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ABSTRACT
Lung cancer is the most common cause of cancer death in China. We characterized 

metabolic alterations in lung cancer using two analytical platforms: a non-targeted 
metabolic profiling strategy based on proton nuclear magnetic resonance (1H-NMR) 
spectroscopy and a targeted metabolic profiling strategy based on rapid resolution 
liquid chromatography (RRLC). Changes in serum metabolite levels during oncogenesis 
were evaluated in 25 stage I lung cancer patients and matched healthy controls. We 
identified 25 metabolites that were differentially regulated between the lung cancer 
patients and matched controls. Of those, 16 were detected using the non-targeted 
approach and 9 were identified using the targeted approach. Both groups of metabolites 
could differentiate between lung cancer patients and healthy controls with 100% 
sensitivity and specificity. The principal metabolic alternations in lung cancer included 
changes in glycolysis, lipid metabolism, choline phospholipid metabolism, one-carbon 
metabolism, and amino acid metabolism. The targeted metabolomics approach was 
more sensitive, accurate, and specific than the non-targeted metabolomics approach. 
However, our data suggest that both metabolomics strategies could be used to detect 
early-stage lung cancer and predict patient prognosis.

INTRODUCTION

Cancer is a life-threatening disease characterized 
by abnormal cellular growth. The risk of cancer increases 
with age, exposure to environmental carcinogens, and an 
unhealthy lifestyle [1, 2]. Despite decades of research, 
cancer is still a leading cause of death. This can be 
explained in part by the lack of sensitive early screening 
tests, diagnosis at a late stage, and the metastatic behavior 
of tumors. The 5-year survival rate is more than 90% for 
patients with stage I disease. Treatment is often curative 
if lesions are detected at a pre-malignant stage. However, 
the survival rates are poor if tumors are detected at an 
advanced stage [3–5]. Although early diagnosis can 
improve survival rates, most cancer-related symptoms do 
not manifest until advanced stages. This leads to delays in 
diagnosis and treatment. Thus, new diagnostic techniques 
and methods for predicting prognosis are required.

Lung cancer is the leading cause of cancer-related 
deaths in China. There were approximately 1.8 million 
individuals worldwide who were diagnosed with lung 
cancer in 2012. Interestingly, more than one-third of these 
cases were diagnosed in China [6]. The survival rates 
for lung cancer are 56%, 34%, 10%, and 2% for stage I, 
II, III, and IV disease, respectively [7–8]. Over the past 
decade, there have been significant advances in the field 
of metabolomics. Metabolomics is a complementary 
approach to genomics and proteomics. It is a rapidly 
emerging field focused on comprehensive profiling of all 
small molecular weight metabolites in biofluids, tissues, 
and cells using nuclear magnetic resonance (NMR) 
spectroscopy, gas chromatography-mass spectrometry, 
and liquid chromatography-mass spectrometry [9]. 
Metabolomics offers unique insights into the regulation 
of small-molecule metabolites and the signaling 
pathways underlying various biological processes [10].  
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For example, metabolomics approaches have been used to 
identify cancer biomarkers and the metabolites/metabolic 
pathways that regulate tumor progression [11–15]. 

Metabolomics approaches can be targeted or 
non-targeted. Targeted metabolomics refers to the 
quantitative measurement of a select group of metabolites 
(e.g. amino acids, lipids, sugars, and/or fatty acids) 
in order to investigate specific metabolic pathways or 
to validate biomarkers identified using non-targeted 
metabolic profiling [16]. Targeted approaches require 
a priori knowledge of metabolites of interest and known 
compounds, are based on metabolite-specific signals, 
and do not achieve global coverage [17]. In contrast, 
non-targeted metabolomics approaches involve global 
profiling of the metabolome. This approach is typically 
employed in hypothesis-generating studies such as 
biomarker discovery, where comprehensive metabolite 
identification is generally not the goal [18]. Thus, non-
targeted metabolomics often provides more information 
than targeted metabolomics, but targeted metabolomics 
typically is more quantitative.

In this study, we focused on serum free amino 
acids (SFAAs) and used a targeted rapid resolution liquid 
chromatography (RRLC)-based quantitative metabolomics 
approach to elucidate metabolic alterations during 
lung cancer progression. We also used a non-targeted 
proton nuclear magnetic resonance (1H NMR)-based 
metabolomics approach. The goal of this pilot investigation 
was to verify the ability of our metabolomics approach to 
identify metabolic changes during lung cancer progression. 
We also compared the diagnostic and predictive power of 
both the targeted and non-targeted approaches.

RESULTS

Clinical characteristics of the study population

A total of 25 patients including 15 (60.0%) men 
and 10 (40.0%) women (mean age 51.2 ± 10.6 years) 
with stage I lung cancer and 25 sex- and age-matched  
healthy controls (mean age 49.5 ± 8.2 years, 15 men, 
10 women) were included in the metabolomics analysis. 
The characteristics of the patients at baseline are shown 
in Table 1. All patients and healthy controls were non-
smokers. All patients were diagnosed with stage Ia (≤ 2 cm) 
or Ib (> 2 cm to ≤ 3 cm) lung cancer (9 of the cases were 
adenosquamous carcinoma, 12 were adenocarcinoma, and 
4 were small cell lung carcinomas) by low-dose computed 
tomography (LDCT) and computed radiography (CR). 

