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ABSTRACT

The purpose of this study was to investigate the molecular background of cerebral 
blood volume (CBV) and vessel size (VS) of capillaries in glioblastoma multiforme 
(GBM). Both parameters are derived from extended perfusion MR imaging.

A prospective case study including 21 patients (median age 66 years, 10 females) 
was performed. Before operation, CBV and VS of contrast enhancing tumor were 
assessed. Tissue was sampled from the assessed areas under neuronavigation 
control. After RNA extraction, transcriptional data was analyzed by Weighted Gene 
Co-Expression Network Analysis (WGCNA) and split into modules based on its network 
affiliations. Gene Set Enrichment Analysis (GSEA) identified biological functions or 
pathways of the genetic modules. These were applied on 484 GBM samples of the 
TCGA database.

Ten modules were highly correlated to CBV and VS. One module was exclusively 
associated to VS and highly correlated to hypoxia, another one exclusively to CBV 
showing strong enrichments in the Epithelial Growth Factor (EGF) pathway and 
Epithelial-to-Mesenchymal-Transition (EMT). Moreover, patients with increased CBV 
and VS predominantly showed a mesenchymal gene-expression, a finding that could 
be corroborated by TCGA data.

In conclusion, CBV and VS mirror different genetic pathways and reflect certain 
molecular subclasses of GBM.

INTRODUCTION

In recent years, a field of research came to the 
fore that aims at correlating different genetic imprints of 
glioblastoma multiforme (GBM) with certain imaging 
traits in Magnetic Resonance (MR) imaging. Diehn et 
al. described different “radiogenomic” MR imaging 
traits corresponding to specific gene expression patterns 
[1]. For example, contrast enhancement correlated with 
genes belonging to a hypoxia gene set, containing genes 

such as VEGF, Serpine, ADM or PLAUR. Tumors with an 
increased expression of genes associated with proliferation 
had a severe mass effect. Two subtypes were identified to 
have a specific clinical impact: patients with an infiltrative 
imaging pattern had a worse outcome in comparison to 
patients with an edematous appearance. Between both 
groups, typically mesenchymal and proneural genes 
(OLIG1, OLIG2, SOX6) were differently expressed. 
Furthermore, an enrichment of gene sets of CNS 
development and developmental functions were described 
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in the infiltrative subtype. These findings suggest a higher 
fraction of stem cells in the infiltrative subgroup.

Jamshidi et al. 2010 used the same radiogenomic 
features for an extended molecular analysis, and added 
expression datasets and copy number variants to find 
specific pathway correlations [2]. LTBP1 and RUNX3 
were identified in the contrast-enhancing subtype and 
CHI3L1 was significantly higher expressed in a subgroup 
associated with a subventricular zone involvement. 
Two recently published studies showed a connection 
between hyper-perfusion of GBM and EGFR expression 
or EGFRvIII mutation [3, 4]. By using MR perfusion 
weighted imaging, an increased cerebral blood volume 
(CBV) was reported in tumors with EGFR amplification, 
PTEN deletion, and normal unmethylated O-6-
methylguanine-DNA methyltransferase (MGMT) [5]. 
Jain et al. showed an impaired overall survival in GBM 
with increased CBV. The utilization of the molecular sub-
classification of Verhaak [6] improved this connection, 
but a difference of CBV between the molecular 
subclasses could not be found [7]. The CBV is calculated 
from dynamic susceptibility contrast imaging (DSC). An 
extension of this method allows calculating the size of 
the capillaries within a range of 10 – 150 μm [8]. Kellner 
et al. described a strong correlation between histological 
vessel size in biopsy specimen and vessel size perfusion 
imaging [9]. Kickingereder et al. identified a decrease 
of CBV in IDH-mutated patients [10]. In a set of 73 
patients with low grade and anaplastic gliomas, the IDH-
mutations status could be correctly predicted by CBV 
in 88%. This study was based only on CBV data and 
IDH sequencing of 73 patients, whereas an expression 
analysis without CBV estimation had been performed 
on 288 patients from the cancer genome atlas (TCGA) 
[10]. A study by Barajas et al. revealed a different genetic 
clustering of contrast and non contrast-enhancing tumor 
by CBV-guided biopsies in a set of 13 GBM [11]. So 
many genetic observations there are about CBV, so few 
can be found on the vascular marker “vessel size” (VS). 
Thus, the purpose of this study was to identify specific 
genetic profiles and corresponding pathway activation 
or deactivation associated with the perfusion parameters 
VS and CBV by an integrative analysis of genetic and 
perfusion data. The identified genes were to be applied 
on 484 TCGA data sets for validation.

RESULTS

In Figure 1, MR images and perfusion maps of two 
patients with low and high perfusion parameters are given. 
Detailed data on the patients is given in Table 1.

