between the groups at the mean level. 
Moreover, genes exhibiting a significant difference in their 
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mean levels between groups but still remaining within the 
normal range were not supposed to be risky genes as well.

The hierarchical clustering analysis

To verify that the extracted DEGs can effectively 
differentiate between good and poor outcomes and 
whether groups of the same outcome can be further 
divided into subgroups, we applied the unsupervised 
hierarchical clustering analysis classification method.

We used all DEGs in the clustering analysis of 53 
BC tumor tissue samples, the results of which are shown 
in Figure 2

Figure 2A, 2B shows that 14 of 15 recurrent patients 
(poor prognosis) clustered in the same cluster. Namely, 93% 
of patients who experienced recurrence clustered together 
and significantly differed from patients who did not 
experience recurrence. This result showed that the obtained 
DEGs can predict prognosis in patients with BC. Notably, 
non-recurrent patients were also divided into two different 
subgroups. Group 1 contained 28 samples that exhibited the 
most significant difference from recurrent samples, which 
indicated the least risk of recurrence; Group 2 contained 
9 samples that were most similar to recurrent samples, 
indicating a higher risk of recurrence. Thus, patients in 
Group 2 were identified to be at risk for recurrence. 

Identification of risk-associated pathways

The hierarchical clustering analysis results show 
that the extracted DEGs can efficiently distinguish 
recurrent BC patients from BC patients. These genes may 
be involved in important biological functions that affect 
therapeutic outcomes. However, even patients with the 
same clinical phenotype exhibit disease heterogeneity. 
Moreover, the clustering analysis also identified different 
subgroups in the same group. These findings all indicate 
that functional level differences exist not only in patients 
with different prognoses but also in patients whose 
clinical signs are similar. To further analyze functional 
differences between patients whose risk of recurrence 
differs, we calculated the deviation score of 278 KEGG 
pathways using DEGs. Patients were classified according 
to the deviation scores based on up- or down-regulated 
DEGs (Supplementary Table S2). Finally, we selected 
four pathways with precision values greater than 65% 
as risk-associated pathways. These 4 pathways are listed 
in Table 1.

Because we also identified a small group of patients 
at risk for recurrence in the good prognosis group, we 
analyzed the relationship of these patients with those who 
had a different outcome. We show the performance of each 
pathway in Figure 3.

Figure 1: Identification of differentially expressed genes using our approach and traditional methods. The four genes 
that were not consistently identified using the traditional method and our method are listed. The horizontal axis represents samples, and the 
vertical axis represents gene expression. Samples on the left of the red line are from the poor prognosis group, and those on the right are 
from the good prognosis group. Pr and Pl represent the p value obtained by randomization and the Limma algorithm, respectively.
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The activity of these four risk-associated pathways 
significantly varied in both patients with a good 
prognosis and with a poor prognosis. Therefore, the four 
pathways can effectively identify the recurrent risk of BC 
recurrence, with a prediction accuracy exceeding 65%. 
Notably, nearly all patients at risk for recurrence were 
located in the middle of good and poor group patients. 
Even if at-risk patients do not experience recurrence, they 
resembled patients with a poor outcome at a functional 
level. When dysfunction of these risky pathway occurs, 
disease progression may happen on these risky patients. 

Except for the isolated fuzzy patients, the ratio of risky 
patients overlapped with intersected fuzzy samples was 
from 33% to 56%, which highlighted the use of functional 
pathway in distinguishing patients with diverse degree of 
recurrent risk.

To further identify the relationship of risk-associated 
pathways in normal status or tumor status, we searched 
for shared biological functions and activities. The function 
of inhibiting of apoptosis can be found in all of the 
four normal tissue related risky pathways. This finding 
indicated that apoptosis tends to be more inhibited in 

Figure 2: Cluster results for tumor and normal tissue samples. The good prognosis group indicates patients who did not 
experience recurrence, whereas patients in the poor prognosis group experienced recurrence. Groups 1 and 2 represent two subgroups of the 
good prognosis group in B; group 1 is marked in light blue, and group 2 is marked in dark blue. Groups 1, 2 and 3 represent three subgroups 
of the good prognosis group in D, and group 3 is marked in purple.

