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ABSTRACT
Preoperatively predict the probability of Prostate cancer (PCa) biochemical 

recurrence (BCR) is of definite clinical relevance. The purpose of this study was 
to develop an imaging-based approach in the prediction of 3-years BCR through a 
novel support vector machine (SVM) classification. We collected clinicopathologic 
and MR imaging datasets in 205 patients pathologically confirmed PCa after radical 
prostatectomy. Univariable and multivariable analyses were used to assess the 
association between MR findings and 3-years BCR, and modeled the imaging variables 
and follow-up data to predict 3-year PCa BCR using SVM analysis. The performance 
of SVM was compared with conventional Logistic regression (LR) and D’Amico risk 
stratification scheme by area under the receiver operating characteristic curve 
(Az) analysis. We found that SVM had significantly higher Az (0.959 vs. 0.886; p = 
0.007), sensitivity (93.3% vs. 83.3%; p = 0.025), specificity (91.7% vs. 77.2%; p = 
0.009) and accuracy (92.2% vs. 79.0%; p = 0.006) than LR analysis. Performance 
of popularized D’Amico scheme was effectively improved by adding MRI-derived 
variables (Az: 0.970 vs. 0.859, p < 0.001; sensitivity: 91.7% vs. 86.7%, p = 0.031; 
specificity: 94.5% vs. 78.6%, p = 0.001; and accuracy: 93.7% vs. 81.0%, p = 0.007). 
Additionally, beside pathological Gleason score (hazard ratio [HR] = 1.560, p = 
0.008), surgical-T3b (HR = 4.525, p < 0.001) and positive surgical margin (HR = 
1.314, p = 0.007), apparent diffusion coefficient (HR = 0.149, p = 0.035) was the 
only independent imaging predictor of time to PSA failure. Therefore, We concluded 
that imaging-based approach using SVM was superior to LR analysis in predicting 
PCa outcome. Adding MR variables improved the performance of D’Amico scheme.

INTRODUCTION

Radical prostatectomy (RP) is an effective form of 
local therapy for prostate cancer (PCa) [1, 2]. However, 
there is still approximately one quarter of patients 
undergoing this curative surgery will have a biochemical 
recurrence (BCR) or “prostate-specific antigen (PSA) 
recurrence” [1-5]. Preoperatively predict the probability of 
BCR is of definite clinical relevance. Several preoperative 
nomograms, i.e., the Stephenson nomogram [6], the 

D’Amico risk stratification scheme [7], and the University 
of California, San Francisco, Cancer of the Prostate Risk 
Assessment (CAPRA) score [8], have been developed 
in the urologic community to predict the probability 
of BCR within 3-5 or 10 years of treatment. Although 
these nomograms have been internationally validated, 
unfortunately, only a few of them have predicted the 
probability of 5-year BCR with more than 70% accuracy 
[9-11]. Therefore, efforts to improve existing outcome 
prediction tools in PCa are always encouraged. 
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In the past decades, multi-parametric MRI (mp-
MRI), i.e., T1-weighted imaging (T1WI), T2-weighted 
imaging (T2WI), diffusion weighted imaging (DWI), 
dynamic contrast-enhanced (DCE), and MR spectroscopic 
imaging, has been investigated as promising way not 
only for imaging, detecting and staging the localized 
cancer, but also for risk stratification, image guidance 
for biopsy, surgery and focal therapy [12-18]. However, 
the clinical application of mp-MRI can be challenged by 
large amount of image data in each patient. Additionally, 
as without standardized ways, the image interpretation 
can be subjective, which depends on radiologists’ 
experience, level of local medical culture and personal 
preference, thereby limiting the diagnostic accuracy and 
reproducibility in PCa [19]. Recently, automated cancer 
detecting and classification based on preoperative mp-
MRI through a novel support vector machine (SVM) 
analysis has been an ongoing interest. SVM is one of the 
best-known classification techniques and usually provides 
the best classification for computer-aided detection in 
radiology [20]. Recent technical developments in SVM by 
expending advanced algorithms (e.g., principal component 
analysis [21, 22], particle swarm optimization [23] and 
cross-validation schemes) have produced encouraging 
results regarding solving or classifying pattern recognition 
problems [24]. The SVM analysis has the ability of 
reducing false positives in the determination of abnormal 
lesions in brain [24, 25], breast [26] and prostate [20], 
showing high accuracy, elegant mathematical tractability 
and direct geometric interpretation. Although the 
application of SVM to the diagnosis of PCa has validity 
in research, a more meaningful clinical application of it 
is in helping the identification of predictors of outcome 
[9, 27, 28]. These could help direct, to more high-
risk individuals, the early implementation of targeted 
interventions that have been shown to reduce relapse rates, 
such as optimized neo-adjuvant therapy, resulting in better 
clinical outcomes. However, there is not yet a single, 

widely accepted algorithm for establishing that predictive 
nomogram by mp-MRI. 