Non-targeted metabolomics analysis by 1H NMR

1H NMR analysis

Representative 1H NMR spectra from serum samples 
corresponding to a healthy control and a lung cancer 

patient are shown in Figure 1. Metabolites were assigned 
according to in-house databases, published literature  
[19–23], and the Human Metabolome Database (HMDB, 
http://www.hmdb.ca/). The 1H NMR spectra primarily 
contained resonances from lipids, glucose, amino 
acids, and other organic acids. Choline phospholipid 
metabolites including choline, phosphocholine, and 
glycerophosphocholine, as well as ketone bodies such as 
β-hydroxybutyrate and acetoacetate were also detected. 
Other assigned metabolites included N-acetyl glycoprotein, 
trimethyl-amine N-oxide (TMAO) and betaine. 

A comparison of the 1H NMR spectra between 
the lung cancer patients and corresponding healthy 
controls revealed distinct spectral changes. For example, 
an increase in lactate (visible at 1.33 and 4.13 ppm), 
ketone bodies (acetoacetate [visible at 2.23 ppm], and 
β-hydroxybutyrate [visible at 1.19 ppm]), and a decrease 
in lipids and glucose (visible at 5.23 [α-glucose] and  
4.68 ppm [β-glucose], respectively) were observed. An 
increase in tyrosine levels and a decrease in alanine levels 
were also observed in the lung cancer patients compared 
to the healthy controls.

Multivariate statistical analysis

PCA revealed a clear separation between the 
lung cancer patients and healthy controls (Figure 2A). 
The supervised OPLS-DA score plot (Figure 2B) also 
showed a separation between the lung cancer patients 
and healthy controls. The cumulative R2Y and Q2 were 
0.891 and 0.796, respectively, when one PLS component 
and one orthogonal component were analyzed. No over-
fitting was observed based on the results of permutation 
tests (Figure 2C, the R2 Y-intercept was 0.379 and the 
Q2-intercept was −0.171). 

Differences in metabolites between lung cancer 
patients and healthy controls

Variables from the OPLS-DA model with a VIP 
> 1 and an independent sample t-test (p < 0.05) were 
classified as differentially regulated metabolites that 
could discriminate between patients in the lung cancer 
and control groups. We identified 16 metabolites that 
were potential diagnostic biomarkers for early-stage 
lung cancer (Table 2). Increased levels of lactate, 
ketone bodies (acetoacetate and β-hydroxybutyrate), 
and several amino acids including glutamate, glutamine, 
histidine, and tyrosine were detected in lung cancer 
patients compared to healthy controls. Decreased levels 
of glucose (α- and β-glucose), lipids, unsaturated lipids, 
phospholipids intermediates (choline, phosphocholine, 
and glycerophosphocholine), TMAO, and betaine were 
observed in lung cancer patients compared to healthy 
controls. 
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Targeted metabolomics analysis by RRLC

RRLC analysis of SFAAs

The protocols for identification of the 23 SFAAs, 
including the sample preparation and RRLC analysis, were 
performed as described previously [24]. Validation studies 
of the linearity, precision, stability, and recovery of the 
method (Supplementary Table S1) indicated it was reliable. 
The concentrations of 23 SFAAs in lung cancer patients 
and healthy controls are shown in Supplementary Table S2.

Multivariate statistical analysis

The PCA (Figure 3A) showed a clear separation 
between the lung cancer and control groups. Lung cancer 
patients were also separated from the healthy controls by 
the OPLS-DA score plots (Figure 3B). Permutation tests 
consisting of 100 permutations demonstrated that the model 
was not over-fitted (Figure 3C, R2 Y-intercept was 0.255 
and Q2 -intercept was −0.352). CV-ANOVA indicated that 
the differences between the lung cancer and control groups 
were statistically significant (p = 6.75 × 10−25).

Figure 1: Representative 1H-NMR spectra of serum samples from a healthy control (A) and a lung cancer patient (B). 
(δ 6.6−8.9 ppm were expanded 8 times).

Table 1: Clinical characteristics of 25 patients with lung cancer
Subjects Percent (%)

Gender
male 60
female 40

Age
40 ~ 50 52
50 ~ 60 32
> 60 16

Pathologic type
adenosquamous carcinoma 36
Adenocarcinomas 48
small cell carcinomas 16

Pathologic staging
Ia 76
Ib 24
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Differentially regulated amino acids between lung 
cancer patients and healthy controls

We selected 9 amino acids with VIP values > 1 and 
p < 0.05 as differentially regulated amino acids between 
lung cancer patients and healthy controls. The names of 
these amino acids and associated metabolic pathways 
are shown in Table 3. Our data indicated that the levels 
of aspartate, asparagine, glutamate, glutamine, cysteine, 
isoleucine, and leucine were higher, while the levels of 
methionine and tyrosine were lower, in serum samples 
from lung cancer patients compared to controls.

Metabolic pathway analysis of the differentially 
regulated metabolites 

Based on our knowledge of the differentially 
regulated metabolites and an online database of metabolic 
pathways (Kyoto Encyclopedia of Genes and Genomes, 
http://www.genome.jp/kegg/), a map of lung cancer-
related metabolic pathways was constructed (Figure 4). All 
of the differentially regulated metabolites were included 
in the analysis in order to obtain a global view of tumor 
metabolism and assess metabolic changes during lung 
cancer progression. The normalized levels are shown next 
to the chemical names. Several metabolic pathways were 

altered in lung cancer patients. These pathways included 
glycolysis (“Warburg effect”) as well as lipid, choline 
phospholipid (Kennedy pathway), one-carbon, and amino 
acid metabolism. These pathways are altered in many 
cancers and are associated with oncogenesis and tumor 
progression. 