Genetics of the study samples

Weighted Gene Co-Expression Network Analysis 
(WGCNA) of the whole array dataset identified 36 

modules. A cluster of cluster analysis of these modules 
is shown in Figure 2. VS and CBV, although thought 
to be both dependent on tumor vascularization, were 
surprisingly clustered in different branches. The difference 
between the molecular backgrounds of both perfusion 
parameters was subject of further analysis.

Five modules could be identified as being 
significantly correlated with CBV and VS, respectively, 
Supplementary Figure S1. Those modules with the most 
exclusive and highest correlation coefficient for each 
parameter were taken into further consideration. A module 
called “royal blue” for CBV had a correlation coefficient 
of r = 0.78, p = 6E-50, another one called “pink” for VS 
had a correlation coefficient of r = 0.57, p = 2.3 E-51. 
To characterize these modules, a pre-ranked permutation 
based GSEA was performed, Figure 3A-3D.

As shown in Figure 3A, module royal blue was 
highly correlated to CBV, whereas the correlation with VS 
was less pronounced (r = 0.53, p = 1.2E-18). The royal 
blue module showed its strongest association to EGF and 
EMT pathways in the GSEA (Supplementary Table S1). 
Gene sets of EGF up-regulation [12] and EMT [13] were 
enriched with a pFWER< 0.01, Figure 3B.

The pink module was strongly correlated to VS (r = 
0.57, p = 2.3E-51), but not to CBV (r = 0.25, p = 9.9E-10). 
The pink module showed its strongest association with 
hypoxia pathways in the GSEA, Figure 3C. Nine hypoxia 
gene sets were enriched with a pFWER < 0.01, Figure 3D.

In the royal blue module, ARAF and TRAF were 
identified as hub-genes, Figure 4A. ARAF takes part of 
the RAS-MAPK pathway being activated by EGF/EGFR 
activation and supporting invasiveness of gliomas [14, 
15]. The TRAF-family also activate the MAPK-pathway 
and takes part in angiogenesis [16]. For the pink module, 
HIF1A and BNIP3L could be identified as hub-genes, 
Figure 4B. HIF1A is a well-known regulator of hypoxia 
related pathways [17]. BNIP3L has been described as a 
regulator of hypoxia in conditions of DNA damage [18]. 
This transcription factor is regulated by methylation and 
interacts with the MEPK/ERK pathway [19].

Unsupervised clustering of the CBV correlated 
genes revealed a separation into two clusters (heatmap 
in the upper row, Figure 5A). In the first (blue) cluster, 
mean CBV was 8.7 ± 1.4 [ml/100ml tissue], in the second 
(brown) cluster CBV was 5.1 ± 1.2 [ml/100ml tissue], 
pcorr<0.01. In the cluster with high CBV, predominantly 
patients of the mesenchymal GBM subgroup were 
present, whereas in the cluster with low CBV, except for 
one case, only patients of the proneural GBM subgroup 
could be identified. Additionally, a Wilcoxon model 
confirmed a significant connection of high CBV values 
and the mesenchymal subgroup (p<0.05). The heatmap 
in the lower row displays the enrichment of angiogenesis 
pathway activation in each patient (Single Sample Gene 
Set Enrichment Analysis, ssGSEA). Angiogenesis genes 
were strongly enriched in the high CBV cluster.
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Applying the same procedure for the VS correlated 
genes also resulted in two clusters (heatmap of the upper 
row, Figure 5B). In the first (red) cluster mean VS was 
101.9 ± 7.98 [μm] in the second (gray) cluster VS was 
67.36 ± 9.33 [μm], pcorr<0.01. The cluster with high VS 
contained predominantly patients of the mesenchymal 
GBM subgroup, the one with low VS those of the 
proneural GBM subgroup. This effect was statistically 
significant (p<0.05). Three patients with IDH 1 mutation 
were distributed over all clusters. ssGSEA scores of 
hypoxia pathway enrichment is shown in the bottom row. 
Patients belonging to the high VS cluster exhibited a 
strong enrichment of hypoxia pathway genes.

Comparison with the TCGA validation group

Modules royal blue and pink were validated in the 
TCGA database to confirm the findings described above. 
Hierarchical clustering of genes contained in the CBV 
related module royal blue showed five different cluster-
groups. One out of five was significantly associated with 
the proneural-, another with the mesenchymal-subgroup, 
Figure 6A. Survival analysis of both groups showed no 
significant differences, Figure 6B. Hierarchical clustering 

of genes contained in the VS related module pink showed 
three different cluster-groups, Figure 6C. Cluster-group I 
contained patients with mesenchymal tumors, while cluster-
group II was associated to a proneural signature and IDH 
mutation. Survival analysis of both cluster-groups showed a 
significantly superior overall-survival (Cluster I: 294 days CI-
95% 270-350, Cluster I: 384 days CI-95% 221-737, p=0.023) 
for patients with low expression of VS related genes, Figure 
6D. In addition, a validation of CBV and VS correlated genes 
(Figure 5) is given in the Supplementary Description.