Table 1: Risk-associated pathways identified in tumor tissue
pathway precise1 precise2 fuzzy

hsa04020 calcium signaling pathway 0.79 0.8 10
hsa04540 Gap junction 0.79 0.73 9
hsa04010 MAPK signaling pathway 0.74 0.73 9
hsa04630 Jak-STAT signaling pathway 0.74 0.8 11

Precise1 and 2 are the precisions of the good and the poor prognosis groups, respectively. Fuzzy represents intersected or 
isolated patients.
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the nornal tissue of patients with poor outcomes than in 
other patients. The inhibition of apoptosis in normal cells 
leads to dysfunction due to aging and the accumulation 
of mutations, and the inhibition of tumor cell apoptosis 
results in aberrant cancer cell proliferation. Moreover, the 
four tumor status-related, risk-associated pathways also 
shared multiple biological functions, including apoptosis, 
proliferation, and the cell cycle. If the dysfunction in 
normal tissue represents the beginning of a loss of control, 
then blocking the cell cycle and activating proliferation 
may represent the associated process and consequence.

Construction of a classifier model that integrates 
risk-associated pathways

We integrated the risk-associated pathways derived 
from the tumor tissue analysis as features, and the random 
forest classifier reached an accuracy of 94%, as shown 
in Figure 4. This result demonstrated the effectiveness 
of the risk-associated pathways in identifying recurrence 
risk and generated an improved model compared with the 
use of a single risk-associated pathway. To intuitionally 
observe differences among patients at the pathway level, 

we utilized a 3D coordinate system to visualize the patient 
distribution, as shown in Figure 5.

Survival analysis based on risk-associated genes 
in an independent breast cancer dataset

We extracted a total of 60 risk-associated DEGs 
from the four risk-associated pathways as risky genes and 
compared the survival of patients exhibiting expression 
level changes in at least one of these genes to that of 
patients not exhibiting any changes in these levels. Thirty-
five genes were removed because they were not related 
with survival. The results of the survival analysis based on 
the remaining 25 genes are shown in Figure 6.

Normal tissue study

Analysis of differentially expressed genes

To further investigate whether the physiological 
differences at the functional level in precancerous tissue 
can affect therapeutic outcome, we also analyzed the 
transcriptional profiles of normal tissue in patients with 

Figure 3: Analysis of patient distribution based on risk-associated pathways in tumor tissue. The horizontal axis represents 
the pathway deviation score based on up-regulated genes; the vertical axis represents the pathway deviation score based on down-regulated 
genes. The good prognosis group marked in blue represents patients who experienced a good outcome; the poor prognosis group marked 
in green represents patients who experienced a poor outcome. At-risk patients are marked in red.
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Figure 4: ROC curve of the random forest classifier using risk-associated pathways from tumor tissue. Five-fold cross 
validation was used to evaluate the model performance. Each iteration is marked in a different color, and the average ROC curve is marked 
in black.

Figure 5: 3D graph of patient distribution based on risk-associated pathways in the tumor. Patients in the good and poor 
prognosis groups are marked in red and blue, respectively. The top three features were selected as axes, and each patient was mapped 
according to the values of these three features.
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good and poor prognoses. After FDR correction, we 
obtained 3134 genes, of which 1336 were up-regulated and 
1798 were down-regulated genes (Supplementary Table S3).

