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ABSTRACT
Epigenetics regulations have an important role in fertilization and proper 

embryonic development, and several human diseases are associated with epigenetic 
modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and 
Angelman syndrome. However, the dynamics and functions of long non-coding RNAs 
(lncRNAs), one type of epigenetic regulators, in human pre-implantation development 
have not yet been demonstrated. In this study, a comprehensive analysis of human 
and mouse early-stage embryonic lncRNAs was performed based on public single-cell 
RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed 
in a developmental stage–specific manner during human early-stage embryonic 
development, whereas a more temporal-specific expression pattern was identified 
in mouse embryos. Weighted gene co-expression network analysis suggested that 
lncRNAs involved in human early-stage embryonic development are associated with 
several important functions and processes, such as oocyte maturation, zygotic genome 
activation and mitochondrial functions. We also found that the network of lncRNAs 
involved in zygotic genome activation was highly preservative between human and 
mouse embryos, whereas in other stages no strong correlation between human 
and mouse embryo was observed. This study provides insight into the molecular 
mechanism underlying lncRNA involvement in human pre-implantation embryonic 
development.

INTRODUCTION

Understanding human pre-implantation development 
can not only provides insight into common human 
birth defects but also improve our understanding of the 
pathogenic mechanisms of many complex diseases such 
as Rett syndrome, Beckwith-Wiedemann syndrome and 
Angelman syndrome [1, 2]. Thus, it is meaningful to 
understand the molecular mechanisms underlying pre-
implantation development.

Members of numerous non-coding RNA classes are 
expressed in the oocyte and pre-implantation embryo, and 
they have have an important role in fertilization and proper 
embryonic development [3], including directing cell fate 
decisions and cell differentiation during embryogenesis, 

which involves the formation of highly complex tissues 
comprised of many different cell types with specific and 
stable gene expression patterns [4]. Regulation of non-
coding RNA occurs from the beginning of embryonic 
development. For example, the primary transcript of miR-
209~295, which is a miRNA cluster typically associated 
with the pluripotent state, is first detected in 4- to 8-cell 
embryos [5].

Long non-coding RNAs (lncRNAs), which are 
typically over 200 nucleotides in length , are involved 
in the cleavage stage of embryonic development [6]. 
Xist, the first identified lncRNA, is sufficient to trigger 
cis-inactivation of the X chromosome during the 4-cell 
stage, and another lncRNA; Fendrr, mediates long-term 
epigenetic marks to define expression levels of its target 
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genes in mammalian embryogenesis [6–8]. Notably, a 
large number of human developmental disorders are 
related to the abnormal expression of some lncRNAs, such 
as DBE-T in facioscapulohumeral muscular dystrophy, 
SNORD115 and SNORD116 in Prader-Willi Syndrome and 
KCNQ1OT1 and H19 in Beckwith-Wiedemann Syndrome 
and Silver-Russell Syndrome, which suggests that 
lncRNAs may play an important role in pre-implantation 
development [9–11]. However, the expression profiles and 
the regulation mechanism of lncRNAs in human early-
stage embryos remain unclear. 

Considering the limited availability of human 
oocytes and pre-implantation stage embryos, most studies 
of the functions of lncRNAs involved in embryonic 
development are based on model animals [12, 13]. A 
study of zebrafish embryogenesis found that a number of 
lncRNAs are involved in specific pathways and functions, 
ranging from cell cycle regulation to morphogenesis 
[12]. However, substantial differences in gene expression 
patterns exist between humans and model animals, which 
may limit the extrapolation of some findings to human 
embryonic development, especially for lncRNAs for 
which the sequence conservation is very low [1, 14]. 
Nevertheless, the differences between lncRNA expression 
patterns and functions between human and model animals 
have not yet been clearly elucidated.

In this study, we elucidate the expression profiles 
and functions of lncRNAs in human early-stage embryos 
based on single-cell RNA sequencing (RNA-seq) data. We 
also compare the lncRNA expression profiles of human 
and mouse early-stage embryos. Genome-wide analysis of 
the functions of lncRNAs in pre-implantation stage will 
improve our understandings on the molecular mechanisms 
of human embryogenesis and developmental disorders.