DISCUSSION

This study aimed for a direct genetic description of 
specific expression profiles and pathways being related to 
CBV and VS, which has only been performed by indirect 
analysis in the literature so far [10]. A further aim was 
to identify gene modules being exclusively correlated to 
CBV or VS. Both parameters derive from MR perfusion 
imaging and are thought to reflect the vascularization of 
brain tumors. An integrative analysis of transcriptome 
profiling and imaging parameters was used to identify 
differences. The gene sets found for both parameters were 
applied on 484 TCGA samples for further validation.

Figure 1: Examples of MR imaging. A. 63 year-old female patient with a GBM in the right parietal lobe. A FLAIR hyperintense tumor 
with perifocal edema (top left) with rim-like contrast enhancement and a small central necrosis (top right) is present. The map of vessel 
size, VS, (bottom left) does not show any increased vessel size. On the CBV map (bottom right) only a shadowy increase of the CBV can 
be depicted at the rim of the tumor (whitw arrow). B. 76 year-old male patient with a GBM in the left temporal lobe. There is a FLAIR 
hyperintense tumor with perifocal edema (top left) with a thick area of contrast enhancement and a central necrosis (top right). The map of 
VS (bottom left) reveals increased vessel sizes on the anterior and posterior edges of the tumor (yellow arrows). On the CBV map (bottom 
right) a strong increase of CBV can be depicted predominantly at the anterior and medial rim of the tumor (red arrow). Both examples show 
that the VS and CBV calculations result in different non-concordant values in different tumor regions supporting the assumption that both 
parameters reflect different phenomena of tumor vascularization. The color-bars indicate CBV [ml/100ml tissue] or VS [μm].
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Table 1: Summarized data of all included patients

Sample IDH1-R132H VS [μm] CBV 
[%]

Expression 
Subgroup

Age Sex

BT_Pat_1 wt 103 9 Proneural 65 male

BT_Pat_2 wt 46 2 Proneural 47 female

BT_Pat_3 wt 80 6 Proneural 41 female

BT_Pat_4 wt 80 6 Mesenchymal 55 female

BT_Pat_5 wt 77 6 Proneural 84 female

BT_Pat_6 wt 91 11 Mesenchymal 65 female

BT_Pat_7 wt 76 6 Classical 74 female

BT_Pat_8 wt 102 8 Classical 47 female

BT_Pat_9 wt 52 6 Proneural 63 female

BT_Pat_10 wt 83 5.5 Neural 75 male

BT_Pat_11 wt 99 10 Mesenchymal 78 male

BT_Pat_12 wt 108 8 Mesenchymal 76 male

BT_Pat_13 mut 43 4 Proneural 66 male

BT_Pat_14 wt 58 4 Proneural 79 male

BT_Pat_15 wt 117 7 Mesenchymal 76 male

BT_Pat_16 mut 90 6 Proneural 66 male

BT_Pat_17 wt 72 7 Proneural 61 female

BT_Pat_18 wt 74 5 Proneural 64 male

BT_Pat_19 wt 110 11 Mesenchymal 69 female

BT_Pat_20 mut 103 9 Proneural 77 male

BT_Pat_21 wt 96 7 Mesenchymal 42 male

Figure 2: WGCNA cluster of clusters. cluster of clusters analysis of modules generated by weighted gene co-expression analysis 
of genome wide expression analysis. High correlation values are indicated by red, negative correlations by blue colour. CBV and VS 
associated modules are clustered in differed branches.
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Cerebral blood volume

CBV was highly correlated to modules showing a 
significant enrichment of the EGF pathway. In a further 
network analysis ARAF/TRAF were identified as hub-
genes of the highest correlating module (royal blue). 
ARAF is a part of the RAS-MAPK pathway. The RAS-
MAPK activation in different cancers is a well-known 

pathway that supports tumor proliferation, migration and 
invasiveness [20–23]. TRAF belongs to the TNF-signal-
cascade and affects EGF pathway by NFkB [16]. In a 
recent study, Kickingereder et al, 2015 [10] described a 
strong association between CBV and IDH mutation. IDH 
mutated tumors had significant lower CBV values than 
IDH wild-type tumors. On consecutive TCGA analysis, 
IDH wild type tumors showed higher enrichment for 

Figure 3: CBV and VS Specific modules. A. Scatter plot of intramodule connectivity (module royal blue) correlated with CBV (top) 
and VS (bottom) vectors. B. Enrichment plot (GSEA) of module royal blue. EGF-Pathway and Epithelial-to-Mesenchymal Transition are 
enriched in royal blue hub-genes. C. Scatter plot of intramodule connectivity (module pink) correlated with VS (top) and CBV (bottom) 
vectors. D. Enrichment plot (GSEA) of module pink and different hypoxia gene sets. Hub-genes of the pink module are highly enriched in 
different hypoxia genesets.