The purpose of this study was therefore: (1) to 
develop an imaging-based nomogram to predict 3-years 
BCR in patients with localized PCa after RP using SVM 
analysis; (2) to determine whether SVM could be better 
than a conventional logistic regression (LR) analysis to 
improve performance ability; (3) to evaluate whether 
adding MRI-derived variables can effectively complement 
the preoperative clinico-pathologic predictors in patient 
outcome predicting.

RESULTS

Clinical characteristics

Clinical, histologic variables and MR findings for 
the study cohort (205 patients) are depicted in Table 1. The 
median age was 68 yr (interquartile range [IQR]: 62- 73 
ys), and median serum PSA was 13.1 ng/ml (IQR: 7.9- 
17.7). As of January 2016, 61 (29.7 %) of the 205 patients 
in the study had a biochemical recurrence. The median 
(range) follow-up for all patients was 43.8 (2-60) months; 
it was 47.3 (37-60) months for those with no evidence 
of recurrence and 20.1 (2-41) months for those with 
recurrence. Of the 205 prostatectomy confirmed patients, 
total 409 lesions were detected at histological findings, 
whereas total 263 lesions were detected at MR findings. 
Tumor in 178 (86.8%) patients originated in PZ and 27 
(13.2%) originated in TZ on section histology. 

Performance of the predictive models

Table 2 shows the results of the multiple LR 
analysis. The estimate probabilities (Pi) of PCa BCR after 
RP is: Pi = 1 / (1 + exp(-0.421 + 1.226 * age + 1.211 * 

Figure 1: MR images of a representative case to indicate the imaging registration, lesion identification and region of 
interesting drawing. A 69-year-old man presented with two solid tumor foci in right peripheral zone (PZ; write arrow) (pathological 
Gleason score 4+4, pT3a) and left PZ (pathological Gleason score 4+3), respectively. The two lesions were characterized with hypo-signal 
intensity (SI) on T2-weighted imaging (T2WI; a), and hyper-SI on diffusion-weighted imaging (DWI; b = 1000 s/mm2). Registration and 
fusion of images between T2WI and DWI was performed using a. DICOM-tag metrics c., showing clearly the lesion boundaries. Because 
the lesion in right TZ had larger size, and an infiltration of the peri-prostatic fat (extracapsular extension) was suspected, it was selected as 
leading lesion for further quantitative measure.
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Table 1: Clinical, pathological and MR findings of cohort (n = 205)
Variables Mean (SD) or n (%)

Preoperative Characteristics
Age, n (%)
≤ 60 ys 40 (19.5 %)
> 60 ys 165 (80.5 %)
Clinical stage, n (%)
< T3 118 (57.6 %)
≥ T3 87 (42.4 %)
Preoperative PSA level, n (%)
0-10 ng/ml 81 (39.5 %)
10-20 ng/ml 100 (48.8 %)
> 20 ng/ml 24 (11.7 %)
Biopsy Gleason score, n (%)
≤ 3+3 88 (42.9 %)
3+4 55 (26.8 %)
4+3 44 (21.5 %)
≥ 4+4 18 (8.8 %)
Preoperative MR findings 
Lesion Location, n (%) 
PZ 178 (86.8 %)
TZ 27 (13.2 %)
DCE type 
Type 1+2 86 (41.9 %)
Type 3 119 (58.0 %)
ADCs (× 10-3 mm2/s), Mean (SD) 1.06 (0.19)
Max diameter (cm), Mean (SD) 1.8 (0.8)
MR-detected T stage
< T3a 114 (55.6 %)
T3a (ECE) 56 (27.3 %)
  T3b (SVI) 35 (17.1 %)
Postoperative Characteristics 
Pathological Gleason score, n (%)
≤ 3+3 48 (23.4 %)
3+4 75 (36.6 %)
4+3 48 (23.4 %)
≥ 4+4 34 (16.6 %)
Surgical tumor volume, Mean (SD)
Volume, cm3 5.4 (9.1)
Volume percentage, % 14.5 (14.6)
Surgical ECE, n (%)
Absent 133 (64.9 %)
Present 72 (35.1 %)
Surgical SVI, n (%)
Absent 166 (81.0 %)
Present 39 (19.0 %)
Cancer invasion on surgical margin, n (%)
    Negative 154 (75.1 %)
Positive 51 (24.9 %)
PSA = prostate-specific antigen; PZ = peripheral zone; TZ = transition zone; DCE = dynamic contrast-enhanced; ADC 
= apparent diffusion coefficient; ECE = extracapsular extension; SVI = seminal vesicle invasion.
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Table 2: Logistic regression (LR) model with multiple variables