The hierarchical clustering analysis

The hierarchical clustering result using all 
DEGs is shown in Figure 2C, 2D. Specifically, 12 of 
16 patients who experienced recurrence were assigned 
to the same cluster, i.e., 75% of patients with recurrent 
BC differ from patients whose disease did not recur at 
the physiological level. In addition, the good prognosis 
group can be further divided into three subgroups 
(subgroup 1 is marked in light blue, subgroup 2 is 
marked in dark blue, and subgroup 3 is marked in 
purple). Subgroup1 contains 16 samples (15 from the 
good prognosis group and 1 from the poor prognosis 
group), subgroup 2 contains 18 samples (18 from 
the good prognosis group), and subgroup 3 contains 
11 samples (8 from the good prognosis group and 3 from 
the poor prognosis group). Patients in subgroups 1 and 
2 exhibited more apparent differences compared with 
the poor prognosis group, whereas patients in subgroup 
3 were most similar to patients from the poor prognosis 
group. Thus, patients in subgroup 3 are at a risk of 
recurrence even though they mostly experienced good 
outcomes 

Identification of risk-associated pathways

In nomor tissue, we also ranked the 278 pathways 
using DEGs according to their discrimination precision 
and we set 65% as threshold and got 4 pathways listed 
in Table 2 (Supplementary Table S4). The discrimination 
performance of each pathway is shown as in Figure 7.

These four pathways can effectively predict 
outcome. At-risk patients are marked in red and were 
much more similar to patients with a poor outcome than 
other patients in the good-outcome group. The overlap rate 
between at risk and fuzzy patients ranged from 29% to 
71%. These findings demonstrated that pathway activity 
also reflects significant differences in the normal tissues of 
patients. In other words, differences in normal tissue at the 
physiological level to some extent determine therapeutic 
outcome. 

Construction of a classifier model that integrates 
risk-associated pathways

The risk-associated pathways derived from the 
normal tissue analysis were also used to construct a 
classifier model. An accuracy of 91% was achieved after 
a five-fold cross validation, as shown in Figure 8. The 
patient distribution based on the top three pathways is 
shown in Figure 9.

Figure 6: Survival analysis of patients with BC expressing genes risk-associated pathways in the tumor. The blue curve 
represents the survival time of patients with BC not exhibiting changes in the 25 risk-associated genes. The red curve represents survival time 
of patients exhibiting changes in at least one of these genes. A P value of 0.02 indicates that a gene may serve as a biomarker to assess the 
risk of recurrence and survival time.
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Survival analysis based on risk-associated genes 
in an independent breast cancer dataset

We identified 12 DEGs in these four risk-associated 
pathways and compared the survival time of patients with 
BC who did and did not exhibit changes in the expression 
of these genes.

We obtained four risk-associated pathways 
from the analysis of tumor tissue. These pathways can 
effectively predict patients with different prognosis, 

which demonstrated that the dysregulation of these four 
pathways may affect biological processes that influence 
prognosis. Moreover, we analyzed normal tissue from 
patients and identified four new risk-associated pathways 
that had not been identified in our analysis of tumor tissue. 
We integrated the genes from both normal and tumor 
tissue analyses to assess survival, and the final significance 
reached 0.003, as shown in Figure 10. The survival 
analysis suggested a significant relationship between risk-
associated pathways and prognosis. Therefore, combining 

Table 2: Risk-associated pathways identified in normal tissue
pathway precise1 precise2 fuzzy

hsa05152 tuberculosis 0.74 0.75 8
hsa05132 Salmonella infection 0.67 0.69 13
hsa05222 small cell lung cancer 0.77 0.69 10
hsa05164 influenza A 0.79 0.62 11

Precise1 and 2 are the precision of the good and poor prognosis groups, respectively. Fuzzy represents intersected or isolated 
patients.

Figure 7: Analysis of patient distribution in normal tissue based on risk-associated pathways. The horizontal axis represents 
the pathway deviation score based on up-regulated genes; the vertical axis represents the pathway deviation score based on down-regulated 
genes. The good prognosis group marked in blue represents patients with a good outcome; the poor prognosis group marked in green 
represents patients with a poor outcome. At-risk patients are marked in red.
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Figure 8: ROC curve of the random forest classifier using normal risk-associated pathways. Five-fold cross validation 
was used to evaluate the model performance. Each iteration is marked in a different color, and the average ROC curve is marked in black.