Figure 4: Network analysis. A. Network analysis of module royal blue. Genes marked in green display module-hub-genes. B. Network 
analysis of module pink. Genes marked in orange display module-hub-genes.
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hypoxia, angiogenesis and vasculogenesis gene sets than 
IDH mutant tumors. This lead to the hypothesis, that CBV 
mirrors this genetic connection, even though transcriptome 
profiling data of patients with estimated CBV were not 
available. Our results on direct transcriptome profiling 
data, however, could show that higher CBV values were 
more associated to EGF signaling, a RAF/RAS pathway 
activation and epithelial to mesenchymal transition genes 
than to hypoxia.

Vessel-size

VS correlated genes showed a significant 
enrichment of hypoxia related genes. HIF1A and 
BNIP3L were identified as hub-genes in the highest 
correlating module (pink). HIF1A, the hypoxia-
inducing factor, is a transcription factor up-regulated 
under hypoxic conditions. HIF1A binds to hypoxia 
responsive elements (HRE) and activates several genes 
like VGFR. This activation leads to abnormal vascular 
proliferation in gliomas [17, 24, 25]. So the vessel size 
(VS) estimated by MR perfusion imaging seems to 
represent the microvascular environment and abnormal 
vascular proliferation induced by HIF1A activity. The 
other identified gene was BNIP3L, known to be up-
regulated in conditions of hypoxia and simultaneous 

DNA damage [18, 26]. A hallmark of high-grade gliomas 
is the presence of genetic alterations, including gene 
mutations and DNA damage [27]. So, these results of 
the network analysis are in line with typical glioma 
associated pathways. Unsupervised clustering confirmed 
the association found between VS and hypoxia related 
genes.

Comparison with TCGA data

The replication of the CBV and VS derived 
clusters on the TCGA database corroborates our results. 
As shown on our own cohort, an assignment into 
mesenchymal and proneural signature was possible 
according to both measures of vascularization. These 
results are in-line with the findings of Jain et al., who 
could show a trend to a higher CBV in the classical and 
mesenchymal subclass than in the neural and proneural 
subclass [7, 28].

The IDH-mutation, another genetic factor, was 
predominantly present in one of three patient clusters of 
VS-correlated genes, which is to say hypoxia-associated 
genes. This is a finding that was also postulated by 
Kickingereder et al. [10]. The missing replication of this 
finding in our own cohort is most probably due to the low 
number of cases (only three IDH mutant tumors).

Figure 5: Cluster analysis of CBV and VS correlated genes. A. CBV-associated genes are clustered by Spearman’s rank 
correlation into two clusters. Bars below the heatmap describe IDH1-status and expression subgroup of each patient. The heatmap at the 
bottom shows different angiogenesis pathways and their enrichment in each patient. (yellow: high enrichment, blue: low enrichment) 
B. VS-associated genes are clustered by Spearman’s rank correlation into two clusters. Bars below the heatmap describe IDH1-status and 
expression subgroup of each patient. The heatmap at the bottom shows different hypoxia pathways and their enrichment in each patient. 
(yellow: high enrichment, blue: low enrichment).
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Figure 6: TCGA validation. A. Genes of module royal blue are extracted and clustered in an unsupervised way. Bars above the 
heatmap describe IDH1-mutation status and expression subgroup of each patient. Significance values for each cluster and associated 
genetic subgroups are given in a table below. B. Kaplan-Meier plot of cluster-group I and IV. No significant difference could be detected. 
C. Genes of module pink are extracted and clustered in an unsupervised way. Bars above the heatmap describe IDH1-mutation status and 
expression subgroup of each patient. Significance values for each cluster and associated genetic subgroups are given in a table below. 
Interestingly, patients with IDH mutation are predominantly found in the clusters with low expression levels. E. Kaplan-Meier plot of 
cluster-group I and II. Cluster-group II showed a significantly better survival.
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Limitations

The main limitation of this study is the small number 
of cases. This is the reason, why TCGA data was taken 
for further validation. Moreover, conservative statistical 
methods with corrections for multiple testing at each level 
of analysis were applied. Only family wise error corrected 
values are reported for the sake of robustness. The wide 
field of genetic and radiophenomic heterogeneity within 
GBM tumors was not addressed in this study, as only 
single tumor biopsies were taken in specific regions based 
on perfusion imaging. Therefore, findings of this study 
were to be construed as local radiogenomic results.