Variable Coefficient B S.E. Wald p Exp(B) 95% C.I. for EXP(B)
Lower Upper

DCE type 0.407 0.443 0.743 0.359 1.502 0.630 3.579
ADCs -4.196 1.346 9.722 0.002* 0.015 0.001 0.210
Location -0.150 0.567 0.069 0.792 0.861 0.283 2.618
MR visible 0.645 1.172 0.303 0.582 1.906 0.191 18.974
PI-RADS 0.266 0.403 0.434 0.510 1.304 0.592 2.874
Dmax -0.170 0.280 0.369 0.543 0.844 0.488 1.459
MR T-stage 1.211 0.299 16.397 0.001* 3.358 1.868 6.037
Age 1.226 0.643 3.637 0.057 3.406 0.967 12.002
Constant -0.421 2.259 0.035 0.852 0.656
C.I. = Confidence Interval, S.E. = Standard Error. PI-RADS = Prostate Imaging and Reporting and Data System.

Table 3: Predictabilities of LR, ANN and SVM models in prediction of PCa BCR
Model Az SEN, % SPE, % ACC, % cutoff value
LRMR 0.886 (0.834- 0.926) 83.3 (71.5- 91.7) 77.2 (69.5- 83.8) 79.0 (70.1- 86.2) Pi > 0.41
SVMMR 0.959 (0.922- 0.982) 93.3 (83.8- 98.1) 91.7 (86.0- 95.6) 92.2 (85.3- 96.3) Pi > 0.44
SVMD’Amico 0.859 (0.804- 0.903) 86.7 (75.4- 94.0) 78.6 (71.0- 85.0) 81.0 (72.3- 87.7) Pi > 0.41
SVMD’Amico+MR 0.970 (0.936- 0.988) 91.7 (81.6- 97.2) 94.5 (89.4- 97.6) 93.7 (87.1- 97.4) Pi > 0.40
Note.-data in brackets are 95% C.I.; LR, logistic regression; SVM, support vector machine; Az, areas under the ROC curve, 
SEN, sensitivity; SPE, specificity; ACC, accuracy. 

Table 4: Cox regression univariate and multivariate predictors of BCR 3 years after RP treatment (preoperative 
clinic-pathologic, MR, and postoperative findings)

Variable
Kaplan-Meier analysis multivariate Cox analysis
    Log-rank
(Mantel-Cox) p B HR (95% CI) p

preoperative clinic-pathologic variables
Age 8.691 0.003

PSA level 108.833 < 0.001
Biopsy GS 79.987 < 0.001

Clinical stage 19.963 < 0.001
Preoperative MR variables

Tumor location 0.445 0.505
MR-visible 10.558 0.001
PI-RADS 18.366 < 0.001

Dmax 13.663 < 0.001
DCE type 14.015 < 0.001

ADCs 42.122 < 0.001 -1.904 0.149 (0.025- 0.873) 0.035†

MR T stage 90.668 < 0.001
postoperative variables

Volume 12.153 < 0.001
Volume percentage 12.938 < 0.001

Pathological GS 71.625 < 0.001 0.445 1.560 (1.124-2.166) 0.008†

Surgical T-stage 128.576 < 0.001 1.510 4.525 (2.441-8.386) < 0.001†

Surgical margin 70.056 < 0.001 0.839 2.314 (1.260-4.251) 0.007†

Perineural invasion 11.632 0.001
Note. -PSA = prostate-specific antigen; GS = Gleason score; DCE = dynamic contrast-enhanced; ADC = apparent 
diffusion coefficient; HR = hazard ratio. †, significant correlates tested by Cox regression multivariate analysis.
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MR T-stage - 0.170 *Dmax + 0.645 * MR visible - 0.150 
* location - 4.196 * ADCs + 0.407 * DCE type + 0.266* 
PI-RADS)). It shows that tumor ADCs and MR T-stage 
are significantly associated with 3-years BCR (p < 0.05). 