Diagnostic accuracy of differentially regulated 
serum metabolites

The diagnostic accuracy of the differentially regulated 
metabolites, which were identified using non-targeted and 
targeted metabolic profiling, was investigated using the 
external cross-validation methods described above. The 
results indicated that both OPLS-DA models could correctly 
predict all lung cancer patients and healthy controls (100% 
sensitivity and specificity) (Figure 5A and 5B). Thus, non-
targeted and targeted metabolomics-based approaches can 
be used to diagnose lung cancer. 

DISCUSSION 

We evaluated the metabolomics profiles of lung 
cancer patients. Both 1H NMR-based non-targeted and 
RRLC-based targeted metabolic profiling revealed clear 

Figure 2: PCA (A), OPLS-DA (B), and permutation tests (C) of 1H NMR-based non-targeted metabolic profiling. 
(Healthy controls, ◆; Lung cancer patients, ◇).
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differences between lung cancer patients and healthy 
controls. These results suggested that both approaches 
could be used to investigate metabolic changes associated 
with early-stage lung cancer. 

Comparison between the non-targeted and 
targeted metabolomics approaches

We assessed whether the two different metabolomics 
approaches could detect changes in circulating metabolites 
in lung cancer patients compared to healthy controls. First, 
we used a non-targeted 1H NMR-based metabolomics 
approach to characterize the serum metabolic profiles of 
lung cancer patients and healthy controls. Non-targeted 
1H NMR-based metabolomics analysis can be used 
to simultaneously measure hundreds of endogenous 
metabolites. It requires minimal sample preparation, 
allows for rapid and nondestructive sample collection, 
and displays high repeatability and reproducibility. 
We also used an RRLC-based targeted metabolomics 
approach to analyze SFAAs and develop a more accurate 
and simplified classification model. SFAA profiling is a 

promising approach because SFAAs have essential roles 
in metabolism. Additionally, the concentrations of SFAAs 
are influenced by metabolic variations induced by specific 
diseases such as cancer. 

PCA and OPLS-DA were performed to determine 
whether the two methods could distinguish between 
lung cancer patients and controls. The R2 and Q2 values 
obtained from both the PCA and OPLS-DA demonstrated 
that the RRLC-based targeted metabolomics strategy had 
better classification and predictive ability than the 1H 
NMR-based non-targeted strategy. Metabolic profiling of 
serum samples using both approaches yielded a total of 
25 differentially regulated metabolites (16 were identified 
using the non-targeted and 9 were identified using the 
targeted approach). In the external cross-validation, 
both sets of differentially regulated metabolites could 
accurately predict all the test samples from lung cancer 
patients and healthy controls, with 100% sensitivity and 
specificity. We determined that the targeted metabolomics 
strategy was more sensitive, accurate, and specific than 
the non-targeted approach, which was more global and 
systemic. 

Table 2: Differentially regulated metabolites identified from 1H NMR-based non-targeted metabolic 
profiling

Metabolites Chemical shift (ppm) and 
multiplicitya

Variations versus healthy 
controlsb Metabolic pathways

LDL/VLDL 0.88(bs), 1.30(bs) ↓
Lipid metabolism

Unsaturated lipids 5.32(bs) ↓
b-hydroxybutyrate 1.20(t) ↑ Ketogenesis, 

Lipid metabolismAcetoacetate 2.25(s) ↑
α-Glucose 5.23(d) ↓

Glycolysisβ-Glucose 4.68(d) ↓

Lactate 1.33(d)
4.13(q) ↑

Glutamate  2.02(m)
2.30(m) ↑

Glutamine/glutamate 
metabolism

Glutamine  2.10(m)
2.42(m) ↑

Tyrosine (Tyr) 6.89(d)
7.20(d) ↑ Tyrosine metabolism

Histidine (His) 7.05(s)
7.72(s) ↑ Histidine metabolism

Choline 3.22(s) ↓

choline phospholipid 
metabolism

Phosphocholine 3.25(s) ↓
Glycerophosphocholine 3.26(s) ↓
Betaine 3.27(s) ↓
TMAO 3.28(s) ↓

as, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad singlet. b↑ and ↓ indicate increased and decreased levels in 
lung cancer patients compared to healthy controls, respectively.
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Based on our results, we hypothesize that the  
non-targeted metabolomics approach is advantageous for 
the identification of additional differentially regulated 
metabolites, while the targeted approach is more 
quantitative and can provide better selectivity.

Systemic metabolic changes in the serum of lung 
cancer patients

The major metabolic alterations detected in lung 
cancer patients included an increase in serum ketone 
bodies (acetoacetate and β-hydroxybutyrate) and lactate, 
as well as decreased levels of glucose (β-glucose and 
α-glucose), lipids, unsaturated lipids, choline phospholipid 
metabolites (glycerophosphocholine, phosphocholine, 
and choline), TMAO, and betaine. Most amino acids 
including glutamine, glutamate, asparagine, aspartate, 
tyrosine histidine, cysteine, isoleucine, and leucine were 
elevated in the serum of lung cancer patients. In contrast, 
the levels of tryptophan and methionine were reduced in 
these patients.