Figure 9: 3D graph of the patient distribution based on risk-associated pathways in normal tissue. Patients in the good and 
poor prognosis groups are marked in red and blue, respectively. The top three features were selected as axes, and each patient was mapped 
according to the values of these three features.
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analyses of normal and tumor tissue characteristics is of 
great significance for systematical and comprehensive 
cancer research.

Classification of predictive models based on a 
cancer hallmark network framework 

Hallmarks of cancer depict the logical framework 
for conceptualizing the variety of neoplastic diseases. Over 
the past decades, the analysis on diversity of cancers based 
on the framework constructed by hallmarks had greatly 
promoted the understanding of occurrence, development 
and metastasis of different cancers. To discuss a recent 
idea of cancer hallmark network framework which is 
taking about constructing mechanism-based predictive 
models in cancer.We integrated risk-associated genes 
identified in normal and tumor tissue analysis and 
enriched to ten hallmarks [19] to finally obtaining specific 
hallmarks . We used an SVM classification model with 
the five-fold cross validation method to predict BC 
patients with recurrent risk and validate the performance 
of classification. The results are shown in Figure 11. The 
classification performance was highest for the integrated 
hallmark risk gene model, with an AUC of 92%. 

At p < 0.05, risk-associated genes expressed in normal 
tissue were significantly enriched in five hallmarks,that is 
Resisting Cell Death (RCA),Insensitivity to Antigrowth 

(IA), Limitless Replicative Potential (LRP),Self Sufficiency 
in Growth Signals (SSGS) and Sustained Angiogenesis 
(SA), whereas the significantly enriched hallmarks by risk-
associated genes expressed in tumor tissue were IA and 
SSGS (Supplementary Table S5). Based on the enrichment 
results,we found that the normal tissue obtained the most 
fundamental trait of cancer cells,RCA,IA and SSGS, 
which represented the underlying molecular mechanisms 
to sustain chronic proliferation, resist to cell death,and 
resist inhibitory signals that might prevent their growth 
[20]. while sustaining Angiogenesis represents underlying 
molecular mechanisms for angiogenesis ,which represents 
stimulating the growth of blood vessels to supply nutrients 
to tumors and evacuate metabolicwastes [20]. Namely, 
for the corresponding normal tissue of the patients with 
poor prognosis, it has lost its homeostasis due to loss the 
normal regulation to cell proliferation, differentiation and 
death under some tumorigenic factors,which made the 
normal tissue cells obtain the ability to survive without 
external environment stimulation, and angiogenesis ability 
for infinite differentiation cells to provide the necessary 
nutrients .That showes these hallmarks are related to 
preliminary stage of cancers [21, 22]. Therefore, “normal 
cells” exhibiting the above hallmarks will eventually 
develop into new cancer cells under certain conditions to 
result in recurrence even if the tumor was removed and the 
patient received adjuvant systemic therapy. 

Figure 10: Survival analysis integrating both normal and tumor pathway genes. We integrated the risk-associated genes from 
both normal and tumor tissues. Survival significantly differed between patients who did and did not exhibit changes in the expression levels 
of these genes (P = 0.003). This result suggests that integrating normal and tumor tissue analyses can better predict patient prognosis than 
an analysis of either status alone.
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DISCUSSION

Breast cancer is a highly heterogeneous cancer 
and treated with different therapy strategies based on its 
clinical immunohistochemical classification. However, as 
the number of patients experiencing resistance, recurrence 
and metastasis increases, increasing efforts have focused on 
the heterogeneity of breast cancer patients at the molecular 
level. In recent years, many studies have identified 
biomarkers related to the prognosis of breast cancer based on 
feature extraction, classifier, regression, and other statistical 
methods. However, most studies have relied on identifying 
common molecular features involved in the prognosis 
of patients at the pathological level and did not consider 
differences among breast cancer patients at the physiological 
level. We hypothesized that in addition to differences 
at pathological level in carcinoma tissue, physiological 

level differences in the normal tissue of patients may also 
contribute to the risk of recurrence or metastasis.