Figure 3 shows the ROC curves for the four risk 
predictive models. The area under the ROC curve values 
(Az) for the model of LRMR, SVMMR, SVMD’Amico, and 
SVMD’Amico+MR was 0.886, 0.959, 0.859, and 0.970, 
respectively. Pairwise comparison of the ROC curves 
demonstrated that there was statistical difference between 
LRMR and SVMMR (Figure 4a; p = 0.007), and between 
SVMD’Amico and SVMD’Amico+MR (Figure 4b; p < 0.001). 
Using the optimal cutoff values obtained from ROC 
analysis (Table 3), SVMMR had significantly higher 
diagnostic SEN (p = 0.025), SPE (p = 0.009) and ACC 
(p = 0.006) than LRMR in 3-years BCR predicting. 
SVMD’Amico+MR had significantly higher diagnostic SEN 
(p = 0.031), SPE (p = 0.001) and ACC (p = 0.007) than 
SVMD’Amico. The difference of Az, SEN, SPE and ACC 
between SVMMR and SVMD’Amico+MR was insignificant (all 
p > 0.05). Figure 4 shows the predicted BCR-free survival 
curves of 205 patients by LRMR, SVMMR, SVMD’Amico and 
SVMD’Amico+MR model, respectively, which were compared 

to patients’ true survival curve. It shows that the survival 
functions constructed by SVMMR and SVMD’Amico+MR have 
relatively smaller bias than LRMR and SVMD’Amico. 

Among all the preoperative clinic-pathologic 
variables (age, biopsy GS, clinical TNM stage, and 
baseline PSA), the MR variables (tumor location, MR-
visible, Dmax, DCE type, ADCs, PI-RADS score, 
and MR T-stage), and the postoperative variables 
(tumor volume, volume percentage, pathological GS, 
pathological T-stage, cancer invasion on surgical margin, 
and perineural invasion), the Cox regression multivariate 
analysis indicated that only the tumor ADCs (HR = 
0.149; p = 0.035), pathological GS (HR = 1.560; p = 
0.008), positive surgical margin (HR = 2.314; p = 0.007), 
and surgical SVI (HR = 4.525; p < 0.001) were the 
independent risk predictors of time to PSA failure (Table 
4). Using the optimal cutoff values for ADCs obtained 
from ROC analysis ( < 1.03 × 10-3 mm2/s), The overall 
accuracy of ADCs to differentiate low-intermediate grade 
(pathological GS ≤ 3+4) from high-grade GS > 3+4) PCa 
is 64.9 %. The overall accuracy of MR to determine ECE 
and SVI is 81.9% and 95.1%, respectively. 

Figure 2: A multi-parametric prostate MRI in a 68-year-old man (PSA of 34.3 ng/ml, biopsy Gleason score 4+3 and 
stage T3b) to show the metrics for imaging interpretation. a. Tumor featured with decreased SI on axial T2WI, the location was 
defined at PZ (white line). b. ECE (red arrow) and seminal vesicle invasion (SVI; yellow arrow) were notified on coronal T2WI with fat 
suppression. c. Tumor with SVI was confirmed on sagittal T2WI (yellow arrow). d. Tumor was characteristic with hyper-SI on DWI (b = 
1000 s/mm2) and decreased ADC e. f. Schematic diagram shows three-type DCE curves, for this patient, tumor was defined as type-3 DCE 
curve (blue color). Histopathologic results showed a pathological Gleason core 4+4 and surgical SVI in this patient, and PSA failure was 
determined on 16 months after the prostatectomy treatment.
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DISCUSSION

In this study, we demonstrated that the combination 
of clinicopathologic and imaging variables can effectively 
contribute to the prediction of clinical outcome in patients 
with localized PCa before the surgical treatment. The 
nomogram constructed by SVM was significantly better 
than LR analysis. Additionally, the performance of 
popularized D’Amico scheme can be effectively improved 
by adding mp-MR imaging markers, suggesting this 
approach could be an optimal tool for initial evaluation 
before a curative attempt in patients with localized PCa.