As expected, a significant decrease in serum glucose 
and an increase lactate were observed in lung cancer 
patients. Cancer cells preferentially maintain a high rate 
of aerobic glycolysis even in the presence of adequate 

oxygen. This leads to increased lactate production, which 
is known as the “Warburg effect”. The “Warburg effect” 
is a common phenomenon in a variety of tumors [25]. 
Cancer cell growth is energy-dependent. Therefore, the 
most obvious explanation for increased glycolysis in 
cancer metabolism is a rapid requirement for ATP. This is 
particularly evident under hypoxic conditions [26]. 

Lipid dysregulation is another common metabolic 
alteration in cancer. Lipid metabolism contributes to the 
regulation of many cellular processes such as growth, 
proliferation, differentiation, survival, and apoptosis. Lipid 
metabolism can alter the composition and permeability 
of the cell membrane, which can promote disease 
development and progression (including carcinogenesis) 
[27, 28]. Consistent with previous studies, the levels of 
serum lipids including low density lipoprotein (LDL), 
very low density lipoprotein (VLDL), and unsaturated 
lipids were reduced in lung cancer patients. This may be 
explained by the fact that cancer cells required excess 
lipids for growth, proliferation, redox homeostasis, 
invasion, and metastasis. 

Decreases in lipid levels in blood were accompanied 
by increases in the levels of two ketone bodies 
(β-hydroxybutyrate and acetoacetate) in lung cancer 
patients. The levels of these ketone bodies can increase 

Figure 3: PCA (A), OPLS-DA (B), and permutation tests (C) of RRLC-based targeted metabolic profiling. (Healthy 
controls, ◆; Lung cancer patients, ◇).
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when acetyl-CoA derived from lipid β-oxidation exceeds 
the capacity of the TCA cycle [29]. This could also explain 
the decreased lipid levels and increased β-hydroxybutyrate 
and acetoacetate levels in the serum of lung cancer 
patients.

Abnormal choline phospholipid metabolism has 
been implicated in carcinogenesis and tumor progression. 
Alterations in choline phospholipid metabolism have 
been observed in many types of cancer [30, 31]. Choline 
participates in methylation reactions following oxidation 
to betaine (trimethylglycine), which is not only essential 
for the methionine/homocysteine cycle, but also plays a 

central role in choline-mediated one-carbon metabolism 
(it donates a methyl group for homocysteine remethylation 
to generate methionine and dimethylglycine). Choline can 
also undergo catabolism by intestinal bacteria to produce 
TMA (trimethylamine), which is further converted into 
TMAO [32]. Tumors usually exhibit altered choline 
phospholipid metabolic profiles compared to normal 
tissue, which are characterized by abnormally high 
levels of choline-containing compounds. This ultimately 
results in lower levels in blood. Consistent with previous 
studies, our data demonstrated lower levels of choline-
containing metabolites including choline, phosphocholine, 

Table 3: Differentially regulated amino acids identified from RRLC-based targeted metabolic 
profiling 

Metabolites Retention time (tR, min) Variations versus 
healthy controlsa Related metabolic pathways

Aspartate (Asp) 0.52 ↑
Asparagine/aspartate metabolism

Asparagine (Asn) 1.95 ↑
Glutamate (Glu) 0.75 ↑

Glutamine/glutamate metabolism
Glutamine (Gln) 2.09 ↑
Cysteine (Cys) 6.41 ↑

One-carbon metabolism
Methionine (Met) 6.71 ↓
Isoleucine (Ile) 7.27 ↑

Branched chain amino acids (BCAA) metabolism
Leucine (Leu) 7.44 ↑
Tryptophan (Trp) 7.35 ↓ Tryptophan metabolism

a↑ and ↓ indicate increased and decreased levels in lung cancer patients compared to healthy controls, respectively.

Figure 4: Metabolic network showing the differentially regulated metabolites. The normalized contents of each metabolite are 
shown next to the chemical name. Black and blue bar chart showing the normalized content in the healthy control and lung cancer groups, 
respectively.
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and glycerophosphocholine in the serum of lung cancer 
patients compared to healthy controls. Lung cancer 
patients also had lower levels of betaine and TMAO 
compared to controls. These results suggested that aberrant 
choline and one-carbon metabolism may contribute to 
carcinogenesis. 

The choline and one-carbon metabolism 
pathways intersect upon generation of methionine from 
homocysteine (Figure 4), which is then degraded to 
cysteine in the transsulfuration pathway. Methionine is 
an essential amino acid that has a critical role in cellular 
metabolism. It is a precursor to S-adenosylmethionine, 
which provides a key source of methyl groups in the 
cell [33, 34]. We detected lower methionine and higher 
cysteine levels in lung cancer patients compared to 
controls. These data provide evidence for aberrant 
one-carbon metabolism and increased homocysteine-
methionine conversion in lung cancer patients. 