Considering the heterogeneity of breast cancer, we 
calculated the normal ranges of gene expression based 
on the levels measured in non-recurrent patients instead 
of comparing the mean expression levels between two 
groups. Using randomization, we identified specific 
genes that were only altered in subgroups and likely 
reflect individual recurrence risk by participating in the 
mechanisms of recurrence. Our method identified specific 
genes omitted by traditional methods. These genes may 
only be differentially expressed in small groups; thus, 
changes in these genes are usually less significant when 
compared to the mean values of background data. In 
addition, some genes whose mean expression levels 
differed between two groups according to traditional 
methods were also regarded as nonspecific genes because 

Figure 11: ROC curve of the SVM classification model using risk-associated genes in normal tissue ,tumortissue 
and both tissue. Each iteration is marked in a different color, and the average ROC curve is marked in black. (11A–11C) represents, 
respectively,the ROC curve of the SVM classification model using risk - associated genes from normal tissue, tomor tissue and integerated 
both tissues.
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they lacked significance after randomization. Although 
the mean expression levels of these genes differed 
between two groups, these levels fluctuated within normal 
ranges. A hierarchical cluster analysis showed that the 
genes we identified can effectively predict prognosis. 
Moreover, even patients with the same prognosis 
phenotype can also be subdivided into different subgroups, 
which demonstrated that our method can efficiently 
identify different risk-associated subgroups and reflect 
personalized characteristics.

We used both the normal and tumor tissues 
of patients with diverse outcomes for analysis and 
identified eight risk-associated pathways, all of which 
are related to immune regulation and drug response. Our 
findings demonstrate a remarkable relationship between 
risk-associated pathways and the prognosis of patients with 
BC in terms of both recurrence risk and survival time. The 
risk-associated pathways extracted from tumor and normal 
tissues mediate various biological functions. Mahmood 
M found that combining a calcium-channel blocker with 
an alternative delivery method for the anti-cancer drug 
reduced cellular resistance to chemotherapeutics [23]. 
Gielen PR showed that increasing gap junction protein 
expression in human glioma cells enhanced resistance to 
TMZ treatment [24]. Moreover, a number of cancer-related 
biological processes, such as the apoptosis of leukemic 
cells [25] and oxidative stress resistance [26], are mediated 
by the MAPK signaling pathway, and the hyperactivation 
of this pathway can cause drug resistance [27]. Becerra-
Díaz M highlighted the importance of the JAK-STAT 
signaling pathway in regulating drug susceptibility 
and resistance by studying mice deficient in STAT 
molecules [28]. The other four risk-associated pathways 
identified normal tissue are all involved in infection and 
inflammation, such as the intrinsic immune response 
[29–32]. Therefore, we speculate that both the intrinsic 
immune system in normal tissue and the drug response 
in tumor tissue can influence prognosis of patients with 
BC. Combining analyses of tumor and normal tissue can 
help to comprehensively identify cancer prognosis-related 
functions. Invaluable information may be missed when 
focusing on only on tumor or normal tissue. Specifically, 
survival analyses were much more significant when risk-
associated genes from both normal and tumor tissue were 
integrated compared with either single gene set alone. 

Intriguingly, the four pathways most significantly 
differed in normal tissue between the good and poor 
prognosis groups, and this difference was less significant 
in cancer tissues. Similarly, the four most significant 
pathways in cancer tissues were less significant normal 
tissue. This finding suggests that significant changes occur 
at both the physiological and pathological levels during 
malignant transformation. Certain genes or functions 
significantly differed in normal tissue based on patient 
outcomes, and these genes and functions were associated 
with the immune response, cell replication, drug sensitivity 

and other related functions. These genes and functions 
exhibit dysfunction during malignant transformation. 
Therefore, inherent differences at the physiological level 
are masked, and differences at pathological level are 
dominant. Thus, we speculate that significant differences 
in the genes and functions in normal tissue determine 
the inherent risk of cancer development, and differences 
in genes and functions in tumor tissue may explain the 
relationship between acquired dysfunction and recurrence. 
Combining the inherent and acquired risk factors for breast 
cancer recurrence may serve as a more comprehensive 
method for evaluating the prognosis of patients.