The classification methods applied to pelvic MR 
image data was initially investigated in several studies 

for automated detection of malignancy [29-31]. Poulakis 
devised an ANN model with the input variables of MR 
findings, pretreatment PSA, clinical TNM stage and 
biopsy GS to predict PCa recurrence in 210 clinically 
localized PCa [9]. They found the new nomogram can 
produce higher sensitivity (91%) and specificity (88%) 
than conventional LR analysis to preoperatively predict 
5-year PSA failure. Fuchsjäger et al. [32] explored an 
integrated Cox model based on a seven-point scale MR 
scoring system and clinical variables to preoperatively 
predict 5- and 10-year BCR after RP. And recently, Park 
et al. [33, 34] demonstrated that tumor ADCs derived 
from DWI and new PI-RADS v2 score was better than 
preoperative PSA, biopsy GS and surgical variables in the 

Figure 3: the comparison of ROC curves among four risk predictive models constructed with different classification 
methods and input variables. a. with the same MR input variables, the model constructed by support vector machine (SVMMR) has 
significantly higher area under the ROC curve value (Az = 0.959) than the model of logistic regression (Az = 0.886, p = 0.007). b. using 
the same SVM analysis, the model combining MR and DA’mico variables has significantly higher Az (0.970) than the model using sole 
DA’mico variables (Az = 0.859; p < 0.001). 

Figure 4: Predicted BCR-free Kaplan-Meier curves of 205 patients after radical prostatectomy by four constructed 
models. The curves are stratified by: patients’ true Kaplan-Meier curve (black), and predicted Kaplan-Meier curves by LRMR (green), 
SVMMR (blue), SVMD’Amico (brown) and SVMD’Amico+MR model (red), respectively. It shows that the Kaplan-Meier functions constructed by 
SVMMR and SVMD’Amico+MR have relatively smaller bias than these of LRMR and SVMD’Amico.
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prediction of PSA failure in 158 consecutive cases. These 
nomograms can be competitive to the available clinical 
nomograms such as the D’Amico risk scheme [7], the 
CAPRA score [8], and the Stephenson nomogram [6].

Our study improved the predictive performance 
by applying a robust SVM analysis with MR and clinic-
pathologic variables. The SVM produced a 93.3% SEN, 
91.7% SPE and 92.2% ACC, showing significantly 
better performance ability than LR approach. This can 
be attributed to the fact that SVM classifier depends only 
on the support vectors, and the classifier function is not 
influenced by the entire data set. It can progressively 
learns from misclassified examples and automatically 
remove the false positives via examination of the distance 
in the Hilbert space to avoid over-fitting. Second, RBF-
SVM uses a cost-factor to control for classifier complexity 
and the prediction accuracy which would decrease in case 
of small cost-factor. Although the data presented in this 
paper were based on an optimal cost-factor of 2.934, we 
tested a range of different cost-factor values from 0.1 to 
50 and found very similar results, suggesting its good 
reproducibility. Third, different to the nomograms reported 
by Poulakis [9], Fuchsjäger [32] and Park [33], our study 
included more new imaging markers, i.e., DCE-type, 
Dmax, ADCs and MR T-stage, which may contributed to 
the improvement of predictive performance. This is true 
as the performance of clinical D’Amico scheme can be 
efficiently increased by adding these imaging markers. 
The imaging contribution in PCa BCR predicting can 
be explained that, the newly proposed imaging markers, 
i.e., ADCs, DCE type, MR T-stage, might indicate the 
postoperative histopathological features of PCa more 
accurately than conventional clinical variables. This is 
true as the quantitative MR imaging parameters, e.g., 
DCE-derived Ktrans, DWI-derived ADCs and/or Dapp, 
had been identified to be highly associated with the 
localized cancer aggressiveness and prognosis in recent 
clinical studies [16-18, 33, 35]. Additionally, we found 
that, among all imaging markers, only tumor ADCs was 
independently related to 3-years BCR, suggesting its 
prognostic value in the prediction of clinical outcome 
in PCa. The overall ACC for ADCs to differentiate low/
intermediate- from high-grade PCa is 64.9%, partly 
consistent with previous reports [16, 18, 36]. And our 
mp-MRI produced high accuracy for detecting surgical 
ECE (81.9%) and SVI (95.1%). This result confirms 
strongly the thesis that MR findings can complement the 
clinical nomogram for the improvement of the predictive 
performance. The nomogram by integrating MR findings 
and preoperative clinical variables such as D’Amico risk 
score is noninvasive and prospective, which could be 
readily applied by clinicians and allows for immediate 
identification of the variables accounted for BCR before 
the RP. 

An important limitation is the relatively small 
sample size in this preliminary study. Thus, future 

work should consider validating the accuracy of our 
classifier with an independent larger sample of patients. 
Second, part of input variables, e.g., DCE-type, MR 
visibility and MR T-stage, was generally interviewed 
by individual radiologists, the results of which, to some 
extent, depending on radiologist’s experience. Deviation 
is unavoidable in spite of many efforts to make. Thus, 
the findings under this calculation should be considered 
with caution. Finally, as this study used data from a 
single medical center, it remains unclear to what extent 
differences in acquisition protocol or scanners or patient 
cohort affect the accuracy of the classifier.