RESULTS

Transcriptome reconstruction from the  
single-cell RNA-seq data

All reads of the 90 single-cell RNA-seq datasets 
(GSE36552) were aligned to the human genome (hg19) using 
HISAT, and the details of the mapping results are shown in 
Supplementary Table S1. The mapped reads were assembled 
into transcripts with the ab initio assembly software Cufflinks 
and Scripture (Figure 1, Supplementary Table S1). Mouse 
single-cell RNA-seq data (GSE44183) were aligned to the 
mouse genome (mm9) (Supplementary Table S1).

Subsequently, low-quality transcripts were 
removed using a read coverage threshold (see Materials 
and Methods). The corresponding receiver operating 
characteristic (ROC) curves are shown in Supplementary 
Figure S1. High-confidence transcripts were retained for 
downstream analysis.

Identification of novel lncRNAs

A novel lncRNA detection pipeline was developed 
to identify novel lncRNAs from the high-confidence 
transcripts. First, there were 94,418 and 77,464 
unannotated transcripts were assembled by Cufflinks 
and Scripture, respectively. Among them, 535 transcripts 
which were assembled by both Cufflinks and Scripture 
were retained for downstream analysis. After size and 
exon number selection, 452 transcripts were selected as 
the putative novel lncRNAs. Finally, 421 transcripts were 
identified as novel lncRNAs based on their low coding 
potential as calculated with four different prediction tools 
(Figure 1 and Supplementary Dataset S1). These novel 
lncRNAs are listed in Supplementary Dataset S1. 

Transcriptional profiles across different stages

We found that 15,400 and 6063 genes showed stage-
specific expression (differential expression between any 
two consecutive stages) in the human and mouse datasets, 
respectively. There were notable differences in the human 
gene expression profiles between the 4- and 8-cell stages 
(Figure 2), which was consistent with the major maternal-
zygotic transition [15, 16]. Accordingly, significant 
differences were identified between the expression profiles 
of mouse pronuclei and the 2-cell stage (Figure S2). Two 
other dramatic changes were also authenticated in human 
transcript profiles. One was between the oocyte and 
zygote stages and the other was between the morula to late 
blastocyst at hatching stages (Figure 2A), which were likely 
caused by fertilization and cell differentiation, respectively.

A more temporal-specific expression pattern was 
identified in lncRNAs rather than in  
protein-coding genes

Previous studies have shown that lncRNAs are 
expressed in a tissue type–specific manner and that 
their expression levels are significantly lower than 
those of protein-coding genes [17]. In this study, the 
Spearman’s rank correlation coefficients derived from 
lncRNA expression data were significantly lower than 
those of protein-coding genes, both in human and mouse 
embryos (P-value = 2.2 × 10–16, two-tailed Mann-Whitley-
Wilcoxon test; Figure 3A, Supplementary Dataset S2 and 
Supplementary Dataset S3), indicating that expression of 
lncRNAs was more variable than that of protein-coding 
genes in human early-stage embryonic development. 
Our analysis showed that the distributions of maximal JS 
(Jensen-Shannon, temporal specificity) scores for lncRNAs 
and protein-coding genes were significantly different, 
and lncRNAs were expressed in a more temporal-
specific manner (P-value < 2.2 × 10–16, Kolmogorov-
Smirnov test; Figure 3B, Supplementary Dataset S4 and 
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Supplementary Dataset S5) in both human and mouse 
embryos. Using JS score = 0.5 as a cutoff value, we found 
that 45.4% of lncRNAs were temporal-specific, relative to 
only 19.2% of protein-coding genes in humans (P-value < 
0.001, Fisher exact test). Our data also showed that temporal 
specificity scores for lncRNAs in mouse were significantly 
higher than those in human (P-value < 2.2 × 10–16, 
Kolmogorov-Smirnov test; Figure 3B, Supplementary 
Dataset S4 and Supplementary Dataset S5). However, the 
expression levels of lncRNAs were much lower than those 
of protein-coding genes (P-value < 2.2 × 10–16, Kolmogorov-
Smirnov test; Figure 3C). Together, these observations 
suggest that lncRNAs exhibit more temporal specificity than 
protein-coding genes in human early embryos, and these 
differences were more pronounced in mouse early-stage 
embryonic development.

