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Why was DLL4 abrogated in all the LFS cell lines 
regardless of their TP53 status? Moreover, unlike some 
published reports, the results also show drastic down-
regulation of DLL4 in cancer cell lines and all the tumor 

samples examined. The abrogation of DLL4 expression 
in LFS is a novel discovery, which to our knowledge has 
never been reported before, especially in light of the fact 
that the main characteristic feature of LFS has always 

Figure 6: Role of DNA methylation, TP53 and CTCF in regulation of DLL4 gene expression. A. silenced DLL4 by DNA 
methylation in MDA231 cell line is reactivated by inhibitor of DNA methylation 5’-aza-dC. I) DLL 4 expression level in MDA231 cell 
line is compared with HS27 and MCF7 by RT-PCR assay. II) Reactivation of silenced DLL4 gene in MDA231 by the DNA methylation 
inhibitor, 5-aza-dC. III) Methylation status of the DLL4 promoter in MDA231 cell lines treated with 5-aza-dC and detected by MS-PCR. 
IV) Phase-contrast photomicrographs showing morphologic changes in MDA231 cells treated with 2, 5µM, 10µM and 25µM of 5-aza-dC 
for 3 days, compared with untreated control cells maintained for 3 days. B. The effect of DNA methylation on interaction between CTCF 
and DLL4 promoter by ChIP assay C. Reactivation of DLL4 gene expression in LFS cell line, 3335, by CTCF and TP53 siRNA treatment. 
D. A schematic representation of presumable mechanism of regulation of DLL4 gene expression.
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been the germline and autosomal dominant heterozygous 
mutation of TP53. However, a similar down-regulation of 
DLL4 both at the transcriptional and translational levels 
in other cancer lines and tumor tissues was unexpected 
and antithetical to published reports that emphasize 
DLL4 as a tumor promoter and an aberrant activator of 
the Notch receptor. This has prompted the development 
of anti-DLL4 antibody and gamma secretase inhibitors as 
therapeutic agents for cancer patients. These efforts have 
not been very successful and raise concerns for long-term 
treatment of cancer using DLL4 and Notch inhibitors. Our 
results, on the other hand, point to a potential contribution 
of a suppressed or dysregulated DLL4 to tumorigenesis. 
Therefore, exclusive reliance on anti-DLL4 therapy may 
have long-term and undesirable effects. 

According to the results in our study, epigenetic 
regulation via DNA methylation of the DLL4 promoter 
sites was not the cause of DLL4 abrogation in these 
LFS cells, although silencing through methylation might 
have been a factor in MCF7 cells, which only exhibited 
reduction of DLL4 expression and not a total absence 
of the gene or the protein. What is most intriguing in 
our findings is the total absence of DLL4 expression in 
normal (non-cancerous) skin fibroblasts of wild-type TP53 
carriers and mutant p53 carriers of LFS patients who had 
a preponderance of primary cancers at an early age. It 
was therefore necessary to investigate the presence of 
an interaction between DLL4 and TP53, whose germline 
mutation is the hallmark of the Li-Fraumeni syndrome. 
Although the results indicate a possible physical 
association between TP53 and CTCF as a requirement 
in the regulation of the expression of DLL4, the ChIP 
assay and the siRNA experiments in this study clearly 
show the presence of a binding site for TP53 on the 
DLL4 promoter. This is the first reported case as far as 
we know of a transcriptional regulation of DLL4 by the 
tumor suppressor protein, TP53. The exact role of CTCF’s 
association with TP53 in regulating DLL4 expression is 
not known. However, CTCF is a chromosomal networking 
protein CCCTC binding factor and a key regulator and 
repressor of IGF2; and as a transcriptional insulator 
element, it can block communication between enhancers 
and upstream promoters [41, 42]. The question still 
remains as to why DLL4 is abolished in LFS cells under 
both wild-type and mutant p53 conditions. As Figure 5C 
shows, there is no difference in the protein expression of 
wild-type TP53 and mutant TP53 in LFS cells suggesting 
that the wild-type allele activity of TP53 in LFS cells may 
not be as potent in its tumor suppression ability especially 
in curbing cell proliferation as wild-type TP53 found in 
normal non-LFS cells [43]. Furthermore, not surprisingly, 
the gain of function ability of the dominant negative 
mutant TP53 in a heterozygous configuration might block 
DLL4 expression. This might be the reason that knocking 
down TP53 in a heterozygous mutant LFS cell line, 3335, 
by siRNA reactivated DLL4 expression. We have not 