CONCLUSIONS

A SVM approach was more accurate than the 
classical LR analysis with the same input variables in the 
prediction of 3-years BCR in PCa after RP. Additionally, 
MR parameters can efficiently improve the predictive 
performance of popularized D’Amico scheme. This 
confirms the thesis that MR findings can well complement 
the preoperative clinic-pathologic variables to improve 
existing outcome prediction tools in PCa. As this machine 
learning approach is benefited with no user input, optimal 
reproducibility, faster post-processing times, and the 
ability to use the full potential of the combined clinical 
and diagnostic variables, which could be readily applied 
by clinicians to preoperatively assess the therapeutic risk.

MATERIALS AND METHODS

Patients

Our local institutional review board approved 
and waived the informed consent requirement for this 
retrospective study. Between January 2009 and February 
2013, 295 consecutive patients with biopsy confirmed 
PCa underwent prostatic MRI before RP. Patients received 
postoperatively immediate adjuvant hormone or radiation 
therapy before a documented decease recurrence (n = 
23, 7.8%), patients who were lost from follow-up (n = 
19, 6.4%), and patients failed to receive a standardized 
MR examination (n = 21, 7.1%) or underwent the MR 
examination from outside institutions (n = 27, 9.2%) were 
excluded from the study. Thus, 205 patients were eligible 
for clinical evaluation. No patient received any neo-
adjuvant therapy. The median time interval between the 
MR examination and prostatectomy was 12 days (range, 
5-17 days). 

Prostatic MR examination

All imaging examinations were performed with 3.0-
T MR scanners (Trio and Verio Tim; Siemens, Erlangen, 
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Germany) and pelvic phased-array coils. As per the 
standard prostatic MRI at our institution, the images 
obtained included transverse T1-weighted turbo spin-echo 
(TSE) images (TR/TE, 700/14 ms; section thickness, 3.5 
mm; intersection gap, 0.3 mm; field of view, 25 cm; and 
matrix, 384 × 336) and transverse, coronal, and sagittal 
T2-weighted TSE images (TR/TE, 6000/124 ms; section 
thickness, 3.5 mm; intersection gap, 0.3 mm; field of 
view, 25 cm; and matrix, 384 × 336) of the prostate and 
seminal vesicles. Then, single-shot echo-planar imaging 
(TR/TE, 6800/98 ms; field of view, 25 cm; matrix, 192 × 
130; section thickness, 3.5 mm; intersection gap, 0.3 mm; 
and a parallel imaging factor of 2) was performed with 
diffusion-module and fat suppression pulses. Diffusion 
in three directions was measured by using b values of 
0, 50, 150, 300, 600, and 1000 s/mm2. After a routine 
MR examination, a T1-weighted gradient recalled echo 
sequence was prescribed to acquire DCE-MR imaging 
data. This protocol was performed with parameters as 
follows: TR/TE, 3.8/1.8; flip angle, 12°; field of view, 
36 cm; matrix, 384 × 384; slice thickness, 3.5 mm; 
intersection gap, 0.3 mm). After two acquisitions, a bolus 
of Gd-diethylenetriaminepenta-acetic acid (Gd-DTPA 
0.05 mmol/kg; Magnevist, Bayer AG, Berlin, Germany) 
was injected at a rate of 2.5 ml/s through a 20-gauge 
antecubitalintravenous line. Bolus injection was performed 
with a MR-compatible power injector (Spectris; Medrad, 
Pittsburgh, PA) followed by a 15-ml saline flush. The 
DCE-MR imaging was continued for 5.0 minutes after the 
Gd-DTPA injection. 

Imaging analysis

Imaging analysis was completed independently by 
two experienced radiologists (Y.Z. and X.W. with 6 and 
more than 20 years of experience in reading prostate MR 
imaging). Because this study is to determine whether 
the noninvasive mp-MRI has prospective value in 
predicting BCR before the RP operation, any histologic-
radiologic correlation was prohibited during the MR 
imaging analysis. In this procedure, acquisition date and 
participant identification were removed from all images. 
The investigators were blinded to all clinical information. 
The mp-MR images from axial T2WI, DWI and DCE 
were registered by expending a DICOM-tags metrics on a 
computer-aided platform (FireVoxel; Center for Advanced 
Imaging Innovation and Research [CAI2R], New York 
University School of Medicine, New York, NY). The 
fusion images were displayed simultaneously and explored 
slice by slice to facilitate lesion discovery and region of 
interest (ROI) drawing. In each prostate, the radiologists 
first identified the most suspicious cancer lesion (leading 
lesion) on peripheral zone (PZ) and/or transition zone 
(TZ). The observation featured with largest lesion size, 
and/or dominantly low signal intensity (SI) on apparent 
diffusion coefficient (ADC) maps, and/or suspected 