lncRNAs may regulate gene transcription in cis 
in human embryo development 

Some lncRNAs may act in cis and affect the 
expression of genes in their chromosomal neighborhood [18–
20]. To test whether lncRNAs act in cis in human embryonic 
development, correlations between the expression patterns 
of lncRNAs and their neighbor coding genes, including 
9440 unidirectional pairs and 3616 bidirectional pairs, were 
calculated. The results indicated a more correlation between 
lncRNAs and their coding neighbors than protein-coding 
gene–protein-coding gene pairs (P-value < 2.2 × 10–16, 
Kolmogorov-Smirnov test; P-value < 2.2 × 10–16, Student’s 
t-test, effect size = 0.61; Figure 3D). To confirm that this was 

a true cis effect of lncRNAs, we analyzed the correlations 
between the expression patterns of lncRNAs and their 
protein-coding gene neighbors and between protein-coding 
gene neighbors in two situations. The correlation between 
lncRNAs and protein-coding gene neighbors was significantly 
higher than between protein-coding genes and their protein-
coding gene neighbors for both unidirectional neighbor-gene 
pairs (P-value < 2.2 × 10–16, Kolmogorov-Smirnov test; 
P-value < 2.2 × 10–16, Student’s t-test, effect size = 0.64; mean 
correlation: 0.423 for lncRNA–protein-coding gene pairs vs. 
mean correlation: 0.233 for protein-coding gene–protein-
coding gene pairs; Supplementary Figure S3A) and divergent 
neighbor gene pairs (P-value < 2.2 × 10–16, Kolmogorov-
Smirnov test; P-value < 2.2 × 10– 16, Student’s t-test, effect size 
= 0.61; mean correlation: 0.460 for lncRNA–protein-coding 
gene pairs vs. mean correlation: 0.251 for protein-coding 
gene–protein-coding gene pairs; Supplementary Figure S3B).

Taken together, these results confirmed that there 
were remarkably different expression patterns between 
lncRNA–protein-coding gene pairs and neighboring 
protein-coding gene pairs in both directions, which 
revealed that lncRNAs may regulate gene transcription in 
cis in human early-stage embryos.

Functions of lncRNAs in human early-stage 
embryonic development 

To investigate the potential roles of lncRNAs in 
early-stage embryonic development, weighted gene  
co-expression network analysis (WGCNA) was performed 
on the stage-specific genes (Supplementary Dataset S6 

Figure 1: Overview of the novel lncRNA detection pipeline.
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and Supplementary Dataset S7). This analysis identified 
17 modules in human embryos, 9 of which were highly 
correlated (correlation > 0.6, P-value < 10–4) with specific 
developmental stages or with the entire developmental 
process (Figure 4, Figure S4 and Supplementary Dataset S8). 
In mouse embryos, six of eight modules were highly 
correlated with early embryonic development (Supplementary 
Figure S5, Supplementary Figure S6 and Supplementary 
Dataset S9). All of the modules contained a large number 
of lncRNAs (Figure 5A, Supplementary Dataset S8 and 
Supplementary Dataset S9). Enrichment analysis of GO terms 
and KEGG pathways within the modules was conducted 
(Figure 5B, Supplementary Dataset S10 and Supplementary 
Dataset S11). We also found that most of coding genes were 
the neighbor genes of lncRNAs in every modules (P-value 
= 0.004, Table 1), which validated the former result that 
lncRNAs may regulate gene transcription in cis in human 
early-stage embryos. Besides, we performed a hub-gene 
network analysis of each stage-specific module, and the 
interaction between hub lncRNAs and hub coding genes was 
also analyzed. The hub-lncRNAs were found in all stage-
specific modules (Figure 6, Supplementary Dataset S8 and 
Supplementary Dataset S9), while some hub lncRNAs were 
found to co-localize with hub coding genes and cis-regulate 
them , and the others were confirmed to bind directly with the 
hub coding genes and trans-regulate them in almost all stage 
related modules (Figure 6, Supplementary Dataset S12 and 
Supplementary Dataset S13). The functions of these lncRNAs 
can be predicted based on the hub genes of known biological 
functions with which they were co-expressed with or bound.