determined the potential presence of haploinsufficiency in 
the DLL4 gene in any of our experimental samples.

As shown in this study, the down-regulation of 
DLL4 is also drastic in tumor samples derived from breast, 
brain, kidney, lung, liver, and prostate. One possibility, 
although not conclusively shown, is the presence of gene 
disruption in the region of DLL4 where the chromosomal 
translocation has occurred. More importantly, the 
dysregulation of DLL4 seems to be common in all cells 
including LFS and tumor tissues. However, during the 
initiation of Notch signaling, a transcriptional coactivator 
is released when DLL4 interacts with a Notch receptor 
on an adjacent cell and activates the receptor through 
proteolysis. This active intracellular domain may also 
impinge on the transactivation of TP53 function and 
thus inhibit the expression of downstream genes that 
regulate apoptosis, senescence or cell cycle arrest [44]. 
This suggests a possible feedback loop between TP53 
and Notch mediated by DLL4. Activated Notch-1 plays 
a dichotomous role by inducing cell cycle arrest and 
terminal differentiation via p21 regulation on one hand, 
and on the other hand, by transcriptional inhibition of 
genes involved in neuronal differentiation [44]. These 
Notch-targeted processes with dual roles are very 
important in the context of the influence of DLL4/Notch 
signaling in tumorigenesis.

The core functional component of the Notch 
signaling pathway is DLL4. It has been observed that 
mice devoid of DLL4 expression in thymic epithelial cells 
showed a drastic reduction of Notch-1 in hematopoietic 
cells and a lack of Cd4 and Cd8 double- or single-positive 
T-cells in thymus. This demonstrates the importance of 
the intracellular fragment of Notch-1 for T-cell progenitor 
generation and thymic T-cell differentiation as both 
functions were able to be restored by forced expression of 
the intracellular domain [10, 11]. This also suggests that 
for the induction of Notch signaling in cells migrating into 
the thymus, DLL4 expression is paramount [45]. It has 
also been reported that actively growing tumors down-
regulate the expression of DLL1 and DLL4 especially 
in hematopoietic cells under circumstances in which 
immune-surveillance (i.e. T-cell activation) is downgraded 
and angiogenesis is promoted [46]. 

In this study, the negative expression of DLL4 in 
LFS and cancer cells was not restricted to only tissue 
culture cell lines but it was also evident in tumor tissues 
from invasive ductal carcinoma, renal carcinoma, prostate 
adenocarcinoma, small cell carcinoma, hepatocellular 
carcinoma, and neuroblastoma. This suggests that a 
dysregulated DLL4 can contribute to a widespread 
carcinogenesis or tumorigenesis if its expression and 
function in these cells are compromised. Although the 
underlying cause of DLL4 dysregulation in LFS or other 
cancer cell lines and tissues may not be fully known, our 
results suggest that 1) the presence of a germline TP53 
mutation or 2) the prevalence of epigenetic conditions 
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or 3) even the contribution of a gene-disruption by 
translocation, whose presence may be interfering with the 
normal function of the immune system, may be partially 
or wholly responsible for the subsequent development of 
tumorigenesis. 