In conclusion, this study realized a radiogenomic 
mapping of glioblastoma multiforme by perfusion imaging 
parameters (CBV and VS) and genome-wide expression 
profiling. CBV is a better method to show angiogenesis 
and EGF pathway activation, whereas VS is more sensitive 
to detect hypoxia in GBM.

MATERIALS AND METHODS

Patients

Twenty-one patients (median age 66 years, range 
41 – 84 years, 9 females) with primary glioblastoma 
multiforme were prospectively included into this 
study. They underwent surgery at the Department of 
Neurosurgery between 2012 and 2014. The local ethics 
committee approved data evaluation, imaging procedures 
and experimental design (protocol 100020/09 and 
5565/15). The methods were carried out in accordance 
with the approved guidelines. Written informed consent 
was obtained from all patients.

Inclusion criteria were: (1) age older than 18 
years, (2) preoperative MRI with perfusion imaging, 
(3) intraoperative MRI-guided sampling of tumor tissue 
from contrast-enhancing tumor, (4) histopathological 
confirmation of a glioblastoma multiforme (WHO criteria).

Validation dataset of TCGA data

Publicly available Level 3 TCGA (https://tcga-
data.nci.nih.gov/tcga/) data was used for analysis. Data 
was downloaded at the UCSC Cancer Genome Browser. 
Only patients with full datasets were included. Expression 
analyses were based on Agilent array data (TCGA GBM 
G4502A) for high-grade glioma. Expression data was 
normalized and log2 transformed. Clustering and further 
analysis were performed in R-software designed pipeline 
as described in the WGCNA section.

Tissue collection and histology

Tumor tissue was sampled from contrast enhancing 
regions identified by intraoperative neuronavigation 
(Cranial Map Neuronavigation Cart 2, Stryker, Freiburg, 

Germany) during resection. The tissue was snap-frozen 
in liquid nitrogen immediately and processed for further 
genetic analysis. Tissue samples were fixed using 4% 
phosphate buffered formaldehyde and paraffin-embedded 
with standard procedures. H&E staining was performed 
on 4 μm paraffin sections using standard protocols. 
Immunohistochemistry was applied using an autostainer 
(Dako) after heat-induced epitope retrieval in citrate buffer. 
IDH1 mutation was assessed by immunohistochemistry 
using an anti-IDH1-R123H antibody (1:20, Dianova).

MR-imaging

MR imaging was performed on a 3T system 
(Magnetom TIM TRIO, Siemens, Erlangen, Germany) 
using a 12-channel head coil. The imaging protocol 
consisted of a 3D T2-weighted fluid attenuated sequence 
(repetition time (TR), 5,000ms; effective echo time (TEeff), 
388ms; inversion time (TI), 1,800 ms; flip angle, variable; 
pixel size; 1mm3), a 3D T1-weighted magnetization 
prepared rapid gradient echo sequence (TR, 1390ms; TE, 
2.15ms; TI, 800ms; flip angle, 15°; pixel size; 1mm3) 
was acquired before and after perfusion imaging with 
application of 17 ml 0.5 M Gadobenate Dimeglumin 
(Multihance ®, Bracco, Konstanz, Germany), followed by a 
chaser of 60 ml NaCl 0.9% solution for perfusion imaging, 
flow rate 3ml/s. Perfusion imaging consisted of 2D serial, 
single shot, double-echo readout echo planar imaging (EPI) 
sequences (TR, 2,000ms; TEGE, 21ms; TESE, 94ms, pixel 
size 2.5 x 2.5 x 5mm3) during bolus passage [9].

MRI post-processing

Perfusion data was processed by T1 leakage 
correction, estimation of the AIF, and calculation of the 
vessel size and the cerebral blood volume (CBV) as 
described by Kellner et al. and by the literature cited in 
there [11]. CBV was normalized to a whole brain median 
value of 3.2%, equal to the works of Jain et al. [7, 28].

Genome-wide expression analysis

RNA was prepared using the RNAeasy kit 
(Qiagen). An amount of 1.5 μg RNA was obtained for 
expression arrays analysis. Arrays were performed by 
human genome 2.0 chip (Affymetrix). Raw data was 
processed, normalized and controlled by R software and 
the Affymetrix R-package. Different expression analysis 
and statistical testing (pairwise t-test) were performed by 
limma R-package.