lncRNAs regulate human oocyte maturation

One human module that contained a large number 
of lncRNAs (greenyellow; 464 lncRNAs and 759 protein-

coding genes; Figure 5A) was highly correlated with the 
oocyte stage (Figure 4B). Genes in this module were 
enriched in the oocyte meiosis pathway (KEGG, P-value = 
0.005, Supplementary Dataset S10). There were many hub 
coding genes which were related to oocyte maturation co-
expressed with hub lncRNAs. Some of them were bound 
directly by hub lncRNAs, such as AURKA, BCL2L10, and 
the others such as TNFSF13, were the neighbor genes of 
hub lncRNAs [21–23] (Figure 6, Supplementary Dataset 
S8, Supplementary Dataset S12). Thus, hub lncRNAs 
of this module may be important for the regulation of 
oocyte maturation. Notably, lncRNAs in this module are 
related to protein ubiquitination (GO enrichment, P-value 
= 0.001; Figure 5B and Supplementary Dataset S10) and 
regulation of protein ubiquitination (GO enrichment, 
P-value = 0.02; Figure 5B and Supplementary Dataset 
S10), which agrees with previous reports that the 
ubiquitin-proteasome pathway (UPP) can control oocyte 
meiotic maturation [24, 25]. These results suggested that 
lncRNAs may activate oocyte maturation and meiosis.

lncRNAs involved in human zygotic genome 
activation

Zygotic genome activation (ZGA) occurs between 
the 4- and 8-cell stages of human embryonic development 
and is the point at which zygotic transcripts gradually take 
control of development as maternal transcripts are degraded 
[1, 26]. In our study, half of human stage-specific modules 
were related to the 4- and 8-cell stages, and these modules 
contained a large fraction of lncRNAs. Genes in the human 
modules highly correlated with the 4-cell stage (pink) were 
enriched in GTPase, which mediates signal transduction 
(Figure 5B and Supplementary Dataset S10). There were 
many hub coding genes which were related to GTPase  

Figure 2: Global gene expression patterns during the seven consecutive stages of human pre-implantation development. 
(A) Bar graph showing the total number of differentially expressed genes between successive developmental stages (q-value < 0.01 and 
log2 fold change > 1). (B) Principal component (PC) analysis based on lncRNA expression profiles of human pre-implantation embryos.



Oncotarget61219www.impactjournals.com/oncotarget

co-expressed with hub lncRNAs. Some of them were bound 
directly by hub lncRNAs, such as RASA3, and the others such 
as GNG2, were the neighbor genes of hub lncRNAs (Figure 
6, Supplementary Dataset S8, Supplementary Dataset S12). 
The human modules related to the 8-cell stage (magenta, 
brown and yellow) were enriched in several functions related 
to ZGA, including nucleosome assembly (GO enrichment, 
P-value = 8.19 × 10–11;  Figure 5B and Supplementary Dataset 
S10) and chromatin assembly (GO enrichment, P-value = 
5.05 × 10–10; Figure 5B and Supplementary Dataset S10). In 
conclusion, we found that some hub lncRNAs may activate 
ZGA during the human 4- and 8-cell stages.

lncRNAs regulate mitochondrial functions

Basic research in model species and clinical in vitro 
fertilization studies have shown that mitochondria 
play an important role in the regulation of mammalian 
early embryogenesis and that embryonic mitochondrial 

replication occurs after the hatched-blastocyst stage 
[27,28]. In this study, we found that the gene functions in 
two human blastocyst stage–related modules (black and 
green) were both enriched in mitochondrion functions 
(Figure 5B and Supplementary Dataset S10). Hub 
lncRNAs in these two modules bound directly and co-
expressed with several mitochondrial function genes, 
including ATP5G3, COX4I1 and NDUFS6, which indicated 
that hub lncRNAs of blastocyst modules may correlate to 
mitochondrial function (Figure 6, Supplementary Dataset 
S8, Supplementary Dataset S12) [29]. 

Comparison of lncRNA functions between 
human and mouse early-stage embryonic 
development

Because we found that lncRNAs were expressed 
in a more temporal-specific manner in mouse early 
embryos than that in human embryos, we also analyzed 