Our data showed that TP53 and CTCF together have 
a direct activator effect at the DLL4 promoter. CTCF, 
potentially, is a key regulator and repressor/activator of 
DLL4. However, the mechanisms by which the CTCF/
TP53 axis is regulated by signaling are not understood. 
Defining the context of DLL4 expression is critical to our 
understanding of potential treatment options available 
to cancer patients. Our observation of association of 
TP53, CTCF and DLL4 in Notch signaling provides a 
mechanism by which significant developments can be 
achieved for future therapeutic applications.

Materials and Methods

Human LFS cell lines and cell culture

LFS cells were grown at 37 °C, 5% CO2, and 
in minimum essential medium with Earl’s salts and 
L-glutamine (Life Technologies, Bethesda, MD) 
containing 10% fetal bovine serum and 25 mmol/L 
HEPES. Cells underwent low passages and were harvested 
at 75-90% confluence [38]. MCF7 and IMR32 cell lines 
were obtained from ATCC (Manassas, VA) and cultured 
following the instructions of the supplier.

DNA methylation analysis

Genomic DNA was bisulfite-modified with an 
EpiTect Bisulfite Kit (Qiagen, CA, USA) according to the 
manufacturer’s protocols. Prediction of CpG islands in 
β2SP promoter and primer design for methylation-specific 
PCR use were obtained through a web software (www.
urogene.org); Primer pairs used for DLL4 distal promoter 
region methylation-specific PCR were methylated forward 
/ 5’- TTA TTG ATC GGT AGG TGC GAG TAG C -3’ 
reverse/ 5’- CAC GTA CAA AAA ACG ACG ACC G -3’ 
and unmethylated forward 5’- TTG ATT TAT TGA TTG 
GTA GGT GTG AGT AGT -3’; reverse/ 5’- AAA ACC 
ACA TAC AAA AAA CAA CAA CCA -3’. Primer pairs 
used for DLL4 proximal promoter region methylation-
specific PCR were methylated forward / 5’- GAA AAG 
GAG ATC GGA TTT CCC TAG C -3’ reverse/ 5’- 
TCT AAC TAC TAC AAT CCC AAC GCC G -3’ and 
unmethylated forward 5’- AGG AAG GAA AAG GAG 
ATT GGA TTT TTT TAG T -3’; reverse/ 5’-CCT CTA 
ACT ACT ACA ATC CCA ACA CCA -3’. 

RT-PCR and immunoblotting (IB)

The primers used for DLL4 amplifications were as 
follows: forward/ 5’-GGG ATG GCG GCA GCG TCC 
-3’; reverse/ 5’-TAC CTC CGT GGC AAT GAC ACA 
TT CA -3’. Rabbit anti-DLL4 (Cat#2589) for IB from 
Cell Signaling Technology (Boston, MA); Human normal 
tissue and tumor tissue samples including colon, stomach 
and lung were kindly provided by Dr. Edward Lee of the 
Department of Pathology, Howard University Hospital.

siRNA treatment

Briefly, CTCF, TP53 (Santa Cruz; sc-35124 and sc-
44218) and non-silencing control as well as fluorescein-
conjugate (Santa Cruz, sc-37007 and sc-36869) were used 
at 60 nM to transfect LFS cell line, 3335, using siRNA 
Reagent System (Santa Cruz, sc-45064) in serum-free 
media for 6h according to manufacturer’s instructions, 
Knockdown and transfection efficiency of siRNAs were 
confirmed by RT-PCR and Fluorescence Microscopy. The 
primers used for CTCF and TP53 amplifications were as 
follows: forward/ 5’-GAA ATG GAA GGT GAT GCA 
GTC GAA GC -3’, reverse/ 5’- CCG GTC CAT CAT GCT 
GAG GAT CA -3’; and : forward/ 5’- GCC ATG GAG 
GAG CCG CAG TCA-3’, reverse/ 5’-TCA GTC TGA 
GTC AGG CCC TTC TGT CTT-3’.