Weighted gene co-expression network analysis 
(WGCNA) and gene set enrichment analysis 
(GSEA)

WGCNA uses the topological overlapping 
measurement to identify corresponding modules. The 



Oncotarget11091www.impactjournals.com/oncotarget

WGCNA analysis is a robust tool for integrative network 
analysis and was used in several recent studies [29–31]. 
For the analysis, a signed network analysis with the 
power of 14 was used to fulfill all criteria of scaled free 
topology as described by Peter Langfelder. In addition, the 
branch-cutting algorithm (PAM) with a deep split of two 
was applied to the analysis. Each identified module was 
ordered in a “cluster of clusters”-analysis by unsupervised 
hierarchical clustering. Modules were characterized by 
their module eigengenes and intramodule connectivity. 
The intramodule connectivity was correlated to a VS and 
CBV vector, each. To characterize the correlating modules, 
a pre-ranked permutation based GSEA [32] was performed 
(full GSEA data are available in the Supplementary 
Table S1). Pre-ranked GSEA were performed with 1000 
permutations. P-values were calculated by familywise 
error rate (FWER) [33] which is a robust method for 
multiples testing. The Molecular Signatures Database 
version 5.0 was used including pathways gene sets (C2) 
(http://www.broadinstitute.org/gsea) as input database 
for this analysis. GSEA plots were visualized by limma 
R-package (barcodeplot function).

Networks were exported to Cytoscape 2.0 [34] for 
further visualization. The WGCNA integrated function 
(exportNetworkToCytoscape) was used to calculate a 
weighted network by its individual gene connectivity. 
This analysis identified specific networks for the pink 
and royal blue module as presented in Figure 4A and 4B. 
Hallmark genes of each module were characterized by 
their intramodule connectivity. These potentially important 
genes were defined as “hub-genes”. In addition a detailed 
description of WGCNA is given in Heiland et al., 2016 
[35].

Statistical analysis

For non-parametric testing a Wilcoxon model was 
performed. The significance level was determined with 
a p-value< 0.05 and a power of 90%. The Kaplan-Meier 
method was used to provide median point estimates and 
time-specific rates. The Hazard-Ratio (HR) was calculated 
by Cox-Regression tests. Statistical tests were performed 
in R including affiliated packages.

CONFLICTS OF INTEREST

The authors state no conflicts of interest.

REFERENCES

1. Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman 
M, Liang Y, Aldape K, Cha S, Kuo MD. Identification 
of noninvasive imaging surrogates for brain tumor gene-
expression modules. Proc Natl Acad Sci U S A. 2008; 105: 
5213–8. doi: 10.1073/pnas.0801279105.

2. Jamshidi N, Diehn M, Bredel M, Kuo MD. Illuminating 
radiogenomic characteristics of glioblastoma multiforme 
through integration of MR imaging, messenger RNA 
expression, and DNA copy number variation. Radiology. 
2014; 270: 1–2. doi: 10.1148/radiol.13130078.

3. Gupta  a, Young RJ, Shah  a D, Schweitzer  a D, Graber 
JJ, Shi W, Zhang Z, Huse J, Omuro  a MP. Pretreatment 
Dynamic Susceptibility Contrast MRI Perfusion in 
Glioblastoma: Prediction of EGFR Gene Amplification. Clin 
Neuroradiol. 2014; : 1–8. doi: 10.1007/s00062-014-0289-3.

4. Qiao XJ, Ellingson BM, Kim HJ, Wang DJJ, Salamon N, 
Linetsky M, Sepahdari AR, Jiang B, Tian JJ, Esswein SR, 
Cloughesy TF, Lai A, Nghiemphu L, et al. Arterial spin-
labeling perfusion MRI stratifies progression-free survival 
and correlates with epidermal growth factor receptor status 
in glioblastoma. AJNR Am J Neuroradiol. 2015; 36: 672–7. 
doi: 10.3174/ajnr.A4196.

5. Ryoo I, Choi SH, Kim J-H, Sohn C-H, Kim SC, Shin HS, 
Yeom JA, Jung SC, Lee AL, Yun TJ, Park C-K, Park S-H. 
Cerebral blood volume calculated by dynamic susceptibility 
contrast-enhanced perfusion MR imaging: preliminary 
correlation study with glioblastoma genetic profiles. PLoS 
One. 2013; 8: e71704. doi: 10.1371/journal.pone.0071704.

6. Verhaak RGW, Hoadley K a, Purdom E, Wang V, Qi Y, 
Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov 
JP, Alexe G, Lawrence M, O’Kelly M, et al. Integrated 
genomic analysis identifies clinically relevant subtypes of 
glioblastoma characterized by abnormalities in PDGFRA, 
IDH1, EGFR, and NF1. Cancer Cell. Elsevier Ltd; 2010; 
17: 98–110. doi: 10.1016/j.ccr.2009.12.020.