Figure 3: Temporal-specific expression of lncRNAs. (A) Boxplot indicating the distribution of Spearman’s rank correlation 
coefficients between each embryonic sample pair derived from lncRNAs and coding genes (* means P-value < 0.05). (B) Distribution of JSD-
based specificity of genes in various stages. (C) Distribution of maximal expression (log10-normalized FPKM counts estimated by Cufflinks) 
of lncRNAs and coding genes in human pre-implantation development. (D) Pearson correlation coefficient distributions for expression levels 
across the samples in human pre-implantation development. The random pairs are 10,000 random pairs of protein-coding genes.
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the functions of lncRNAs in mouse early embryonic 
development. Though lncRNAs were also found to be 
related to several functions in specific stages during 
mouse early embryonic development, the functions of 
lncRNAs were not identical in mouse or human embryonic 
development. For example, lncRNAs in the human 8-cell 
stage appear to have an important role in GTPase mediated 
signal transduction (Figure 5B and Supplementary 
Dataset S10), whereas lncRNAs in the mouse 8-cell stage 
do not appear to have such functions (Supplementary 
Dataset S11). Comparing the human modules to the 
mouse developmental data, we found that the human 
8-cell modules overlapped significantly with the mouse 
2-cell module, during which mouse ZGA occurs (Figure 
7). While mouse pre-major ZGA genes are spread over 
the longer gestational pre-major ZGA stage in humans. 
Likewise, post-major ZGA networks are found to have 
significant overlap and spread throughout all post-major 
ZGA human stages (Figure 7). These results suggested 
that the networks (modules) of lncRNAs involved in ZGA 
are particularly conserved between human and mouse 
embryos, but there is less preservation across other stages.

DISCUSSION

A number of diseases are caused by the disruption of 
epigenetic regulation during early embryonic development 
[3, 30]. However, no systematic studies focused on the 
functions of lncRNAs during human early embryonic 
development has been described. Here we identified 421 
novel lncRNAs in the first study to determine expression 
levels of all genes in human early-stage embryos. 

Furthermore, we found that lncRNAs are expressed in 
a developmental stage–specific manner, and they may 
regulate gene transcription in cis in human embryonic 
development. 

Oocyte meiosis is a specialized cell cycle that 
gives rise to fertilizable haploid gametes and is precisely 
controlled on many levels. Previous studies have found 
that the UPP regulates both human and mouse oocyte 
meiotic maturation in several ways [25, 31]. CRL4-
DCAF1 ubiquitin E3 ligase facilitates oocyte meiotic 
maturation by proteasomal degradation of the protein 
phosphatase 2A scaffold subunit PP2A-A, which inhibits 
cohesin removal and homologous chromosome separation 
during meiosis I [24]. UPP also has roles in oocyte meiotic 
maturation, because the degradation of cyclin B1 mediated 
by UPP is necessary for disjunction of pairs of homologous 
chromosomes during the first meiotic division in oocytes 
[25]. In hub-gene network analysis, we found 60 lncRNAs 
in the regulation network module built on co-expression 
with 10 UPP genes, among them 30 lncRNAs bound 
directly with the 9 UPP genes (Figure 6F). Thus lncRNAs 
may activate oocyte meiotic maturation through regulating 
the UPP in both human and mouse. With these results, we 
have a better understanding of the mechanisms of oocyte 
meiotic maturation and oocyte maturation failure [32].

The ZGA is another important early embryonic 
developmental period in which maternal mRNAs are cleared 
and embryonic transcription is activated [26]. Remodeling 
of chromatin surrounding nucleosomes, including 
repositioning of nucleosomes and post-translational 
modifications of histones, coincides with ZGA, which leads 
to exposure of the transcription start sites of zygotic genes 

Figure 4: Network analysis of human pre-implantation development. (A) Hierarchical cluster tree showing co-expression 
modules identified using WGCNA. Modules correspond to branches and are labeled by colors as indicated by the color band underneath 
the tree. (B) Heatmap of correlations followed by the P-values in parentheses between modules and developmental stage. The color of each 
square corresponds to the degree of correlation: positive correlation, red; negative correlation, green; no correlation, white. The “time” 
column on the left represents the correlation of each module with the entire development process.
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and permits recruitment of the RNA polymerase II complex 
[26]. Previous studies have shown that lncRNAs can 
regulate chromatin remodeling and recruitment of the RNA 
polymerase II [33, 34]. For example, lncRNA SChLAP1 
antagonizes SNF5 (also known as SMARCB1), an essential 
subunit that facilitates SWI/SNF binding to histone protein 

[35]. In this study, we confirmed that lncRNAs may 
stimulate ZGA through regulating nucleosome assembly 
and chromatin assembly during ZGA. 