In addition to glucose, glutamine is essential for 
cancer cell proliferation and survival. It is involved 
in anaplerosis as well as protein, lipid, and nucleotide 
synthesis. The requirement for glutamine depends on 
the energy demands of the cancer cells. The metabolism 
of glutamine begins with conversion of glutamine to 

glutamate by glutaminase or other amidases. Deamination 
of glutamate yields α-ketoglutarate, an intermediate in 
the TCA cycle. Glutamine thereby acts as an anaplerotic 
substrate and supports cell survival. Glutamine can be 
converted into aspartate, which in turn forms oxaloacetate, 
malate, and pyruvate through the TCA cycle [35, 36]. 
Aspartate is a biosynthetic precursor to asparagine, which 
is used for protein synthesis. We found that lung cancer 
patients had higher circulating concentrations of glutamine 
and glutamate compared to healthy controls. Additionally, 
the levels of the two nonessential amino acids produced 
from oxaloacetate (aspartate and asparagine) were 
elevated in lung cancer patients compared to controls. 
These data suggested that glutaminolysis (or glutamine 
catabolism) and aerobic glycolysis were increased in lung 
cancer patients. 

Our results demonstrated that the concentrations 
of circulating leucine and isoleucine were higher in lung 
cancer patients than healthy controls. Branched chain 
amino acids (BCAAs) have been associated with several 
types of cancer. These include isoleucine, leucine, and 
valine, which can regulate various signaling pathways 
such as protein synthesis, lipid synthesis, cell growth, and 
autophagy [37]. BCAAs are predominantly catabolized 

Figure 5: External cross-validation. (A) 1H NMR-based non-targeted and (B) RRLC-based targeted metabolic profiling. ◆ and ●, 
Healthy controls in the training and test sets, respectively; ◇ and ●, Lung cancer patients in the training and test sets, respectively.
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in skeletal muscle, which has high aminotransferase 
activity. The catabolism of BCAAs is important for 
amino acid synthesis (e.g. glutamine and alanine) [38]. 
Thus, upregulation of leucine and isoleucine in lung 
cancer patients could be explained by the energetic and 
proliferative needs of both the host and the tumor.

We observed lower tryptophan levels in lung cancer 
patients compared to healthy controls. In cancer cells, high 
2,3-dioxygenase activity results in increased conversion of 
tryptophan into kynurenine. This creates an environment 
that facilitates tumor growth through inhibition of T-cell 
proliferation and results in T-cell apoptosis and immune 
tolerance [39, 40]. Thus, metabolism of tryptophan via 
the kynurenine pathway may play a role in lung cancer 
etiology [41].

Lung cancer patients exhibited higher levels of 
tyrosine and histidine compared to healthy controls. 
Tyrosine is an important precursor to catecholamine 
neurotransmitters (dopamine, norepinephrine, and 
epinephrine), thyroid hormones, and melanin. It also 
promotes lipid metabolism. Histidine is a semi-essential 
amino acid and precursor of the neurotransmitter histamine. 
Histamine can induce cell proliferation and differentiation, 
and regulates both gastrointestinal function and the 
immune response. Our data indicate that impaired tyrosine 
and histidine metabolism results in an increase in the serum 
levels of these two amino acids in lung cancer patients. 

Our study had several limitations. First, the sample 
size was limited. Therefore, confirmatory studies are 
necessary. Since patients are generally diagnosed with 
advanced-stage lung cancer, stage I lung cancer serum 
samples are difficult to collect. We collected serum 
samples from patients with adenosquamous carcinomas, 
adenocarcinomas, and small cell lung carcinomas, and 
aimed to identify early multilevel markers of different lung 
cancer subtypes. In our ongoing work, we are focusing on 
each specific subtype and are collecting specimens from 
a larger cohort of patients. The study was also limited in 
that the RRLC-based targeted metabolomics approach 
restricted the panel of candidate markers and only focused 
on amino acid metabolic pathways. Therefore, we are 
currently establishing lipid-, sugar-, and fatty acid-based 
metabolomics approaches in order to test and verify the 
feasibility of targeted metabolomics strategies. Histidine 
and tyrosine were identified as differentially regulated 
metabolites based on the 1H NMR-based non-targeted 
metabolomics approach. However, these residues were not 
identified using the RRLC-based targeted metabolomics 
approach. This is because they had VIP values < 1 in 
the targeted approach. An increase in both amino acids 
was detected in lung cancer patients using the two 
metabolomics approaches (Supplementary Table S1). 
This is the major limitation of the 1H NMR-based non-
targeted metabolomics approach. Because of the relatively 
poor sensitivity, analysis of low-abundance metabolites is 
difficult.

MATERIALS AND METHODS 

Chemicals and reagents

Acetonitrile and methanol (High Performance 
Liquid Chromatography grade) were purchased from 
Merck. Deuterium oxide (D2O, 99.9%) and L-amino 
acids were purchased from Sigma-Aldrich. The 
2,4-Dinitrofluorobenzene (DNFB, analytical grade 
reagent) was purchased from Alfa Aesar. Ultrapure water 
was filtered using a Milli-Q water purification system.

Clinical sample collection

The study protocol was approved by the Ethics 
Committee of Shijiazhuang Huaguang Traditional 
Chinese Medicine Tumor Hospital and was performed 
in accordance with the Code of Ethics of the World 
Medical Association (Declaration of Helsinki) for 
experiments involving humans (http://www.wma.net/
en/30publications/10policies/b3/index.html). Written 
informed consent was obtained from all patients. Patients 
with stage I lung cancer who were treated at Shijiazhuang 
Huaguang Traditional Chinese Medicine Tumor Hospital 
and matched healthy volunteers were enrolled in the 
study. Cancer staging and classification were performed 
according to the American Joint Committee on Cancer 
(AJCC) and the updated Tumor Node Metastasis (TNM) 
cancer staging system of the International Union for 
Cancer Control (UICC). All subjects fasted overnight. 
Blood samples were collected from the antecubital vein 
in the morning pre-prandial. The samples were incubated 
at room temperature for 30 minutes to allow complete 
coagulation. Samples were then centrifuged at 3,000 
rpm for 10 min at 4°C. The supernatants (serum) were 
collected and frozen at −80 °C until analysis.