7. Jain R, Poisson L, Narang J, Gutman D, Scarpace L, 
Hwang SN, Holder C, Wintermark M, Colen RR, Kirby 
J, Freymann J, Brat DJ, Jaffe C, et al. Genomic mapping 
and survival prediction in glioblastoma: molecular 
subclassification strengthened by hemodynamic imaging 
biomarkers. Radiology. 2013; 267: 212–20. doi: 10.1148/
radiol.12120846.

8. Kiselev VG, Strecker R, Ziyeh S, Speck O, Hennig J. Vessel 
size imaging in humans. Magn Reson Med. 2005; 53: 553–
63. doi: 10.1002/mrm.20383.

9. Kellner E, Breyer T, Gall P, Müller K, Trippel M, 
Staszewski O, Stein F, Saborowski O, Dyakova O, Urbach 
H, Kiselev VG, Mader I. MR evaluation of vessel size 
imaging of human gliomas: Validation by histopathology. 
J Magn Reson Imaging. 2015; 42: 1117–25. doi: 10.1002/
jmri.24864.

10. Kickingereder P, Sahm F, Radbruch A, Wick W, Heiland S, 
Deimling A von, Bendszus M, Wiestler B. IDH mutation 
status is associated with a distinct hypoxia/angiogenesis 
transcriptome signature which is non-invasively predictable 
with rCBV imaging in human glioma. Sci Rep. 2015; 5: 
16238. doi: 10.1038/srep16238.

11. Barajas RF, Phillips JJ, Vandenberg SR, McDermott MW, 
Berger MS, Dillon WP, Cha S. Pro-angiogenic cellular 
and genomic expression patterns within glioblastoma 



Oncotarget11092www.impactjournals.com/oncotarget

influences dynamic susceptibility weighted perfusion 
MRI. Clin Radiol. 2015; 70: 1087–95. doi: 10.1016/j.
crad.2015.03.006.

12. Nagashima T, Shimodaira H, Ide K, Nakakuki T, Tani Y, 
Takahashi K, Yumoto N, Hatakeyama M. Quantitative 
transcriptional control of ErbB receptor signaling undergoes 
graded to biphasic response for cell differentiation. J Biol 
Chem. 2007; 282: 4045–56. doi: 10.1074/jbc.M608653200.

13. Jechlinger M, Grunert S, Tamir IH, Janda E, Lüdemann 
S, Waerner T, Seither P, Weith A, Beug H, Kraut N. 
Expression profiling of epithelial plasticity in tumor 
progression. Oncogene. 2003; 22: 7155–69. doi: 10.1038/
sj.onc.1206887.

14. Walker F, Kato A, Gonez LJ, Hibbs ML, Pouliot N, Levitzki 
A, Burgess AW. Activation of the Ras/mitogen-activated 
protein kinase pathway by kinase-defective epidermal 
growth factor receptors results in cell survival but not 
proliferation. Mol Cell Biol. 1998; 18: 7192–204.

15. Vitucci M, Karpinich NO, Bash RE, Werneke AM, 
Schmid RS, White KK, McNeill RS, Huff B, Wang S, 
Van Dyke T, Miller CR. Cooperativity between MAPK 
and PI3K signaling activation is required for glioblastoma 
pathogenesis. Neuro Oncol. 2013; 15: 1317–29. doi: 
10.1093/neuonc/not084.

16. Zhang J, Peng B. In vitro angiogenesis and expression 
of nuclear factor kappaB and VEGF in high and low 
metastasis cell lines of salivary gland Adenoid Cystic 
Carcinoma. BMC Cancer. 2007; 7: 95. doi: 10.1186/ 
1471-2407-7-95.

17. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, 
Van Meir EG. Hypoxia and the hypoxia-inducible-factor 
pathway in glioma growth and angiogenesis. Neuro Oncol. 
2005; 7: 134–53. doi: 10.1215/S1152851704001115.

18. Fei P, Wang W, Kim SH, Wang S, Burns TF, Sax JK, Buzzai 
M, Dicker DT, McKenna WG, Bernhard EJ, El-Deiry 
WS. Bnip3L is induced by p53 under hypoxia, and its 
knockdown promotes tumor growth. Cancer Cell. 2004; 6: 
597–609. doi: 10.1016/j.ccr.2004.10.012.

19. An H-J, Lee H, Paik S-G. Silencing of BNIP3 results from 
promoter methylation by DNA methyltransferase 1 induced 
by the mitogen-activated protein kinase pathway. Mol Cells. 
2011; 31: 579–83. doi: 10.1007/s10059-011-0065-z.

20. Penman CL, Faulkner C, Lowis SP, Kurian KM. Current 
Understanding of BRAF Alterations in Diagnosis, 
Prognosis, and Therapeutic Targeting in Pediatric Low-
Grade Gliomas. Front Oncol. 2015; 5: 54. doi: 10.3389/
fonc.2015.00054.