As the mouse is a wildly used animal model 
for human disease research, we compared human and 
mouse stage-specific modules in this study. We found 

Figure 5: Function prediction of lncRNAs involved in pre-implantation development. (A) Bar graph showing the number 
of lncRNAs and coding genes in each module. (B) Bar plots showing GO enrichment in the modules. The length of the bars indicates the 
significance. 
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Table 1: Coding genes were the neighbor genes of lncRNAs in every modules
Module Neighbor coding genes (%) Non- neighbor coding genes (%) t P-value

black 56.23 43.77 3.970 0.004

brown 59.46 40.54

green 54.13 45.87

greenyellow 55.20 44.80

magenta 52.81 47.19

pink 63.21 36.79

red 57.43 42.57

salmon 47.37 52.63

yellow 56.57 43.43

Mean 55.82 ± 4.4 44.18 ± 4.4

Figure 6: Hub gene networks for human stage-specific modules. Visualization of gene-gene interactions within each module. 
The connections were drawn using the VisANT tool. The genes with at least one connection when the weighted cutoff value was ≥ 0.1 are 
shown. Each node represents a hub gene. The red nodes are hub lncRNAs. The green edges mean co-expression, and the red edges mean 
both co-expression and interaction, and the blue edges mean both co-expression and neighbor gene, and the yellow edges mean all three 
situation (co-expression, interaction and neighbor gene). To make the background clear, the green edges are not shown in Figure D and 
F. (A) Black module. (B) Brown module. (C) Green module. (D) Greenyellow module. (E) Magenta module. (F) Pink module. (G) Red 
module. (H) Salmon module. (I) Yellow module.
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that the networks of lncRNAs in the human 8-cell stage 
were particularly similar to those in the mouse 2-cell 
stage, and the pre- and post-ZGA modules in human and 
mouse overlapped across multiple stages. This probably 
reflects species-specific differences in human and 
mouse gestational periods and/or the very low sequence 
conservation of lncRNAs, because major differences 

in transcript structure result in functional differences 
[14]. Because of the large differences between human 
and mouse lncRNA networks, except those involved 
in ZGA, the value of research in mice may be limited, 
and it will be important to examine the functions of 
lncRNAs in human early embryonic development 
directly. 

Figure 7: Comparison of modules in human and mouse early embryonic development. Heatmap showing the significance of 
gene overlaps between independently constructed human and mouse modules. The x axis shows only mouse stage-specific modules (n = 6), 
and the y axis shows all human modules (n = 9). Each cell contains the number of intersecting genes and the P-value of the intersection. 
Color legend represents −log10–transformed P-values based on a hypergeometric test.
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MATERIALS AND METHODS

Single-cell RNA-seq dataset

The single-cell RNA-seq dataset of human early-
stage embryos (GSE36552) was downloaded from the 
Gene Expression Omnibus (GEO) of the National Center 
for Biotechnology Information. The dataset consists of 90 
samples from seven crucial stages of embryo development: 
3 metaphase II oocyte samples, 3 zygote samples, 6 2-cell 
stage samples, 12 4-cell stage samples, 20 8-cell stage 
samples, 16 morula stage samples and 30 late blastocyst 
at hatching stage samples [16]. The single-cell RNA-seq 
dataset of mouse early-stage embryos (GSE44183), which 
includes 17 samples ranging from the oocyte to morula 
stages, was also downloaded from the GEO. Both of these 
datasets were generated with the Illumina HiSeq 2000 
system [36].

Data pre-processing and filtering

Read mapping and transcript assembly

Reads were aligned to the human (hg19) and mouse 
(mm9) genomes by HISAT (version 1.4.1; a successor to 
TopHat2), which is the fastest aligning algorithm currently 
available and one of the most accurate [37]. 

Aligned reads from HISAT were then assembled 
into transcripts separately by two different approaches: 
Cufflinks (version V2.2.1) and Scripture (beta version 2). 
Cufflinks uses a probabilistic model to simultaneously 
assemble and quantify the expression level of a minimal 
set of isoforms and provides a maximum likelihood 
explanation of the expression data in a given locus. 
Scripture uses a statistical segmentation model to 
distinguish expressed loci from experimental noise and 
uses spliced reads to assemble expressed segments. It 
reports all statistically significantly expressed isoforms 
in a given locus. The two approaches might generate 
different results in terms of assembled transcripts and 
numbers of products [38].

Cufflinks version V1.0.3 was run with default 
parameters (and ‘min-frags-per-transfrag = 0’) and 
Scripture version 1.0 was run with default parameters 
[38–40].