Non-targeted metabolomics analysis using 1H 
NMR

1H NMR

Serum samples from patients with stage I lung 
cancer and matched healthy controls were thawed and 
homogenized. A total of 200 μL D2O was added to 400 μL 
of serum and the mixture vortexed for 1 minute. The 
mixture was then centrifuged at 12,000 rpm for 5 min 
at 4°C. Finally, 550 μL of supernatant was transferred to 
5 mm NMR tubes for 1H NMR analysis.   

The 1H NMR experiments were performed using 
a Bruker AVANCE 600 spectrometer (Bruker BioSpin 
GmbH, Rheinstetten, Germany) equipped with a 5 mm 
TCI cryogenic probe and a 60 slot auto-sampler. One-
dimensional 1H NMR spectra of all samples were 
acquired at 298 K using the Carr-Purcell-Meiboom-
Gill (CPMG) spin echo pulse sequence with water  
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pre-saturation to suppress the water signal and a fixed 
total spin-spin relaxation delay time (2nτ) of 210 ms to 
filter out signals from proteins and other macromolecules. 
The sample sequence was random. A total of 64 transients 
were collected into 32,000 data points for each sample. 
The metabolite assignments for the 1H NMR spectra were 
verified and confirmed by 2D 1H-1H total correlation 
spectroscopy (TOCSY) and correlation spectroscopy 
(COSY).
Data processing

The 1H NMR free induction decays (FID) were 
processed using the MestReNova NMR Suite software 
package (Ver. 6.0.2, Mestrelab Research, S.L., Spain). 
They were zero filled to 64 K and multiplied by a line 
broadening of 0.3 Hz to improve the signal-to-noise ratio 
before Fourier transformation. Both phase and baseline 
corrections were then performed manually, and the spectra 
were referenced to the methyl doublet signal of lactate  
(δ 1.33 ppm). The spectra between δ 9.0–0.0 ppm were 
data-reduced to 450 consecutive non-overlapped regions 
(bins) with an equal width of 0.02 ppm. The region 
between δ 5.1–4.7 ppm (containing the residual peak 
from the suppressed water resonance) was excluded from 
further analysis. The remaining bins for each spectrum 
were integrated and normalized according to the total area 
of the spectrum. The resulting normalized datasets were 
saved in text format and subjected to multivariate analysis.

Targeted metabolomics analysis by RRLC

RRLC-based targeted metabolic profiling analysis 
of SFAAs was performed using an Agilent 1260 
Series Rapid Resolution LC (Agilent technologies, 
Waldbronn, Germany). An Agilent Zorbax Eclipse Plus 
C18 (4.6 mm × 50 mm, 1.8 μm) column was used for 
the analysis. The analysis was performed as described 
previously [24]. The raw data files were processed using 
the Agilent OpenLAB Control Panel software (Version 
A.01.02). Prior to multivariate analysis, we measured the 
concentrations of SFAAs (μmol·L-1 serum) in patients with 
lung cancer and healthy controls.

Multivariate statistical analysis

Normalized metabolomics datasets were imported 
into the SIMCA-P version 12.0 software package 
(SIMCA-P+ 12.0, Umetrics, Umeå, Sweden) for 
multivariate analysis. Principal component analysis (PCA) 
and orthogonal projection on latent structure discriminant 
analysis (OPLS-DA) were applied with mean-centering 
and unit-variance scaling [42]. Parameters including the 
cumulative values of the total Y explained variance (R2) and 
the Y predictable variation (Q2) were analyzed to ensure the 
quality of the multivariate models. Permutation tests with 
100 iterations using the 7-fold cross-validation method 
were performed to avoid the risk of over-fitting [43].

Selection and identification of differentially 
regulated metabolites

Differentially regulated metabolites that 
discriminated between lung cancer patients and healthy 
controls were obtained by variable importance in 
projection (VIP, a measure of their relative influence on 
the model) with a threshold > 1 in the OPLS-DA model. 
They were validated at the univariate level using student’s 
t-tests (p < 0.05). Each metabolite was normalized and 
plotted in a histogram using Origin version 8.0. External 
cross-validation was performed to evaluate the predictive 
and diagnostic accuracy of the differentially regulated 
metabolites. Eight samples from each group were 
randomly selected as a test set. The remaining samples 
comprised the training set, which was used for validation. 
We used the training set to generate a prediction model 
that was used to predict diagnoses in the test set. 

CONCLUSIONS 

Both the non-targeted and targeted metabolomics 
approaches could differentiate between serum samples 
from patients with lung cancer and healthy controls. 
This data indicates metabolomics analysis could be used 
to detect early metabolic changes associated with lung 
cancer progression, and could be used to detect early-stage 
lung cancer. Many metabolites were significantly altered 
in lung cancer patients compared to healthy controls. 
These included glycolysis metabolites, lipid metabolites, 
phospholipid intermediates, ketone bodies, and amino 
acids. Collectively, our data demonstrate the feasibility 
of our approach. However, additional studies involving 
larger patient cohorts are required to validate the clinical 
significance of the non-targeted and targeted metabolomics 
approaches for cancer detection.