extracapsular extension (ECE), and/or suspected seminal 
vesicle invasion (SVI), was defined as the leading lesion 
(Figure 1). Images was rated independently by the two 
reviewers according to the guidelines of European Society 
of Urogenital Radiology (ESUR) [37]. The T2WI, DWI 
and DCE images were scored (1-5) using the Prostate 
Imaging and Reporting and Data System (PI-RADS) v2 
[2], a summed score of all three MR sequences (T2WI, 
DWI, and DCE) was then calculated for the leading 
lesion in each patient. Additionally, the following imaging 
characteristics were summarized: 1) tumor location 
(PZ or TZ); 2) tumor max diameter (Dmax); 3) tumor 
is MR-visible or not; 4) tumor ADCs; 5) the DCE type; 
6) the presence or absence of ECE (MR stage T3a); 7) 
the presence or absence of SVI (MR stage T3b); 8) the 
presence or absence of local lymph node (LN) invasion; 
and 9) the presence or absence of local bone metastasis. 
Leading lesion boundaries were determined by manually 
outlining the regions of interest (ROIs) on fusion T2WI 
and high b-value DWI slice-by-slice. Whole-lesion 
mean ADC value was measured by expending a mono-
exponential fitting model. DCE-MRI was classified as 
three types based on the ESUR guidelines: type 1: slow 
wash-in and slow wash-out; type 2: fast wash-in and slow 
wash-out; and type 3: fast wash-in and fast wash-out. The 
presence of ECE was defined as an infiltration of the peri-
prostatic fat, irregular bulging associated with disruption 
of the capsule, focal thickening, capsular retraction, and 
peri-capsular spicula. The features of SVI include focal or 
diffuse low T2 SI and/or abnormal contrast enhancement 
within and/or along the seminal vesicle, restricted 
diffusion, obliteration of the angle between the base of 
the prostate and the seminal vesicle, and demonstration of 
direct tumor extension from the base of the prostate into 
and around the seminal vesicle (Figure 2). Regarding LN 
invasion, the LNs over 8 mm in short axis dimension are 
regarded as suspicious. Nodal groups including common 
femoral, obturator, external iliac, internal iliac, common 
iliac, pararectal, presacral, and paracaval, and paraaortic 
to the level of the aortic bifurcation were evaluated. Local 
bone metastasis was suspected if focal foci with low SI on 
T1WI, high SI on T2WI or DWI on pelvic bone. During 
the image interpretation, any inter-reader disagreement in 
classifying MR findings of the lesion was discussed until 
consensus reached. 

Histopathology

The results of the needle biopsy were recorded 
from the retrospective database, into which they were 
entered before RP. All prostate biopsies were obtained 
using TRUS guidance and were reviewed by dedicated 
urological pathologists (H.L. and M.B., with 10 years 
of experience in genitourinary pathology). Each core 
containing cancer was assigned a primary and a secondary 
Gleason grade. An overall biopsy Gleason score (GS) was 
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given to each case by identifying the core with the highest 
Gleason grade. The total number of cores obtained, the 
number of cores containing cancer, and the percent of 
biopsy cores involved with cancer (positive for cancer) 
were recorded. The prostatic specimens after RP were 
prepared as previously described [16] and examined by 
the institutional pathology department. The location and 
extent of invasive tumors were identified and precisely 
mapped in each section. An overall pathological GS 
was assigned to the whole gland. Pathological variables 
included in the study were the tumor number (small 
tumors with a volume of less than 0.5 cm3 were excluded), 
location, tumor volume and volume percent, primary and 
secondary GS, cancer invasion on the surgical margin, the 
presence or absence of ECE, SVI, perineural invasion, and 
the local LN invasion. Pathological stage of the cancer 
was assessed according to the 2005 International Society 
of Urological Pathology Modified Gleason Grading 
System [38].

Follow-up

The follow-up included measurements of serum 
PSA level and a digital examination of rectum (DRE) 
every 3 months for the first year after RP, at 6-month 
intervals for the next 2 years, and annually thereafter. In 
accordance with the European Association of Urology 
(EAU) guidelines for PCa, disease progression was 
defined as a serum PSA level that failed to decrease to 
undetectable levels after surgery, or an undetectable PSA 
level after surgery with a subsequent detectable PSA level 
that increased on two or more laboratory determinations, 
or secondary therapy or clinical recurrence [2]. In this 
study, a detectable level of PSA (i.e.,  ≥  0.2 ng/mL) after 
surgery was defined as BCR.