Filtering low-quality transcripts 

To remove low-quality reconstructed transcripts, 
transcripts assembled by Cufflinks with coverage below 
4.03418 reads per base were eliminated (the threshold of 
transcripts assembled by Scripture was 1.39501). This 
minimal read coverage threshold was calculated by the 
method described previously [17, 41]. Transcripts that 
recovered 75% of annotation were regarded as good 
reconstructed transcripts. The ROC curve was used to 
evaluate the performance of different coverage thresholds 

between good and bad reconstructed transcripts. The final 
threshold was the average of the optimum threshold for 
coding (‘NM’ prefix) and non-coding (‘NR’ prefix) RNAs 
in RefSeq (NCBI Reference Sequence Database).

Calculating optimum coverage threshold

A coverage threshold set T with specified 
sensitivity and specificity was generated with the R 
package pROC based on the coverage values of good 
and bad reconstructed transcripts [42]. The index of the 
optimum coverage threshold in set T can be obtained by 
formula 1, in which i* represents the index of the optimum 
coverage threshold and sensitivities[i] and specificities[i] 
respectively denote the sensitivities and specificities of the 
ith coverage threshold. The value for i is enumerated in I, 
ranging from 1 to the size of the coverage threshold set 
T. Then the optimum coverage threshold can be obtained 
with formula 2 [43].

( }{ 2* 21 [ ]) (1 [ ])i Ii argmin sensitivities i specificities i∈= − + −  (1)

* *[ ]t T i=  (2)

Novel lncRNA detection pipeline

The novel lncRNAs were obtained by the following 
steps: (1) Cuffcompare in Cufflinks was run using 
default parameters (and ‘-M discard (ignore) single-exon 
transfrags and reference transcripts’) to combine our 
transcripts with annotations from five well-established 
databases, Refseq (ref_GRCh37.p13_top_level.gtf), 
Ensembl (Ensembl_Homo_sapiens.GRCh37.75.gtf), 
UCSC (hg19), Gencode (gencode.v19.annotation.gtf) and 
the lncRNA database NONCODE 4.0 (NONCODEv4u1_
human_lncRNA.gtf) [44–49]; (2) unannotated transcripts 
were acquired based on the overlap of the combined 
transcripts, and BEDTools (version 2.18) was used to 
eliminate transcripts that had at least one exon overlapping 
with annotations from any of the five databases; (3) 
transcripts > 200 bp were then selected [16,50] and (4) 
novel lncRNAs were acquired based on non-coding 
potential by integrating the results from the four prediction 
tools: iseeRNA, CPAT, CPC and PLEK [51–54]. 

Estimating relative expression and differential 
expression analysis

A matrix of gene expression levels across all 
samples was obtained by computing the expression 
levels of Refseq coding genes and lncRNAs (both novel 
lncRNAs and the annotated lncRNAs) with Cuffquant and 
Cuffnorm [39]. The annotations of Refseq coding genes 
and annotated lncRNAs were directly downloaded from 
the highly reliable database: Refseq and NONCODE V4.

The R package Monocle was used to conduct 
differential expression tests between any two consecutive 
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stages. Differential expression of a specific gene between 
any two consecutive stages was noted if the log2 fold 
change was >1 and the false discovery rate–adjusted 
P-value indicated statistical significance (q-value < 0.01) 
after the Benjamini-Hochberg correction for multiple 
testing [43, 55].

Temporal specificity analysis

Normalization of expression vectors for temporal 
specificity calculation

To calculate the temporal specificity scores of 
genes, the expression vector needed to be converted to 
an abundance density. First, the raw FPKM (fragments 
per kilobase of exons per million fragments mapped) of 
each gene was converted to log10(FPKM+1).Then this 
expression vector was normalized to a density vector 
by formula 3, in which V = (v1,...,vn ) is the original raw 
FPKM abundance estimation of each gene and V' is the 
new normalized density vector [41].