ACKNOWLEDGMENTS AND FUNDING

The SIMCA-P+ 12.0 software package was 
provided by the Lanzhou Institute of Chemical Physics at 
the Chinese Academy of Sciences. The study was funded 
by Project Grant No. 21505094 from the National Natural 
Science Foundation of China.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of 
interest.

REFERENCES

 1. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, 
Tharakan ST, Lai OS, Sung B, Aggarwal BB. Cancer is a 
preventable disease that requires major lifestyle changes. 
Pharm Res. 2008; 25:2097–2116. 



Oncotarget63447www.impactjournals.com/oncotarget

 2. Kushi LH, Doyle C, McCullough M, Rock CL, Demark-
Wahnefried W, Bandera EV, Gapstur S, Patel AV, 
Andrews K, Gansler T, American Cancer Society 2010 
Nutrition and Physical Activity Guidelines Advisory 
Committee. American Cancer Society Guidelines on 
nutrition and physical activity for cancer prevention: 
reducing the risk of cancer with healthy food choices and 
physical activity. CA Cancer J Clin. 2012; 62:30–67.

 3. Weissleder R. Molecular imaging in cancer. Science. 2006; 
312:1168–1171. 

 4. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, 
Reid B, Radich J, Anderson G, Hartwell L. The case for 
early detection. Nat Rev Cancer. 2003; 3:243–252.

 5. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, 
Kramer JL, Alteri R, Robbins AS, Jemal A. Cancer 
treatment and survivorship statistics, 2014. CA Cancer 
J Clin. 2014; 64:252–271.

 6. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, 
Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA 
Cancer J Clin. 2016 Jan 25. doi: 10.3322/caac.21338.

 7. Hong QY, Wu GM, Qian GS, Hu CP, Zhou JY, 
Chen LA, Li WM, Li SY, Wang K, Wang Q, Zhang XJ, Li J, 
Gong X, et al. Prevention and management of lung cancer 
in China. Cancer. 2015; 1:3080–8.

 8. Clements KM, Peltz G, Faries DE, Lang K, Nyambose J, 
Earle CC, Sugarman KP, Taylor DC, Thompson D, 
Marciniak MD. Does type of tumor histology impact 
survival among patients with stage IIIB/IV non-small cell 
lung cancer treated with first-line doublet chemotherapy? 
Chemother Res Pract. 2010; 2010:524629.

 9. Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: 
understanding the metabolic responses of living 
systems to pathophysiological stimuli viamultivariate 
statistical analysis of biological NMR spectroscopic data. 
Xenobiotica. 1999; 29:1181–1189.

10. Vinayavekhin N, Homan EA, Saghatelian A. Exploring disease 
through metabolomics. ACS Chem. Biol. 2010; 5:91–103.

11. Jin X, Yun SJ, Jeong P, Kim IY, Kim WJ, Park S. 
Diagnosis of bladder cancer and prediction of survival by 
urinary metabolomics. Oncotarget. 2014; 5:1635–1645.  
doi: 10.18632/oncotarget.1744.

12. Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, 
Cagiano S, Bufo P, Lastilla G, Maiorano E, Ribatti D,  
Giglio A, Serino G, Vavallo A, Bettocchi C, et al. 
Metabolomic profile of glycolysis and the pentose phosphate 
pathway identifies the central role of glucose-6-phosphate 
dehydrogenase in clear cell-renal cell carcinoma. Oncotarget. 
2015; 6:13371–13386. doi: 10.18632/oncotarget.3823.

13. Kimhofer T, Fye H, Taylor-Robinson S, Thursz M, 
Holmes E. Proteomic and metabonomic biomarkers for 
hepatocellular carcinoma: a comprehensive review. Br 
J Cancer. 2015; 112:1141–1156.

14. Wang H, Chen J, Feng Y, Zhou W, Zhang J, Yu YU, Wang X, 
Zhang P. 1H nuclear magnetic resonance-based extracellular 

metabolomic analysis of multidrug resistant Tca8113 oral 
squamous carcinoma cells. Oncol Lett. 2015; 9:2551–2559. 

15. Lam CW, Law CY. Untargeted mass spectrometry-based 
metabolic profiling of pleural effusions: fatty acids as 
novel cancer biomarkers for malignant pleural effusions. 
J Proteome Res. 2014; 13:4040–4046.

16. Roberts LD, Souza AL, Gerszten RE, Clish CB. 
Targeted metabolomics. Curr Protoc Mol Biol. 2012; 
Chapter 30:Unit 30.2.1–24. 

17. Vrhovsek U, Masuero D, Gasperotti M, Franceschi P, 
Caputi L, Viola R, Mattivi F. A versatile targeted 
metabolomics method for the rapid quantification of 
multiple classes of phenolics in fruits and beverages. 
J. Agric. Food Chem. 2012; 60 :8831–8840.

18. Vinayavekhin N, Saghatelian A. Untargeted metabolomics. 
Curr Protoc Mol Biol. 2010; Chapter 30:Unit 30.1.1–24.

19. Ye N, Liu C, Shi P. Metabolomics analysis of cervical 
cancer, cervical intraepithelial neoplasia and chronic 
cervicitis by 1H NMRspectroscopy. Eur J Gynaecol 
Oncol. 2015; 36:174–180.