All four risk-associated pathways in normal tissue 
were involved in the inhibition apoptosis, which could 
be considered the first step of malignant transformation. 
Aging and the continuous accumulation of mutations 
result in the dysfunction of normal cells and even their 
transformation into tumor cells, which is followed 
blocking the cell cycle and activating proliferation in 
tumor tissue. Dysfunction in this second stage hinders 
the killing of cancer cells because of their increased 
proliferation, whereas normal cells are rendered fragile. 
This finding demonstrated the importance of identifying 
cancerous characteristics in normal tissue early. 
Specifically, the degree of apoptosis inhibition in normal 
tissue directly correlates with the risk of recurrence or 
drug resistance because normal cells are more fragile and 
easier to transform into tumor cells.

In addition to the risk of recurrence itself, we also 
evaluated prognosis based on the survival time to identify 
genetic biomarkers that can effectively assess recurrence 
and survival time. We used genes extracted from risk-
associated pathways analyze survival in patients with 
breast cancer based on mRNA data from TCGA. A KM 
survival analysis showed that the genes extracted from 
risk-associated pathways in normal tissue and tumor tissue 
can effectively predict survival time. These findings all 
demonstrated that patients with differentially expressed 
risk-associated genes have a distinctly shorter survival 
times than patients without any alterations in these 
genes. Assessing the risk of recurrence can objectively 
identify the value of chemo- or radiotherapy to patients 
to ultimately provide a personalized rational therapeutic 
schedule, which consequently reduces the side effects of 
radiation and chemotherapy and improves the cure rate.

Classification based on risk-associated pathways 
also identified fuzzy samples that exhibited intersection 
or isolation. These patients failed to be classified into 
any group based on risk-associated pathways. The 
emergence of these fuzzy samples (isolation) was partly 
due to differences in personalized gene expression and 
bifurcation point data, which are usually difficult to 
distinguish. The other type of fuzzy sample (intersection) 
exhibited significant overlap with at-risk patients in the 
clustering analysis. Moreover, age, gender, and health 
background may also impact feature extraction and 
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classification. Thus, our future work will integrate more 
patient data and prognosis-related features to provide a 
more comprehensive prediction method. 

MATERIALS AND METHODS

Breast cancer patient data

We selected 53 breast cancer (BC) samples that 
had transcriptional information for both normal tissue 
and tumor tissue from the TCGA database. According 
to clinical data, the samples were divided into the good 
prognosis group without recurrence (38) and the poor 
prognosis group, in which disease recurred (15). An 
independent dataset containing mRNA data from 526 BC 
patients was used to analyze survival time [14]. The 
cBioPortal database was used to generate a K-M Survival 
curve using risk-associated genes [15].

Differential expressed gene analysis

We standardized the expression profiles. To 
eliminate inherent variations in gene expression, we 
used the Z-score correction method [16]. We defined the 
good prognosis group as the control group, and the poor 
prognosis group as the case group.

A normal interval was calculated based on the 
distribution of expression values in the good prognosis 
group (means ± 1.96 standard deviations). Gene 
expression outside the normal interval may result in a 
poor outcome. For a gene G, the number of patients in the 
good prognosis group is n1, the number of patients in the 
poor prognosis group is n2, and an initial score for G is 
calculated using the following formula:
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X2i is the expression value of the ith patient in the poor 
prognosis group, and Xmax and Xmin are two extreme 
values for the normal interval. Based on the sum of 
the expression of gene G outside the normal interval in 
poor prognosis group, the initial score of gene G can be 
calculated.

After initial score of G was obtained, all samples 
were randomly permutated, and samples with the 
number n1 were randomly allocated to the good 
prognosis group, whereas the remaining n2 samples 
were allocated to the poor prognosis group. A new 
random score was obtained using this formula, and 
the above process was repeated 10000 times. After 
permutation, the gene score background distribution can 

be translated into P values; genes with a P < 0.05 were 
considered DEGs.