( )10

101

log 1
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Calculating temporal specificity score

To calculate the temporal specificity score, we 
used an entropy-based measure to quantify the similarity 
between a gene’s expression pattern and another 
predefined pattern that represents an extreme case in 
which a gene was expressed during only one stage [41]. 
The entropy of a discrete probability distribution was 
calculated by formula 4.
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The temporal specificity score was defined by 
formula 5, in which JSdist dist was the Jensen-Shannon 
distance (JSD) between two stage expression patterns 
and e was the gene expression pattern across n stages 
(formula 6). And es was a predefined expression pattern 
that represented the extreme case in which a gene was 
expressed in only one stage. It was defined by formula (7).
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Finally, the temporal specificity score of a gene was 
defined as the maximal temporal specificity score across 
all n stage of the genes expression pattern e:

( ) ( | ),  1.. .  sp s spJS e argmax JS e s s n= =  (8)

Neighboring gene correlation analysis

Two genes were defined as neighbors if the distance 
between the gene bodies was < 10 kb. Correlation 
between the expression pattern of an lncRNA and its 
neighbor coding gene was estimated by calculating the 
Pearson correlation coefficient (P-value ≤ 0.05) between 
their density-normalized expression vectors [17,41]. The 
neighbor genes could be divided into two categories: 
divergent (bidirectional) neighbor gene pairs and 
unidirectional neighbor gene pairs. The divergent neighbor 
gene pairs were identified as gene pairs that were arranged 
head-to-head on opposite strands [56].

Analysis of lncRNA functions in human early-
stage embryonic development

lncRNA co-expression network construction and gene 
module detection

The R package WGCNA was used to construct an 
lncRNA co-expression network [57]. The stage-specific 
genes, those that were differentially expressed between 
any two consecutive stages, were selected to construct 
the network. A signed weighted correlation network 
was constructed by first creating a matrix of Pearson 
correlation coefficients between all pairs of genes across 
the measured samples. Second, an adjacency matrix 
was calculated by raising the correlation matrix to 
power β = 5. The power of 5 was the soft threshold of 
the correlation matrix and made the adjacency network 
exhibit approximate scale-free topology (R2 = 0.9). To 
minimize effects of noise and spurious associations, the 
adjacency matrix was transformed into a Topological 
Overlap Matrix (TOM). Genes with highly similar co-
expression relationships were grouped together by 
performing average linkage hierarchical clustering 
on the topological overlap. Dynamic Hybrid Tree Cut 
algorithm was used to cut the hierarchal clustering tree 
and define modules as branches from the tree cutting. 
The expression profile of each module was represented 
by its first principal component (module eigengene), 
which could explain the most variation in the module 
expression levels. Modules with highly correlated 
module eigengenes (correlation > 0.85) were merged 
together.

Identification and visualization of hub genes

The module membership (also known as module 
eigengene based connectivity, kME) of each gene was 
calculated by correlating the gene expression profile with 
module eigengenes with formula 9, in which xi is the 
gene expression profile of gene i and MEq is the module 
eigengene of the module q [57]. 

( ) ,( )q
q ikME i cor x ME=  (9)
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Genes with the highest module membership 
values were referred to as intramodular hub genes (kME 
≥ 0.9, P-value < 10–22). Intramodular hub genes, which 
were centrally located inside the module, represent the 
expression profiles of the entire module and reflect the 
core functions of the module [57]. We used VisANT to 
visualize the gene connections (based on topological 
overlap) among the intramodular hub genes [58].

Interaction analysis of hub genes

LncTar, a reliable bioinformatics tool, was used to 
analyze the interaction between hub lncRNAs and hub 
coding genes in each module [59]. The variation on the 
standard “sliding” algorithm approach was utilized to 
calculate the normalized binding free energy (ndG) and 
identify the minimum free energy joint structure. The ndG 
was regard as a cutoff (ndG ≤ −0.1) to determine the paired 
RNAs as either interacting or not. The accuracy of LncTar 
is over 80% confirmed by the biological experiments [59].

Module preservation statistics

To compare human and mouse lncRNA modules, we 
mapped human genes to the orthologous mouse gene annotations 
from the Mouse Genome Informatics (MGI) database [60]. The 
function ‘overlapTableUsingKME’ in the WGCNA R package 
was used to assess whether two modules were preserved based 
on a hypergeometric test that uses kME [61].

Function enrichment analysis

Gene Ontology (GO) enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis of modules was carried out with the R packages 
GOstats and org.Hs.eg.db. Hypergeometric tests were 
applied with a P-value cut-off of 0.05 and minimum gene 
count of 5. Each module was tested for GO enrichment in 
terms of the Biological Process categories [62, 63].
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