20. Guleria A, Misra DP, Rawat A, Dubey D, Khetrapal CL, 
Bacon P, Misra R, Kumar D. NMR-Based Serum 
metabolomics discriminates takayasu arteritis from healthy 
individuals: a proof-of-principle study. J. Proteome Res. 
2015; 14:3372–81. doi: 10.1021/acs.jproteome.5b00422.

21. Zheng P, Gao HC, Li Q, Shao WH, Zhang ML, Cheng K, 
Yang de Y, Fan SH, Chen L, Fang L, Xie P. Plasma 
metabonomics as a novel diagnostic approach for major 
depressive disorder. J Proteome Res. 2012; 11:1741–1748. 

22. Gupta A, Gupta S, Mahdi AA. ¹H NMR-derived serum 
metabolomics of leukoplakia and squamous cell carcinoma. 
Clin Chim Acta. 2015; 441:47–55.

23. Deja S, Porebska I, Kowal A, Zabek A, Barg W, Pawelczyk K,  
Stanimirova I, Daszykowski M, Korzeniewska A, 
Jankowska R, Mlynarz P. Metabolomics provide new 
insights on lung cancer staging and discrimination from 
chronic obstructive pulmonary disease. J Pharm Biomed 
Anal. 2014, 100:369–380.

24. Zhang X, Zhao T, Cheng T, Liu X, Zhang H. Rapid 
resolution liquid chromatography (RRLC) analysis of 
amino acids using pre-column derivatization. J Chromatogr 
B Analyt Technol Biomed Life Sci. 2012; 906:91–95.

25. Ferreira LM. Cancer metabolism: the Warburg effect today. 
Exp Mol Pathol. 2010; 89:372–380.

26. Merz AL, Serkova NJ. Use of nuclear magnetic resonance-
based metabolomics in detecting drug resistance in cancer. 
Biomark Med. 2009; 3: 289–306. 

27. Huang C, Freter C. Lipid metabolism, apoptosis and cancer 
therapy. Int J Mol Sci. 2015; 16:924–949. 

28. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 
2012; 279:2610–23.

29. McGarry JD, Foster DW. Regulation of hepatic fatty acid 
oxidation and ketone body production. Annu Rev Biochem. 
1980; 49:395–420.



Oncotarget63448www.impactjournals.com/oncotarget

30. Podo F. Tumour phospholipid metabolism. NMR Biomed. 
1999; 12:413–439.

31. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism 
in malignant transformation. Nature reviews Cancer. 2011; 
11:835–848.

32. Glunde K, Jacobs MA, Bhujwalla ZM. Choline metabolism 
in cancer: implications for diagnosis and therapy. Expert 
Rev. Mol. Diagn 2006; 6:821–829.

33. Xu X, Gammon MD, Zeisel SH, Lee YL, Wetmur JG, 
Teitelbaum SL, Bradshaw PT, Neugut AI, Santella RM, 
Chen J. Choline metabolism and risk of breast cancer in a 
population-based study. FASEB J. 2008; 22:2045–52.

34. Niculescu MD, Zeisel SH. Diet, methyl donors and 
DNA methylation: interactions between dietary folate, 
methionine and choline. J Nutr. 2002; 132:2333S–2335S.

35. Kim MH, Kim H. Oncogenes and tumor suppressors 
regulate glutamine metabolism in cancer cells. J Cancer 
Prev. 2013; 18:221–226.

36. Daye D, Wellen KE. Metabolic reprogramming in cancer: 
unraveling the role of glutamine in tumorigenesis. Semin 
Cell Dev Biol. 2012; 23:362–369.

37. O’Connell TM. The complex role of branched chain amino 
acids in diabetes and cancer. Metabolites. 2013; 3:931–945. 

38. Nicastro H, da Luz CR, Chaves DF, Bechara LR, Voltarelli VA,  
Rogero MM, Lancha AH Jr. Does branched-chain amino 
acids supplementation modulate skeletal muscle remodeling 
through inflammation modulation? Possible mechanisms of 
action. J Nutr Metab. 2012; 2012:136937. 

39. Kolodziej LR, Paleolog EM, Williams RO. Kynurenine 
metabolism in health and disease. Amino Acids. 2011; 
41:1173–83.

40. Le Floc’h N, Otten W, Merlot E. Tryptophan metabolism, 
from nutrition to potential therapeutic applications. Amino 
Acids. 2011; 41:1195–205.

41. Chuang SC, Fanidi A, Ueland PM, Relton C, Midttun O, 
Vollset SE, Gunter MJ, Seckl MJ, Travis RC, 
Wareham N, Trichopoulou A, Lagiou P, Trichopoulos D, 
et al. Circulating biomarkers of tryptophan and 
the kynurenine pathway and lung cancer risk. Cancer 
Epidemiol Biomarkers Prev. 2014; 23:461–468. 

42. Rousseau R, Govaerts B, Verleysen M, Boulanger B. 
Comparison of some chemometric tools for metabonomics 
biomarker identification. Chemom Intell Lab Syst. 2008; 
91:54–66.

43. Lindgren F, Hansen B, Karcher W, Sjöström M, Eriksson L. 
Model validation by permutation tests: applications to 
variable selection. J Chemom. 1996; 10:521–532.