Model development

To predict the probabilities of PCa BCR associated 
with the variables, firstly, we constructed two risk 
predictive models based on SVM and multivariate LR 
analysis. Patient age ( < 60 ys and  ≥  60 ys of age) and 
seven MR imaging parameters, including the PI-RADS 
score, tumor location (PZ or TZ), tumor max diameter 
(Dmax), MR-visible or not, tumor ADCs, tumor DCE 
type (type 1+2 or type 3), and tumor MR T-stage ( < T3a, 
T3a, or > T3a), were included as input data for SVM 
and LR model. We did not include LN invasion and 
bone metastasis as the predictive variables because we 
observed a very few cases with lymph node metastasis (n 
= 3) and bone metastasis (n = 0) in this cohort of patients. 
Secondly, a SVM model based on a popularized D’Amico 
risk scheme [7] were constructed using the following 
preoperative clinic-pathologic variables: patient age, the 
first incorporated preoperative PSA level ( < 10 ng/ml, 10-

20 ng/ml and > 20 ng/ml), needle-biopsy GS (3+3, 3+4, 
4+3, and  ≥  4+4), and DRE and/or TRUS-based clinical 
TNM stage. In order to investigate whether the addition 
of MR variables can further improve the performance 
ability of the D’Amico model in predicting PCa BCR, a 
modified D’Amico model was constructed by adding the 
MR variables.

For the multiple LR model, we determined 
probabilities (Pi) of PCa BCR by using a backward 
stepwise approach as follows: 

 [eq.1],

 [eq.2], where Xi is the predictive 
variables and Bi is the regression coefficients determined 
by the multiple logistic regression analysis.

SVM is a supervised machine learning technique 
used for classification and regression analysis. SVM 
algorithm tries to construct an optimal separating 
hyperplane that maximizes the margin, where the margin 
is the largest distance to the nearest training data point of 
any class. Unlike the traditional artificial neural networks 
(ANNs), the SVM does not have to undertake a trial 
and error parameter decision process, while determines 
optimal performance conditions automatically if the 
kernel type is set. In this study, SVM with radial basis 
function (RBF) kernel was applied to resolve the two class 
problems, BCR or BCR-free. A RBF kernel, K, maps the 
original data with the kernel function as: 

K (𝑥) = exp(-g|| 𝑥-t||2) [eq.3], where 𝑥 and t are two 
feature vectors, and Gamma (g) controls the shape of the 
decision hyperplane. As in this relatively small patient 
groups, SVM models were developed and validated using 
a five-fold cross-validation method that maintained the 
best compromise between computational cost and reliable 
estimates. The dataset was randomly divided into 5 
mutually exclusively subsets of approximately equal size 
(n = 41), in which 4 subsets were used as training set, and 
the last subset was used as validation set. The sensitivity 
and specificity values were calculated for each test fold on 
the trained model of the other four folds. The performance 
of each iteration was calculated as the average of the 
performance values of these five folds. This procedure was 
repeated for five times, so each subset was used once for 
validation. As the direct output value of the SVM does not 
show probabilities of PCa BCR, we converted their output 
values to the probabilities (Pi) by applying a sigmoid 
function as follows:

  [eq.4], where 𝑥 is the output value of 
SVM analysis. The value of Pi indicates the probabilities 
that the patient has PCa BCR. 
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Statistical analysis

The performance of the LR, SVM, D’Amico and 
modified D’Amico model was evaluated using a receiver 
operating curve (ROC) analysis to predict the probabilities 
of PCa BCR. The ROC curves were estimated using a 
MedCalc statistical software (version 8.2.0.1, MedCalc 
Software, Mariakerke, Belgium). The performance 
parameters including the areas under the ROC curve (Az), 
sensitivity (SEN), Specificity (SPE) and accuracy (ACC) 
were reported. Pairwise comparison of the ROC curves 
was performed. Predicted Kaplan-Meier curves from four 
nomograms were created and compared to patients’ true 
Kaplan-Meier curves using a Kaplan-Meier analysis by 
SPSS (Version 22.0, Chicago, IL, USA). A multivariable 
Cox regression analysis was recruited to determine the 
independent indictors of PCa BCR, and hazard ratio (HR) 
was reported. A p value less than 0.05 was considered to 
indicate a statistically significant difference.
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