Immunohistochemistry (IH)

Immunohistochemistry was performed using 
validated antibody against DLL4 at the Lombardi 
Comprehensive Cancer Center Histopathology & Tissue 
Shared Resource, Georgetown University Medical 
Center. Briefly, immunohistochemical staining of normal 
and tumor tissue samples of breast, kidney, liver, lung 
and prostate was performed for human DLL4 made in 
rabbit. Five micron sections from formalin fixed paraffin 
embedded tissues were de-paraffinized with xylenes and 
rehydrated through a graded alcohol series. Heat induced 
epitope retrieval (HIER) was performed by immersing the 
tissue sections at 98 o C for 20 minutes in 10 mM citrate 

buffer (pH 6.0) with 0.05% Tween. Immunohistochemical 
staining was performed using a horseradish peroxidase 
labeled polymer #K4003 (Dako North America, 
Carpinteria, CA) according to manufacturer’s instructions. 
Briefly, slides were treated with 3% hydrogen peroxide 
and 10% normal goat serum for 10 minutes each and 
exposed to primary antibody DLL4 (1:60, Abcam, Cat 
# ab176876 ) diluted in 1X TBS with 0.05% Tween 20 
(Fisher, Pittsburg, PA) for overnight at 4oC. Slides were 
exposed to the HRP labeled polymer for 30min and 
DAB chromagen (Dako) for 5 minutes. Slides were 
counterstained with Hematoxylin (Fisher, Harris Modified 
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Hematoxylin), blued in 1% ammonium hydroxide, 
dehydrated, and mounted with Acrymount. Consecutive 
sections with the primary antibody omitted were used as 
negative controls. Wash buffer used 1X TBS with 0.05% 
Tween 20 (Fisher).

Co-immunoprecipitation (Co-IP) and chromatin-
immunoprecipitation (ChIP) assays

Co-immunoprecipitation assay was performed 
using Pierce Classic IP Kit according to manufacturer’s 
instructions (Thermo-Scientific, Waltham, MA) Rabbit 
anti-TP53 (Cat#2527) for Co-IP and Rabbit anti-CTCF 
(Cat#3418) from Cell Signaling Technology (Boston, 
MA). ChIP assay was performed using ChIP assay 
kit according to manufacturer’s instructions (Upstate 
Biotechnology, Lake Placid, NY). Rabbit anti-CTCF and 
TP53 for ChIP is the same as Co-IP. Primers for DLL4 
proximal promoter were as follows: forward/ F1) 5’- CAG 
GTT TCA GTA GCG GCG CTG -3’; F2) 5’- ATT ACC 
GGG CAA CCC CTC TAT CC -3’; F3) 5’- GAG TGG 
CCA CAG AGA GGT TAAC GC -3’; F4) 5’- CGC AGG 
AAC TGA AGC TGG ACT C -3’; F5) 5’- GAT CAC GCC 
GGG TTC CGA GAA -3’; F6) 5’- AAC CCA CGC TCC 
CAA CCT CTT -3’. Reverse / R) 5’- GGA CGC TGC 
CGC CAT CC -3’; R1) 5’- CAG CGC CGC TAC TGA 
AAC CTG -3’; R2) 5’- GGA TAG AGG GGT TGC CCG 
GTA AT -3’; R3) 5’- GCG TTA ACC TCT CTG TGG 
CCA CTC -3’; R4) 5’- GAG TCC AGC TTC AGT TCC 
TGC G -3’; R5) 5’- TTC TCG GAA CCC GGC GTG ATC 
-3’. Primers for DLL4 distal promoter were as follows: 
forward/ F8) 5’-CTT GAA ACT GCG GCG CCT GAA 
T-3’; F9) 5’-CCA GAG AGA GGT GAA GGA GGC 
CAC-3’ . Reverse / R7) 5’- GAG AAG GGG CCA CGT 
GCA GG-3’; R8) 5’- ATT CAG GCG CCG CAG TTT 
CAA G-3’.

Statistics

Statistical analysis was performed by one-way 
analysis of variance (ANOVA) and unpaired Student’s 
t test using the INSTAT 3.00 package (GraphPad, San 
Diego, CA, USA). 
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