21. Hussain MRM, Baig M, Mohamoud HSA, Ulhaq Z, Hoessli 
DC, Khogeer GS, Al-Sayed RR, Al-Aama JY. BRAF gene: 
From human cancers to developmental syndromes. Saudi J 
Biol Sci. 2015; 22: 359–73. doi: 10.1016/j.sjbs.2014.10.002.

22. Das G, Shiras A, Shanmuganandam K, Shastry P. Rictor 
regulates MMP-9 activity and invasion through Raf-
1-MEK-ERK signaling pathway in glioma cells. Mol 
Carcinog. 2011; 50: 412–23. doi: 10.1002/mc.20723.

23. Bhattacharya D, Chaudhuri S, Singh MK, Chaudhuri S. 
T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR 
activation and Raf/MEK/ERK pathway in brain endothelial 
cells restraining angiogenesis in glioma model. Exp Mol 
Pathol. 2015; 98: 455–66. doi: 10.1016/j.yexmp.2015.03.026.

24. Joseph J V, Conroy S, Pavlov K, Sontakke P, Tomar T, 
Eggens-Meijer E, Balasubramaniyan V, Wagemakers M, 
den Dunnen WFA, Kruyt FAE. Hypoxia enhances migration 
and invasion in glioblastoma by promoting a mesenchymal 
shift mediated by the HIF1α-ZEB1 axis. Cancer Lett. 2015; 
359: 107–16. doi: 10.1016/j.canlet.2015.01.010.

25. Harris AL. Hypoxia--a key regulatory factor in tumour 
growth. Nat Rev Cancer. 2002; 2: 38–47. doi: 10.1038/
nrc704.

26. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, 
Pouysségur J, Mazure NM. Hypoxia-induced autophagy 
is mediated through hypoxia-inducible factor induction of 
BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 
2009; 29: 2570–81. doi: 10.1128/MCB.00166-09.

27. Van Meir EG, Hadjipanayis CG, Norden AD, Shu H-K, 
Wen PY, Olson JJ. Exciting New Advances in Neuro-
Oncology. CA Cancer J Clin. 2010; 60: 166–93. doi: 
10.3322/caac.20069.

28. Jain R, Poisson LM, Gutman D, Scarpace L, Hwang SN, 
Holder CA, Wintermark M, Rao A, Colen RR, Kirby 
J, Freymann J, Jaffe CC, Mikkelsen T, et al. Outcome 
prediction in patients with glioblastoma by using 
imaging, clinical, and genomic biomarkers: focus on the 
nonenhancing component of the tumor. Radiology. 2014; 
272: 484–93. doi: 10.1148/radiol.14131691.

29. Langfelder P, Horvath S. WGCNA: an R 
package for weighted correlation network 
analysis. BMC Bioinformatics. 2008; 9: 559. doi: 
10.1186/1471-2105-9-559.

30. Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer 
N, Wes PD, Möller T, Orre M, Kamphuis W, Hol EM, Boddeke 
EWGM, Eggen BJL. Induction of a common microglia 
gene expression signature by aging and neurodegenerative 
conditions: a co-expression meta-analysis. Acta Neuropathol 
Commun. 2015; 3: 31. doi: 10.1186/s40478-015-0203-5.

31. Iancu OD, Colville A, Oberbeck D, Darakjian P, 
McWeeney SK, Hitzemann R. Cosplicing network analysis 
of mammalian brain RNA-Seq data utilizing WGCNA 
and Mantel correlations. Front Genet. 2015; 6: 174. doi: 
10.3389/fgene.2015.00174.

32. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, 
Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub 
TR, Lander ES, Mesirov JP. Gene set enrichment analysis: 
a knowledge-based approach for interpreting genome-wide 
expression profiles. Proc Natl Acad Sci U S A. 2005; 102: 
15545–50. doi: 10.1073/pnas.0506580102.

33. Benjamini Y, Hochberg Y. Controlling the false discovery 
rate: a practical and powerful approach to multiple testing. 
Journal of the Royal Statistical Society. 1995. p. 289–300. 
doi: 10.2307/2346101.



Oncotarget11093www.impactjournals.com/oncotarget

34. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, 
Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a 
software environment for integrated models of biomolecular 
interaction networks. Genome Res. 2003; 13: 2498–504. 
doi: 10.1101/gr.1239303.

35. Heiland DH, Mader I, Schlosser P, Pfeifer D, Carro 
MS, Lange T, Schwarzwald R, Vasilikos I, Urbach H, 

Weyerbrock A. Integrative Network-based Analysis of 
Magnetic Resonance Spectroscopy and Genome Wide 
Expression in Glioblastoma multiforme. Sci Rep. 2016; 
6: 29052. doi: 10.1038/srep29052.