The hierarchical clustering analysis

To prove that the DEGs we identified not only 
predict prognosis but also characterize the individual 
characteristics of small subsets of patients, we used 
the DEGs in the poor prognosis group to conduct a 
hierarchical cluster analysis of all samples. Furthermore, 
the cluster performance was assessed according to the 
sample label (good or poor outcome) of samples in 
each cluster. Expression profile data were filtered and 
standardized. The filtering process selected genes that 
are expressed in at least 80% of the sample with standard 
deviations greater than 1. The normalization of both genes 
and the sample relied on the median standardization 
center method, and the similarity matrix was based on the 
correlation-centered method. The cluster 3.0 software was 
used for standardization and hierarchical clustering [17].

Risk-associated pathway identification

We downloaded 278 pathways from the KEGG database 
and assigned a score for each pathway based on the 
DEGs. Abnormal pathway function is not only reflected 
in the gene expression but also in the loss of balance in 
a pathway [18]. To identify pathway dysfunction due to 
imbalance, we calculated the pathway deviation score 
using up- and down-regulated genes. For pathway P, 
the number of up-regulated genes was N1, the number 
of down-regulated genes was N2, and the score vector 
T = (U, D) can be obtained using formula 2 for sample S.
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For a pathway P, U is the deviation score obtained 

using up-regulated genes, and D is the deviation score 
obtained using down-regulated genes. Xi is the gene 
expression value in sample S, μ is the mean value in the good 
prognosis group, and T is the score vector for sample S.

Finally, we obtained a score vector matrix of 53278 
entries. The identification of risk-associated pathways, 
which can effectively distinguish between two groups of 
samples, is beneficial for early diagnosis and predicting 
prognosis. We first found the geometric center of 
samples in the good and poor prognosis groups and then 
classified each sample according to its distance from each 
geometric center. In this study, the geometric center, O, 
was calculated using the score vector of samples in same 
group, and the radius, R, was then assigned. The circle 
centered on O with radius R had to include at least 80% of 
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samples in the same group. Specifically, 80% was set as 
the threshold to consider the heterogeneity among samples 
and prevent outliers. We then calculated the classification 
accuracy according to the percentage of correctly 
classified/predicted samples, as shown in Figure 12.

The classification accuracy was evaluated based 
on the proportion of observed samples in all predicted 
samples. Samples circled in red were classified as fuzzy 
(fuzzy sample) and included two types of samples, 
intersection and isolation. To ensure the accuracy of the 
diagnosis, these fuzzy samples were not assigned to any 
group. The top four pathways with an average accuracy 
exceeding 65% were considered risk-associated pathways.

Building a classifier model that integrates  
risk-associated pathways 

We proposed an original method to evaluate 
the ability of each risk-associated pathway to predict 
outcome. We then integrated these risk-associated 

pathways to build an efficient classifier model using 
the random forest algorithm. Five-fold cross validation 
was used to evaluate the model efficiency, and the top 
three pathway features were used as axes in the 3D 
visualization analysis.

Recognition of diagnosis biomarkers based  
on risk-associated pathways

We extracted DEGs from risk-associated pathways, 
which can act as biomarkers to effectively identify patients 
at a high risk of recurrence. However, only predicting the 
risk of recurrence is insufficient to evaluate therapeutic 
outcomes because the survival time is another important 
evaluation criterion. Thus, we compared the survival time 
of 526 patients with BC from the TCGA dataset who did 
and did not exhibit changes in risk-associated pathway 
genes. To optimize and screen for significant biomarkers, 
genes that did not influence the survival analysis p value 
were removed.

Figure 12: Classification of samples based on functional pathway. Blue and green points represent two types of samples. The 
horizontal and vertical axes represent the pathway score calculated using up- and down-regulated genes, respectively. The blue and orange 
circles were constructed based on the geometric center and the radius, respectively, of each group. 
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